Academic literature on the topic 'Geomagnetic field variations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geomagnetic field variations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geomagnetic field variations"
Sutcliffe, P. R. "The development of a regional geomagnetic daily variation model using neural networks." Annales Geophysicae 18, no. 1 (January 31, 2000): 120–28. http://dx.doi.org/10.1007/s00585-000-0120-0.
Full textPeddie, Norman W. "International Geomagnetic Reference Field Revision 1985." GEOPHYSICS 51, no. 4 (April 1986): 1020–23. http://dx.doi.org/10.1190/1.1442144.
Full textВоробьев, Андрей, Andrey Vorobev, Вячеслав Пилипенко, Vyacheslav Pilipenko, Ярослав Сахаров, Yaroslav Sakharov, Василий Селиванов, and Vasiliy Selivanov. "Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents." Solar-Terrestrial Physics 5, no. 1 (March 22, 2019): 35–42. http://dx.doi.org/10.12737/stp-51201905.
Full textTrichtchenko, L., and D. H. Boteler. "Modelling of geomagnetic induction in pipelines." Annales Geophysicae 20, no. 7 (July 31, 2002): 1063–72. http://dx.doi.org/10.5194/angeo-20-1063-2002.
Full textKilifarska, Natalya, Antonia Mokreva, and Tsvetelina Velichkova. "North Atlantic Oscillation and Variations of Geomagnetic Field." Proceedings of the Bulgarian Academy of Sciences 75, no. 11 (November 30, 2022): 1628–37. http://dx.doi.org/10.7546/crabs.2022.11.10.
Full textKorte, Monika, and Raimund Muscheler. "Centennial to millennial geomagnetic field variations." Journal of Space Weather and Space Climate 2 (2012): A08. http://dx.doi.org/10.1051/swsc/2012006.
Full textReshetnyak, M. Yu. "Latitudinal Variations of the Geomagnetic Field." Izvestiya, Physics of the Solid Earth 59, no. 2 (April 2023): 115–19. http://dx.doi.org/10.1134/s1069351323020106.
Full textLepidi, Stefania, Lili Cafarella, Patrizia Francia, Andrea Piancatelli, Manuela Pietrolungo, Lucia Santarelli, and Stefano Urbini. "A study of geomagnetic field variations along the 80° S geomagnetic parallel." Annales Geophysicae 35, no. 1 (January 24, 2017): 139–46. http://dx.doi.org/10.5194/angeo-35-139-2017.
Full textAkpaneno, Aniefiok, and O. N. Abdulahi. "INVESTIGATING THE VARIATIONS OF HORIZONTAL (H) AND VERTICAL (Z) COMPONENTS OF THE GEOMAGNETIC FIELD AT SOME EQUATORIAL ELECTROJET STATIONS." FUDMA JOURNAL OF SCIENCES 5, no. 1 (July 14, 2021): 539–57. http://dx.doi.org/10.33003/fjs-2021-0501-661.
Full textAkpaneno, Aniefiok F., and O. N. Abdullahi. "INVESTIGATING THE VARIATIONS OF HORIZONTAL (H) AND VERTICAL (Z) COMPONENTS OF THE GEOMAGNETIC FIELD AT SOME EQUATORIAL ELECTROJET STATIONS." FUDMA JOURNAL OF SCIENCES 5, no. 2 (July 16, 2021): 531–48. http://dx.doi.org/10.33003/fjs-2021-0502-667.
Full textDissertations / Theses on the topic "Geomagnetic field variations"
Turton, Ian. "Temporal and spatial variations of the geomagnetic field, up to a timescale of 10⁵ years." Thesis, University of Edinburgh, 1992. http://hdl.handle.net/1842/11472.
Full textNakano, Shinya. "Variations of large-scale field-aligned currents and their effects on mid-latitude geomagnetic disturbances." 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147822.
Full textSaturnino, Diana. "Une méthode d’observatoires virtuels pour décrire les variations temporelles du champ géomagnétique et applications aux mesures de la mission Swarm." Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=181308db-f221-4fd6-84dc-ccfc2af8e6cd.
Full textLa description des variations temporelles du champ géomagnétique (variation séculaire ou SV) est cruciale pour la compréhension de la dynamo. La SV est connue avec une grande précision dans les observatoires magnétiques, qui ont une répartition spatiale inégale. Les satellites donnent des observations globales du champ et de sa SV. Leurs données sont utilisées par les modèles globaux en harmoniques sphériques. Les petites échelles spatiales de la SV décrites par ces modèles peuvent montrer des erreurs par rapport aux mesures des observatoires. Dans cette étude je tente d'extraire des séries temporelles avec des mesures satellitaires comme dans les observatoires. L'approche des observatoires virtuels (VO) est suivie. Un maillage global de volumes à l'altitude du satellite est défini. Pour cela, la technique des Equivalent Source Dipoles (ESD) est appliquée. Pour chaque VO et intervalle de temps donné, toutes les mesures sont réduites à un endroit unique, menant à des séries temporelles similaires à celles disponibles dans les observatoires à la surface. L’approche est validée avec des donnes synthétiques et puis appliquée aux mesures de la mission Swarm. Les séries temporelles VO-ESD sont comparées à celles à la surface et aux prédictions par un modèle. L'approche décrit correctement les variations temporelles du champ à l'échelle locale. Un maillage global de VO est construit et utilisé pour obtenir des modèles globaux. Les modèles sont capables de décrire l'évolution du champ magnétique à la fois à l'altitude du satellite et à la surface. Toutefois des modélisations plus complexes pourront être faites pour profiter des séries temporelles VO-ESD
Ménabréaz, Lucie. "Production atmosphérique du nucléide cosmogénique 10 Be et variations de l'intensité du champ magnétique terrestre au cours des derniers 800 000 ans." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4316/document.
Full textAmong the methods for reconstructing the geomagnetic field history, studying the variations in cosmogenic isotopes production in the atmosphere has recently developed. At multi millennial scales, this production is mainly modulated by the geomagnetic field intensity. Its record in terrestrial archives provides an independent reading to complement paleomagnetic methods. This work aims at tracing the changes in 10Be production rates recorded in marine sediments, in order to reproduce the geomagnetic variations for the past 800,000 years. Authigenic 10Be/9Be ratios measured using Accelerator Mass Spectrometry along three sequences from different latitudes, characterize the 10Be global production during two time intervals. (1) During the dipole moment low associated with the Laschamp excursion (~ 41,000 years BP), the 10Be overproduction at 38°N and 2°S, confirmed by measurements of 10Be/230Thxs, is identical to that recorded in the Greenland ice sheet. (2) Studying a core collected near the equator and covering the interval 800,000 – 250,000 years BP (Brunhes epoch) reveals the successive phases of global 10Be overproductions triggered by dipole moment lows associated to the Brunhes-Matuyama reversal and also to several other documented excursions. Calibrating these records with absolute values available in the literature allows quantifying dipole moments. These are then compared to paleomagnetic reference reconstructions over the same time series. Bearing out the number and extent of these dipole field lows allows considering to refine their chronology before using their features to get a better understanding of the geodynamo rhythms throughout the last Million years
McArdle, Nicholas John. "Long term variation in geomagnetic field intensity and terrestrial planet development." Thesis, University of Liverpool, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569142.
Full textWardinski, Ingo. "Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field." Potsdam : Geoforschungszentrum, 2005. http://www.gfz-potsdam.de/bib/pub/str0507/0507.htm.
Full textWardinski, Ingo. "Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field." [S.l.] : [s.n.], 2004. http://www.diss.fu-berlin.de/2005/70/index.html.
Full textGratton, Martin Nicholas. "Variation of geomagnetic field intensity over the last 45,000 years in Hawaii using the microwave palaeointensity technique." Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402681.
Full textTulloch, Andrew Malcolm. "A study of recent secular variation of the geomagnetic field as recorded by lavas from Mount Vesuvius and the Canary Islands." Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317294.
Full textWardinski, Ingo [Verfasser]. "Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field / Geoforschungszentrum Potsdam. Vorgelegt von Ingo Wardinski." Potsdam : Geoforschungszentrum, 2005. http://d-nb.info/974254991/34.
Full textBooks on the topic "Geomagnetic field variations"
Karl-Heinz, Glassmeier, Soffel H. Chr, and Negendank Jörg F. W, eds. Geomagnetic field variations. Berlin: Springer, 2009.
Find full textKarl-Heinz, Glassmeier, Soffel H. Chr, and Negendank Jörg F. W, eds. Geomagnetic field variations. Berlin: Springer, 2009.
Find full textKarl-Heinz, Glassmeier, Soffel H. Chr, and Negendank Jörg F. W, eds. Geomagnetic field variations. Berlin: Springer, 2009.
Find full textGlaβmeier, Karl-Heinz, Heinrich Soffel, and Jörg F. W. Negendank. Geomagnetic Field Variations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2.
Full text1926-, Campbell Wallace H., ed. Quiet daily geomagnetic fields. Basel: Birkhäuser Verlag, 1989.
Find full textL, Parker R., and United States. National Aeronautics and Space Administration., eds. Statistics of the geomagnetic secular variation for the past 5Ma. [Washington, DC: National Aeronautics and Space Administration, 1986.
Find full textConstable, Catherine. Final report on geomagnetic field models incorporating physical constraints on the secular variation. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textXanthakis, John N. Geomagnetic field variation as inferred from archaeomagnetism in Greece and palaeomagnetism in British lake sediments since 7000 B.C. Athēnai: Grapheion Dēmosieumatōn tēs Akadēmias Athēnōn, 1991.
Find full textBrodscholl, Arnold. Variationen des Erdmagnetfeldes an der GvN-Station, Antarktika: Deren Nutzung für ein elektromagnetisches Induktionsverfahren zur Erkennung zweidimensionaler Leitfähigkeitsanomalien sowie zur Darstellung von Einflüssen ionosphärischer Stromsysteme = Variations of the earthmagnetic field at GVN-Station, Antarctica : applied to the methods of the earthmagnetic deep sounding to detect two-dimensional anomalies of the conductivity and for the demonstration of the influencies [sic] of ionospheric current systems. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1988.
Find full textBrodscholl, Arnold. Variationen des Erdmagnetfeldes an der GvN-Station, Antarktika: Deren Nutzung für ein elektromagnetisches Induktionsverfahren zur Erkennung zweidimensionaler Leitfähigkeitsanomalien sowie zur Darstellung von Einflüssen ionosphärischer Stromsysteme = Variations of the earthmagnetic field at GVN-Station, Antarctica : applied to the methods of the earthmagnetic deep sounding to detect two-dimensional anomalies of the conductivity and for the demonstration of the influencies [sic] of ionospheric current systems. Bremerhaven, Bundesrepublik Deutschland: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1988.
Find full textBook chapters on the topic "Geomagnetic field variations"
Fabian, Karl, and Roman Leonhardt. "Records of Paleomagnetic Field Variations." In Geomagnetic Field Variations, 65–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2_3.
Full textWicht, Johannes, Stephan Stellmach, and Helmut Harder. "Numerical Models of the Geodynamo: From Fundamental Cartesian Models to 3D Simulations of Field Reversals." In Geomagnetic Field Variations, 107–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2_4.
Full textVogt, Joachim, Miriam Sinnhuber, and May-Britt Kallenrode. "Effects of Geomagnetic Variations on System Earth." In Geomagnetic Field Variations, 159–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2_5.
Full textLowes, F. J. "The Geomagnetic Field over the Last 200 Years." In Secular Solar and Geomagnetic Variations in the Last 10,000 Years, 367–79. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3011-7_23.
Full textCreer, K. M. "Geomagnetic Field and Radiocarbon Activity Through Holocene Time." In Secular Solar and Geomagnetic Variations in the Last 10,000 Years, 381–97. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3011-7_24.
Full textTarling, D. H. "Secular Variations of the Geomagnetic Field — The Archaeomagnetic Record." In Secular Solar and Geomagnetic Variations in the Last 10,000 Years, 349–65. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3011-7_22.
Full textPonyavin, D. I. "Global Solar Magnetic Field Evolution Inferred from Geomagnetic Variations." In The High Latitude Heliosphere, 185–88. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0167-7_31.
Full textMandea, Mioara, Richard Holme, Alexandra Pais, Katia Pinheiro, Andrew Jackson, and Giuliana Verbanac. "Geomagnetic Jerks: Rapid Core Field Variations and Core Dynamics." In Terrestrial Magnetism, 147–75. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7955-1_7.
Full textDonadini, F., M. Korte, and C. Constable. "Millennial Variations of the Geomagnetic Field: from Data Recovery to Field Reconstruction." In Terrestrial Magnetism, 219–46. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7955-1_9.
Full textTyupkin, Yu S., and A. Ya Feldstein. "Correlation Dimension of the Strange Attractor for Geomagnetic Field Variations." In Nonlinear Dynamics and Predictability of Geophysical Phenomena, 103–7. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm083p0103.
Full textConference papers on the topic "Geomagnetic field variations"
Kaji, Chinmaya V., Randy C. Hoover, and Shankarachary Ragi. "Underwater Navigation using Geomagnetic Field Variations." In 2019 IEEE International Conference on Electro Information Technology (EIT). IEEE, 2019. http://dx.doi.org/10.1109/eit.2019.8834192.
Full textBuga, Arunas, Simona Einorytė, Romuald Obuchovski, Vytautas Puškorius, and Petras Petroškevicius. "Analysis of Secular Variations of Geomagnetic Field in Lithuania Based on the Survey in 2016." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.170.
Full textKühn, G. J., and L. Loubser. "External Geomagnetic Field Variations And Magnetic Surveys." In 1st SAGA Biennial Conference and Exhibition. European Association of Geoscientists & Engineers, 1989. http://dx.doi.org/10.3997/2214-4609-pdb.222.029.
Full textFreire, L., S. R. Laranja, and L. Benyosef. "Geomagnetic Field Variations in the Equatorial Electrojet Sector." In Simpósio Brasileiro de Geofísica. Sociedade Brasileira de Geofísica, 2016. http://dx.doi.org/10.22564/7simbgf2016.041.
Full textDelipetrov, Todor. "GEOMAGNETIC FIELD AND SECULAR VARIATIONS OF THE ASTRONOMICAL PARAMETARS." In 13th SGEM GeoConference on SCIENCE AND TECHNOLOGIES IN GEOLOGY, EXPLORATION AND MINING. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/ba1.v2/s05.010.
Full textSivokon, V. P., N. V. Cherneva, S. Y. Khomutov, and A. S. Serovetnikov. "Active experiments in the ionosphere and geomagnetic field variations." In 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, edited by Oleg A. Romanovskii. SPIE, 2014. http://dx.doi.org/10.1117/12.2074512.
Full textClem, John. "South Pole Neutron Monitor Sensitivity to Geomagnetic Field Variations." In The 34th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.236.0143.
Full textMandrikova, Oksana, and Anastasia Rodomanskay. "Method for detecting geomagnetic disturbances based on the wavelet model of geomagnetic field variations." In 2021 International Conference on Information Technology and Nanotechnology (ITNT). IEEE, 2021. http://dx.doi.org/10.1109/itnt52450.2021.9649062.
Full textKoryakin, Dmitry. "Correction of Geomagnetic Field Variations in Marine Magnetic Surveys Using Observatory and Model Geomagnetic Data." In II PAN AMERICAN WORKSHOP ON GEOMAGNETISM – II PANGEO. Recife, Brazil: Even3, 2018. http://dx.doi.org/10.29327/2pangeo.a5.
Full textChamati, M., and B. Andonov. "Effects of a Strong Thunderstorm on the ULF Geomagnetic Field Variations." In 11th Congress of the Balkan Geophysical Society. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202149bgs5.
Full textReports on the topic "Geomagnetic field variations"
Nikitina, L., and L. Trichtchenko. Extreme values statistical assessment for geomagnetic and geoelectric field variations for Alberta. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296956.
Full textKleimenova, Natalia G., A. Odzimek, S. Michnowski, and M. Kubicki. Geomagnetic Storms and Substorms as Space Weather I nfluence on Atmospheric Electric Field Variations. Balkan, Black Sea and Caspian Sea Regional Network on Space Weather Studies, November 2018. http://dx.doi.org/10.31401/sungeo.2018.01.14.
Full textOnovughe, Elvis. Usage of RC index as a Good Representation for Characterising Rapid Variation Signals in Geomagnetic Field Studiess. Balkan, Black sea and Caspian sea Regional Network for Space Weather Studies, April 2018. http://dx.doi.org/10.31401/sungeo.2018.01.11.
Full textBARKHATOV, NIKOLAY, and SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, December 2021. http://dx.doi.org/10.12731/er0519.07122021.
Full text