Academic literature on the topic 'Geometric learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometric learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometric learning"
Omohundro, Stephen M. "Geometric learning algorithms." Physica D: Nonlinear Phenomena 42, no. 1-3 (June 1990): 307–21. http://dx.doi.org/10.1016/0167-2789(90)90085-4.
Full textJamshidi, Arta, Michael Kirby, and Dave Broomhead. "Geometric Manifold Learning." IEEE Signal Processing Magazine 28, no. 2 (March 2011): 69–76. http://dx.doi.org/10.1109/msp.2010.939550.
Full textGong, Wenjuan, Bin Zhang, Chaoqi Wang, Hanbing Yue, Chuantao Li, Linjie Xing, Yu Qiao, Weishan Zhang, and Faming Gong. "A Literature Review: Geometric Methods and Their Applications in Human-Related Analysis." Sensors 19, no. 12 (June 23, 2019): 2809. http://dx.doi.org/10.3390/s19122809.
Full textGao, Huiping, and Zhongchen Ma. "Geometric Metric Learning for Multi-Output Learning." Mathematics 10, no. 10 (May 11, 2022): 1632. http://dx.doi.org/10.3390/math10101632.
Full textGao, Xiaoqing, and Hugh R. Wilson. "Implicit learning of geometric eigenfaces." Vision Research 99 (June 2014): 12–18. http://dx.doi.org/10.1016/j.visres.2013.07.015.
Full textGoldman, Sally A., Stephen S. Kwek, and Stephen D. Scott. "Agnostic Learning of Geometric Patterns." Journal of Computer and System Sciences 62, no. 1 (February 2001): 123–51. http://dx.doi.org/10.1006/jcss.2000.1723.
Full textFeng, Zixin, Teligeng Yun, Yu Zhou, Ruirui Zheng, and Jianjun He. "Kernel Geometric Mean Metric Learning." Applied Sciences 13, no. 21 (November 6, 2023): 12047. http://dx.doi.org/10.3390/app132112047.
Full textAKARSU, Murat. "Understanding of Geometric Reflection: John’s learning path for geometric reflection." Kuramsal Eğitimbilim 15, no. 1 (January 31, 2022): 64–89. http://dx.doi.org/10.30831/akukeg.952022.
Full textTownshend, Raphael, Ligia Melo, David Liu, and Ron O. Dror. "Geometric Deep Learning on Biomolecular Structure." Biophysical Journal 120, no. 3 (February 2021): 290a. http://dx.doi.org/10.1016/j.bpj.2020.11.1863.
Full textKaplan, Haim, Yishay Mansour, Yossi Matias, and Uri Stemmer. "Differentially Private Learning of Geometric Concepts." SIAM Journal on Computing 51, no. 4 (July 7, 2022): 952–74. http://dx.doi.org/10.1137/21m1406428.
Full textDissertations / Theses on the topic "Geometric learning"
Sturz, Bradley R. Katz Jeffrey S. "Geometric rule learning by pigeons." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2006%20Fall/Dissertations/STURZ_BRADLEY_52.pdf.
Full textSaive, Yannick. "DirCNN: Rotation Invariant Geometric Deep Learning." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252573.
Full textNyligen har ämnet geometrisk deep learning presenterat ett nytt sätt för maskininlärningsalgoritmer att arbeta med punktmolnsdata i dess råa form.Banbrytande arkitekturer som PointNet och många andra som byggt på dennes framgång framhåller vikten av invarians under inledande datatransformationer. Sådana transformationer inkluderar skiftning, skalning och rotation av punktmoln i ett tredimensionellt rum. Precis som vi önskar att klassifierande maskininlärningsalgoritmer lyckas identifiera en uppochnedvänd hund som en hund vill vi att våra geometriska deep learning-modeller framgångsrikt ska kunna hantera transformerade punktmoln. Därför använder många modeller en inledande datatransformation som tränas som en del av ett neuralt nätverk för att transformera punktmoln till ett globalt kanoniskt rum. Jag ser tillkortakommanden i detta tillgångavägssätt eftersom invariansen är inte fullständigt garanterad, den är snarare approximativ. För att motverka detta föreslår jag en lokal deterministisk transformation som inte måste läras från datan. Det nya lagret i det här projektet bygger på Edge Convolutions och döps därför till DirEdgeConv, namnet tar den riktningsmässiga invariansen i åtanke. Lagret ändras en aning för att introducera ett nytt lager vid namn DirSplineConv. Dessa lager sätts ihop i olika modeller som sedan jämförs med sina efterföljare på samma uppgifter för att ge en rättvis grund för att jämföra dem. Resultaten är inte lika bra som toppmoderna resultat men de är ändå tillfredsställande. Jag tror även resultaten kan förbättas genom att förbättra inlärningshastigheten och dess schemaläggning. I ett experiment där ablation genomförs på de nya lagren ser vi att lagrens huvudkoncept förbättrar resultaten överlag.
Lamma, Tommaso. "A mathematical introduction to geometric deep learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23886/.
Full textHold-Geoffroy, Yannick. "Learning geometric and lighting priors from natural images." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31264.
Full textUnderstanding images is needed for a plethora of tasks, from compositing to image relighting, including 3D object reconstruction. These tasks allow artists to realize masterpieces or help operators to safely make decisions based on visual stimuli. For many of these tasks, the physical and geometric models that the scientific community has developed give rise to ill-posed problems with several solutions, only one of which is generally reasonable. To resolve these indeterminations, the reasoning about the visual and semantic context of a scene is usually relayed to an artist or an expert who uses his experience to carry out his work. This is because humans are able to reason globally on the scene in order to obtain plausible and appreciable results. Would it be possible to model this experience from visual data and partly or totally automate tasks? This is the topic of this thesis: modeling priors using deep machine learning to solve typically ill-posed problems. More specifically, we will cover three research axes: 1) surface reconstruction using photometric cues, 2) outdoor illumination estimation from a single image and 3) camera calibration estimation from a single image with generic content. These three topics will be addressed from a data-driven perspective. Each of these axes includes in-depth performance analyses and, despite the reputation of opacity of deep machine learning algorithms, we offer studies on the visual cues captured by our methods.
Xia, Baiqiang. "Learning 3D geometric features for soft-biometrics recognition." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10132/document.
Full textSoft-Biometric (gender, age, etc.) recognition has shown growingapplications in different domains. Previous 2D face based studies aresensitive to illumination and pose changes, and insufficient to representthe facial morphology. To overcome these problems, this thesis employsthe 3D face in Soft-Biometric recognition. Based on a Riemannian shapeanalysis of facial radial curves, four types of Dense Scalar Field (DSF) featuresare proposed, which represent the Averageness, the Symmetry, theglobal Spatiality and the local Gradient of 3D face. Experiments with RandomForest on the 3D FRGCv2 dataset demonstrate the effectiveness ofthe proposed features in Soft-Biometric recognition. Furtherly, we demonstratethe correlations of Soft-Biometrics are useful in the recognition. Tothe best of our knowledge, this is the first work which studies age estimation,and the correlations of Soft-Biometrics, using 3D face
Liberatore, Lorenzo. "Introduction to geometric deep learning and graph neural networks." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25339/.
Full textAraya, Valdivia Ernesto. "Kernel spectral learning and inference in random geometric graphs." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM020.
Full textThis thesis has two main objectives. The first is to investigate the concentration properties of random kernel matrices, which are central in the study of kernel methods. The second objective is to study statistical inference problems on random geometric graphs. Both objectives are connected by the graphon formalism, which allows to represent a graph by a kernel function. We briefly recall the basics of the graphon model in the first chapter. In chapter two, we present a set of accurate concentration inequalities for individual eigenvalues of the kernel matrix, where our main contribution is to obtain inequalities that scale with the eigenvalue in consideration, implying convergence rates that are faster than parametric and often exponential, which hitherto has only been establish under assumptions which are too restrictive for graph applications. We specialized our results to the case of dot products kernels, highlighting its relation with the random geometric graph model. In chapter three, we study the problem of latent distances estimation on random geometric graphs on the Euclidean sphere. We propose an efficient spectral algorithm that use the adjacency matrix to construct an estimator for the latent distances, and prove finite sample guaranties for the estimation error, establishing its convergence rate. In chapter four, we extend the method developed in the previous chapter to the case of random geometric graphs on the Euclidean ball, a model that despite its formal similarities with the spherical case it is more flexible for modelling purposes. In particular, we prove that for certain parameter choices its degree profile is power law distributed, which has been observed in many real life networks. All the theoretical findings of the last two chapters are verified and complemented by numerical experiments
Masters, Jennifer Ellen. "Investigations in geometric thinking : young children learning with technology." Thesis, Queensland University of Technology, 1997. https://eprints.qut.edu.au/36544/1/36544_Masters_1997.pdf.
Full textPeng, Liz Shihching. "p5.Polar - Programming For Geometric Patterns." Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-theses/1353.
Full textBatt, Kathleen J. "The Implementation of kinesthetic learning activities to identify geometric shapes with preschool students." Defiance College / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=def1281535832.
Full textBooks on the topic "Geometric learning"
Omohundro, Stephen M. Fundamentals of geometric learning. Urbana, IL (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1988.
Find full textVlassis, Nikolaos Napoleon. Towards Trustworthy Geometric Deep Learning for Elastoplasticity. [New York, N.Y.?]: [publisher not identified], 2021.
Find full textRon, Brown. Learning guide: The infinite geometric progression puzzles. Marshall, AR (HC 79, Box 192A, Marshall 72650): Mountain Spring Woodworking, 1994.
Find full textMetropolitan Museum of Art (New York, N.Y.) and Metropolitan Museum of Art (New York, N.Y.). Education Dept., eds. Islamic art and geometric design: Activities for learning. New York, N.Y: Metropolitan Museum of Art, 2004.
Find full textBarbaresco, Frédéric, and Frank Nielsen, eds. Geometric Structures of Statistical Physics, Information Geometry, and Learning. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77957-3.
Full textShapes at home: Learning to recognize basic geometric shapes. New York: Rosen Classroom Books & Materials, 2004.
Find full textCorrochano, Eduardo Bayro. Geometric computing: Or wavelet transforms, robot vision, learning, control and action. London: Springer, 2010.
Find full text1956-, Williams Kim, ed. Infinite measure: Learning to design in geometric harmony with art, architecture, and nature. Staunton, VA: George F. Thompson Publishing, 2013.
Find full textMarkinson, Mara P. The Teaching and Learning of Geometric Proof: Roles of the Textbook and the Teacher. [New York, N.Y.?]: [publisher not identified], 2021.
Find full textBattista, Michael T. Cognition-based assessment and teaching of geometric shapes: Building on students' reasoning. Portsmouth, NH: Heinemann, 2012.
Find full textBook chapters on the topic "Geometric learning"
Hajiabadi, Hamideh, Reza Godaz, Morteza Ghasemi, and Reza Monsefi. "Layered Geometric Learning." In Artificial Intelligence and Soft Computing, 571–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20912-4_52.
Full textClements, Douglas H., and Julie Sarama. "Geometric Measurement." In Learning and Teaching Early Math, 246–59. Third edition. | New York, NY : Routledge, 2021. |: Routledge, 2020. http://dx.doi.org/10.4324/9781003083528-10.
Full textDobkin, David, and Dimitrios Gunopulos. "Geometric problems in machine learning." In Applied Computational Geometry Towards Geometric Engineering, 121–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0014490.
Full textWhiteley, Walter. "Representing Geometric Configurations." In Learning and Geometry: Computational Approaches, 143–78. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4088-4_7.
Full textClements, Douglas H., and Julie Sarama. "Geometric Measurement 1." In Learning and Teaching Early Math, 260–78. Third edition. | New York, NY : Routledge, 2021. |: Routledge, 2020. http://dx.doi.org/10.4324/9781003083528-11.
Full textLindquist, Anders, and Giorgio Picci. "Geometric Methods for State Space Identification." In Identification, Adaptation, Learning, 1–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03295-4_1.
Full textSra, Suvrit, and Reshad Hosseini. "Geometric Optimization in Machine Learning." In Algorithmic Advances in Riemannian Geometry and Applications, 73–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45026-1_3.
Full textMendelson, S. "Geometric Parameters in Learning Theory." In Lecture Notes in Mathematics, 193–235. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44489-3_17.
Full textFondevilla, Amélie, Géraldine Morin, and Kathryn Leonard. "Towards Learning Geometric Shape Parts." In Association for Women in Mathematics Series, 95–111. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79891-8_5.
Full textSharma, Rahul, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V. Nori. "Verification as Learning Geometric Concepts." In Static Analysis, 388–411. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38856-9_21.
Full textConference papers on the topic "Geometric learning"
Masci, Jonathan, Emanuele Rodolà, Davide Boscaini, Michael M. Bronstein, and Hao Li. "Geometric deep learning." In SA '16: SIGGRAPH Asia 2016. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2988458.2988485.
Full textKoishekenov, Yeskendir, Sharvaree Vadgama, Riccardo Valperga, and Erik J. Bekkers. "Geometric Contrastive Learning." In 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2023. http://dx.doi.org/10.1109/iccvw60793.2023.00028.
Full textKhoury, Marc, Qian-Yi Zhou, and Vladlen Koltun. "Learning Compact Geometric Features." In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017. http://dx.doi.org/10.1109/iccv.2017.26.
Full textFiser, Marek, Bedrich Benes, Jorge Garcia Galicia, Michel Abdul-Massih, Daniel G. Aliaga, and Vojtech Krs. "Learning geometric graph grammars." In SCCG'16: Spring Conference on Computer Graphics. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2948628.2948635.
Full textCollas, Antoine, Arnaud Breloy, Guillaume Ginolhac, Chengfang Ren, and Jean-Philippe Ovarlez. "Robust Geometric Metric Learning." In 2022 30th European Signal Processing Conference (EUSIPCO). IEEE, 2022. http://dx.doi.org/10.23919/eusipco55093.2022.9909973.
Full textJawanpuria, Pratik, Satya Dev N T V, Anoop Kunchukuttan, and Bamdev Mishra. "Learning Geometric Word Meta-Embeddings." In Proceedings of the 5th Workshop on Representation Learning for NLP. Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.repl4nlp-1.6.
Full textUnal, Inan, and Özal Yildirim. "Geometric Methods in Deep Learning." In 2018 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE, 2018. http://dx.doi.org/10.1109/asyu.2018.8554021.
Full textLee, Jinhwi, Jungtaek Kim, Hyunsoo Chung, Jaesik Park, and Minsu Cho. "Learning to Assemble Geometric Shapes." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/146.
Full textDobkin, David P., and Dimitrios Gunopulos. "Concept learning with geometric hypotheses." In the eighth annual conference. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/225298.225338.
Full textAfifah, Arum Hikmahtul, Susanto, and Nurcholif Diah Sri Lestari. "Geometric reasoning of analysis level students in classifying quadrilateral." In MATHEMATICS EDUCATION AND LEARNING. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0105224.
Full textReports on the topic "Geometric learning"
Willsky, Alan S. Multiresolution, Geometric, and Learning Methods in Statistical Image Processing, Object Recognition, and Sensor Fusion. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada425745.
Full textSchoening, Timm. OceanCV. GEOMAR, 2022. http://dx.doi.org/10.3289/sw_5_2022.
Full textRashevska, Natalya V., Serhiy O. Semerikov, Natalya O. Zinonos, Viktoriia V. Tkachuk, and Mariya P. Shyshkina. Using augmented reality tools in the teaching of two-dimensional plane geometry. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4116.
Full textWardhaugh, Benjamin. Learning Geometry in Georgian England. Washington, DC: The MAA Mathematical Sciences Digital Library, September 2012. http://dx.doi.org/10.4169/loci003930.
Full textStanley, Kenneth O. Scalable Heterogeneous Multiagent Teams Through Learning Policy Geometry. Fort Belvoir, VA: Defense Technical Information Center, October 2011. http://dx.doi.org/10.21236/ada551086.
Full textKulkarni, S. R., S. K. Mitter, J. N. Tsitsiklis, and O. Zeitouni. PAC Learning with Generalized Samples and an Application to Stochastic Geometry. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada459600.
Full textRockmore, Daniel. Dynamic Information Networks: Geometry, Topology and Statistical Learning for the Articulation of Structure. Fort Belvoir, VA: Defense Technical Information Center, June 2015. http://dx.doi.org/10.21236/ada624183.
Full textHlushak, Oksana M., Volodymyr V. Proshkin, and Oksana S. Lytvyn. Using the e-learning course “Analytic Geometry” in the process of training students majoring in Computer Science and Information Technology. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3268.
Full textBabkin, Vladyslav V., Viktor V. Sharavara, Volodymyr V. Sharavara, Vladyslav V. Bilous, Andrei V. Voznyak, and Serhiy Ya Kharchenko. Using augmented reality in university education for future IT specialists: educational process and student research work. CEUR Workshop Proceedings, July 2021. http://dx.doi.org/10.31812/123456789/4632.
Full textBilousova, Liudmyla I., Liudmyla E. Gryzun, Daria H. Sherstiuk, and Ekaterina O. Shmeltser. Cloud-based complex of computer transdisciplinary models in the context of holistic educational approach. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3259.
Full text