Academic literature on the topic 'Geometric algebra for conics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometric algebra for conics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometric algebra for conics"
Dragovic, Vladimir. "Algebro-geometric approach to the Yang-Baxter equation and related topics." Publications de l'Institut Math?matique (Belgrade) 91, no. 105 (2012): 25–48. http://dx.doi.org/10.2298/pim1205025d.
Full textHalbeisen, Lorenz, and Norbert Hungerbühler. "The exponential pencil of conics." Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 59, no. 3 (December 21, 2017): 549–71. http://dx.doi.org/10.1007/s13366-017-0375-1.
Full textRASHED, ROSHDI. "LES CONSTRUCTIONS GÉOMÉTRIQUES ENTRE GÉOMÉTRIE ET ALGÈBRE: L'ÉPÎTRE D'AB AL-JD À AL-BRN." Arabic Sciences and Philosophy 20, no. 1 (March 2010): 1–51. http://dx.doi.org/10.1017/s0957423909990075.
Full textHalbeisen, Lorenz, and Norbert Hungerbühler. "Closed chains of conics carrying poncelet triangles." Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 58, no. 2 (January 18, 2017): 277–302. http://dx.doi.org/10.1007/s13366-016-0327-1.
Full textHalbeisen, Lorenz, and Norbert Hungerbühler. "Generalized pencils of conics derived from cubics." Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 61, no. 4 (April 15, 2020): 681–93. http://dx.doi.org/10.1007/s13366-020-00499-3.
Full textMirman, Boris. "Short cycles of Poncelet’s conics." Linear Algebra and its Applications 432, no. 10 (May 2010): 2543–64. http://dx.doi.org/10.1016/j.laa.2009.11.032.
Full textDiemente, Damon. "Algebra in the Service of Geometry: Can Euler's Line Be Parallel to a Side of a Triangle?" Mathematics Teacher 93, no. 5 (May 2000): 428–31. http://dx.doi.org/10.5951/mt.93.5.0428.
Full textNievergelt, Yves. "Fitting conics of specific types to data." Linear Algebra and its Applications 378 (February 2004): 1–30. http://dx.doi.org/10.1016/j.laa.2003.08.022.
Full textWu, Junhua. "Conics arising from internal points and their binary codes." Linear Algebra and its Applications 439, no. 2 (July 2013): 422–34. http://dx.doi.org/10.1016/j.laa.2013.04.004.
Full textEaster, Robert Benjamin, and Eckhard Hitzer. "Conic and cyclidic sections in double conformal geometric algebra G8,2 with computing and visualization using Gaalop." Mathematical Methods in the Applied Sciences 43, no. 1 (September 9, 2019): 334–57. http://dx.doi.org/10.1002/mma.5887.
Full textDissertations / Theses on the topic "Geometric algebra for conics"
Machálek, Lukáš. "Aplikace geometrických algeber." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445454.
Full textEllis, Amanda. "Classification of conics in the tropical projective plane /." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1104.pdf.
Full textEllis, Amanda. "Classifcation of Conics in the Tropical Projective Plane." BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/697.
Full textLopes, Wilder Bezerra. "Geometric-algebra adaptive filters." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-22092016-143525/.
Full textEste documento introduz uma nova classe de filtros adaptativos, entitulados Geometric-Algebra Adaptive Filters (GAAFs). Eles s~ao projetados via formulação do problema de minimização (uma função custo de mínimos quadrados) do ponto de vista de álgebra geométrica (GA), uma abrangente linguagem matemática apropriada para a descrição de transformações geométricas. Adicionalmente, diferente do que ocorre na formulação com álgebra linear, cálculo geométrico (a extensão de álgebra geométrica que possibilita o uso de cálculo diferencial) permite aplicar as mesmas técnicas de derivação independentemente do tipo de dados (subálgebra), isto é, números reais, números complexos, quaternions etc. Usando essas e outras características, uma função custo geral de mínimos quadrados é proposta, da qual dois tipos de GAAFs são gerados. O primeiro, chamado standard, generaliza filtros adaptativos da literatura concebidos sob a perspectiva de subálgebras de GA. As seguintes variantes do filtro least-mean squares (LMS) s~ao obtidas como casos particulares: LMS real, LMS complexo e LMS quaternions. Uma análise mean-square é desenvolvida e corroborada por simulações para diferentes níveis de ruído de medição em um cenário de identificação de sistemas. O segundo tipo, chamado pose estimation, é projetado para estimar transformações rígidas - rotação e translação { em espaços n-dimensionais. A performance do filtro GA-LMS é avaliada em uma aplicação de alinhamento tridimensional na qual ele estima a tranformação rígida que alinha duas nuvens de pontos com partes em comum.
Kessaris, Haris. "Geometric algebra and applications." Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/251756.
Full textMOREIRA, JOHANN SENRA. "CONSTRUCTION OF THE CONICS USING THE GEOMETRIC DRAWING AND CONCRETE INSTRUMENTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33061@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL
O presente trabalho tem como objetivo facilitar o estudo das cônicas e ainda despertar o interesse do aluno para o desenho geométrico. Será apresentado que as curvas cônicas estão em nosso dia a dia, não só como beleza estética, mas também provocando fenômenos físicos amplamente utilizado pela arquitetura e engenharia civil, como acústica e reflexão da luz. Utilizaremos instrumentos para desenhar curvas que despertem a curiosidade dos alunos e faremos uso das equações e lugares geométricos a fim de demostrar tais recursos. Pretende-se assim que ao adquirir tais conhecimentos o aluno aprimore seu entendimento matemático e amplie seu horizonte cultural.
The present research aims to facilitate the study of the conics and also to arouse the interest of the student for the geometric drawing. The conic curves will be presented not only as they are in our day to day as aesthetic beauty but also as responsible for the physical phenomena widely used by architecture and civil engineering as well as acoustics and reflection of light. We will use instruments to draw curves that arouse the curiosity of the students, making use of the equations and locus in order to demonstrate such resources. It is intended that the student acquire this knowledge, improving his mathematical understanding and broadening his cultural horizon.
Minh, Tuan Pham, Tomohiro Yoshikawa, Takeshi Furuhashi, and Kaita Tachibana. "Robust feature extractions from geometric data using geometric algebra." IEEE, 2009. http://hdl.handle.net/2237/13896.
Full textKhalfallah, Hazem. "Mordell-Weil theorem and the rank of elliptical curves." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3119.
Full textWu, Junhua. "Geometric structures and linear codes related to conics in classical projective planes of odd orders." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 105 p, 2009. http://proquest.umi.com/pqdweb?did=1654490971&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textWareham, Richard James. "Computer graphics using conformal geometric algebra." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612753.
Full textBooks on the topic "Geometric algebra for conics"
Artin, E. Geometric Algebra. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1988. http://dx.doi.org/10.1002/9781118164518.
Full textBayro-Corrochano, Eduardo, and Gerik Scheuermann, eds. Geometric Algebra Computing. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-108-0.
Full textKondrat'ev, Gennadiy. Clifford Geometric Algebra. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1832489.
Full text1960-, Zaslavskiĭ A. A., ed. Geometry of conics. Providence, R.I: American Mathematical Society, 2007.
Find full textLi, Hongbo, Peter J. Olver, and Gerald Sommer, eds. Computer Algebra and Geometric Algebra with Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b137294.
Full textShifrin, Theodore. Abstract algebra: A geometric approach. Englewood Cliffs, N.J: Prentice Hall, 1996.
Find full textGeometric algebra for computer graphics. London: Springer, 2008.
Find full textHildenbrand, Dietmar. Foundations of Geometric Algebra Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textLinear algebra: A geometric approach. London: Chapman & Hall, 1993.
Find full textFontijne, D. H. F. Efficient implementation of geometric algebra. [S.l: s.n.], 2007.
Find full textBook chapters on the topic "Geometric algebra for conics"
Hildenbrand, Dietmar. "GAALOPWeb for Conics." In The Power of Geometric Algebra Computing, 87–100. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003139003-10.
Full textNeri, Ferrante. "An Introduction to Geometric Algebra and Conics." In Linear Algebra for Computational Sciences and Engineering, 203–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21321-3_6.
Full textNeri, Ferrante. "An Introduction to Geometric Algebra and Conics." In Linear Algebra for Computational Sciences and Engineering, 159–207. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40341-0_6.
Full textHitzer, Eckhard M. S. "Conic Sections and Meet Intersections in Geometric Algebra." In Computer Algebra and Geometric Algebra with Applications, 350–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499251_25.
Full textSerrano Rubio, Juan Pablo, Arturo Hernández Aguirre, and Rafael Herrera Guzmán. "A Conic Higher Order Neuron Based on Geometric Algebra and Its Implementation." In Advances in Computational Intelligence, 223–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37798-3_20.
Full textGelfand, Israel M., and Alexander Shen. "Geometric progressions." In Algebra, 81–83. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0335-3_41.
Full textGelfand, Israel M., and Alexander Shen. "Geometric illustrations." In Algebra, 134–36. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0335-3_69.
Full textVince, John. "Geometric Algebra." In Mathematics for Computer Graphics, 337–72. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7336-6_14.
Full textDorst, Leo. "Geometric Algebra." In Computer Vision, 329–33. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_656.
Full textXambó-Descamps, Sebastià. "Geometric Algebra." In SpringerBriefs in Mathematics, 41–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00404-0_3.
Full textConference papers on the topic "Geometric algebra for conics"
Matos, S. A., C. R. Paiva, and A. M. Barbosa. "Conical refraction in generalized biaxial media: A geometric algebra approach." In IEEE EUROCON 2011 - International Conference on Computer as a Tool. IEEE, 2011. http://dx.doi.org/10.1109/eurocon.2011.5929176.
Full textBajaj, Jasmine, and Babita Jajodia. "Squaring Technique using Vedic Mathematics." In International Conference on Women Researchers in Electronics and Computing. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.114.75.
Full textLi, Wanzhen, Tao Sun, Xinming Huo, and Yimin Song. "CGA Approach to Kinematic Analysis of a 2-DoF Parallel Positioning Mechanism." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60529.
Full textLi, Hongbo. "Automated Geometric Reasoning with Geometric Algebra." In ISSAC '17: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3087604.3087663.
Full textZambo, Samantha. "Defining geometric algebra semantics." In the 48th Annual Southeast Regional Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1900008.1900157.
Full textHildenbrand, Dietmar. "Foundations of Geometric Algebra computing." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756054.
Full textQing, Ni, and Wang Zhengzhi. "Geometric invariants using geometry algebra." In 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE 2011). IEEE, 2011. http://dx.doi.org/10.1109/ccieng.2011.6008094.
Full textGunn, Charles G., and Steven De Keninck. "Geometric algebra and computer graphics." In SIGGRAPH '19: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3305366.3328099.
Full textReisossadat, S. H. R., F. Kheirandish, H. Pahlavani, S. Salehi, Piotr Kielanowski, Anatol Odzijewicz, Martin Schlichenmaier, and Theodore Voronov. "Realization of a deformed parafermionic algebra." In GEOMETRIC METHODS IN PHYSICS. AIP, 2008. http://dx.doi.org/10.1063/1.3043848.
Full textAltamirano-Gomez, Gerardo, and Eduardo Bayro-Corrochano. "Conformal Geometric Algebra method for detection of geometric primitives." In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900291.
Full textReports on the topic "Geometric algebra for conics"
Bashelor, Andrew Clark. Enumerative Algebraic Geometry: Counting Conics. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada437184.
Full textHanlon, J., and H. Ziock. Using geometric algebra to study optical aberrations. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/468621.
Full textMeisel, L. V. A Mathematica Formulation of Geometric Algebra in 3-Space. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada295512.
Full textHanlon, J., and H. Ziock. Using geometric algebra to understand pattern rotations in multiple mirror optical systems. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/468622.
Full textYanovski, Alexandar B. Geometric Interpretation of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Lie Algebra $A_2$. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-23-2011-97-111.
Full text