Academic literature on the topic 'Geology stratigraphic – Champlain, Lake'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geology stratigraphic – Champlain, Lake.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geology stratigraphic – Champlain, Lake"

1

Rayburn, John A., Thomas M. Cronin, David A. Franzi, Peter L. K. Knuepfer, and Debra A. Willard. "Timing and duration of North American glacial lake discharges and the Younger Dryas climate reversal." Quaternary Research 75, no. 3 (May 2011): 541–51. http://dx.doi.org/10.1016/j.yqres.2011.02.004.

Full text
Abstract:
AbstractRadiocarbon-dated sediment cores from the Champlain Valley (northeastern USA) contain stratigraphic and micropaleontologic evidence for multiple, high-magnitude, freshwater discharges from North American proglacial lakes to the North Atlantic. Of particular interest are two large, closely spaced outflows that entered the North Atlantic Ocean via the St. Lawrence estuary about 13,200–12,900 cal yr BP, near the beginning of the Younger Dryas cold event. We estimate from varve chronology, sedimentation rates and proglacial lake volumes that the duration of the first outflow was less than 1 yr and its discharge was approximately 0.1 Sv (1 Sverdrup = 106 m3 s−1). The second outflow lasted about a century with a sustained discharge sufficient to keep the Champlain Sea relatively fresh for its duration. According to climate models, both outflows may have had sufficient discharge, duration and timing to affect meridional ocean circulation and climate. In this report we compare the proglacial lake discharge record in the Champlain and St. Lawrence valleys to paleoclimate records from Greenland Ice cores and Cariaco Basin and discuss the two-step nature of the inception of the Younger Dryas.
APA, Harvard, Vancouver, ISO, and other styles
2

Pair, Donald L., Ernest H. Muller, and Peter W. Plumley. "Correlation of Late Pleistocene Glaciolacustrine and Marine Deposits by Means of Geomagnetic Secular Variation, with Examples from Northern New York and Southern Ontario." Quaternary Research 42, no. 3 (November 1994): 277–87. http://dx.doi.org/10.1006/qres.1994.1078.

Full text
Abstract:
AbstractThe geomagnetic secular variation record retained by glaciolacustrine and marine sediments at nine sites in northern New York and southern Ontario provides a means for stratigraphic correlation of glacial deposits for the time period between about 12,600 to 9900 14C yr B.P. Measurement of the depositional remanent magnetism of sediments deposited in Glacial Lake Iroquois and the Champlain Sea has produced a geomagnetic secular variation curve that represents the time period immediately following deglaciation about 12,600 14 C yr B.P. The curve varies from about 358° to 344° declination and 51° to 61° inclination over approximately 180 valve years. Marine sediments of the Champlain Sea have preserved a record approximately 1500 yr long that varies from about 2° to 29° declination and 47° to 60° inclination. These combined glacial-paleomagnetic records may also correlate with those from glacial sequences beyond our study area. The shape and amplitude of the secular variation record in glaciolacustrine and marine sediments from the western Adirondack borderland show agreement with other glacial varve secular variation records and suggest possible correlations with secular variation curves from lake cores.
APA, Harvard, Vancouver, ISO, and other styles
3

Ross, Martin, Michel Parent, Beatriz Benjumea, and James Hunter. "The late Quaternary stratigraphic record northwest of Montréal: regional ice-sheet dynamics, ice-stream activity, and early deglacial events." Canadian Journal of Earth Sciences 43, no. 4 (April 1, 2006): 461–85. http://dx.doi.org/10.1139/e05-118.

Full text
Abstract:
The Quaternary sediments of previously unstudied buried valleys and sections near Montréal are analyzed and other sites are revisited to further develop the stratigraphic framework of the St. Lawrence Lowland and to establish regional glacial and deglacial models. The southwest-trending buried valleys were investigated by stratigraphic drilling and high-resolution seismic profiling. The Quaternary succession consists, from base to top, of proximal glaciolacustrine sediments, two superposed till sheets (Argenteuil and Oka tills) of inferred Late Wisconsinan age, and Champlain Sea sediments. The glacial sediments of this sequence record an ice advance toward south (Argenteuil Till) followed by an abrupt ice-flow shift toward the southwest (Oka Till). Compositional and geomorphic data indicate that Oka Till is ubiquitous and is associated with a regional set of glacial landforms. The analysis of a regional digital elevation model in combination with published ice-flow indicators shows convergent flow patterns from the Ottawa–Montréal–Adirondack regions toward the Lake Ontario basin. Landforms produced by the inferred ice stream are locally crosscut by southward-trending ice-flow features. Hence southward flow in the upper St. Lawrence Valley seemingly took place in two distinct contexts: (1) during full glacial conditions, as ice margins stood at or near the late glacial maximum limits, and (2) during late deglaciation, as a post-ice stream reequilibration mechanism. Early deglacial events in the study area were also characterized by subglacial meltwater channelling and erosion along the valleys, subaquatic outwash deposition in glacial Lake Candona, and rapid infill of the valleys during the early stages of the ensuing Champlain Sea.
APA, Harvard, Vancouver, ISO, and other styles
4

Wood, Douglas A., and Christopher A. Scholz. "Stratigraphic framework and lake level history of Lake Kivu, East African Rift." Journal of African Earth Sciences 134 (October 2017): 904–16. http://dx.doi.org/10.1016/j.jafrearsci.2016.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Birgenheier, L. P., M. D. Vanden Berg, P. Plink-Björklund, R. D. Gall, E. Rosencrans, M. J. Rosenberg, L. C. Toms, and J. Morris. "Climate impact on fluvial-lake system evolution, Eocene Green River Formation, Uinta Basin, Utah, USA." GSA Bulletin 132, no. 3-4 (June 19, 2019): 562–87. http://dx.doi.org/10.1130/b31808.1.

Full text
Abstract:
Abstract In light of a modern understanding of early Eocene greenhouse climate fluctuations and new highly seasonal fluvial system faces models, the role of climate in the evolution of one classically-cited continental, terminal lake system is re-examined. Detailed stratigraphic description and elemental abundance data from fifteen cores and seven outcrop regions of the Green River Formation were used to construct a ∼150 km cross section across the Uinta Basin, Utah, USA. Lake Uinta in the Uinta Basin is divided into five lake phases: (1) post-Paleocene Eocene Thermal Maximum, (2) peak Eocene hyperthermal, (3) waning hyperthermal, Early Eocene Climatic Optimum (EECO), (4) post-hyperthermal, and (5) post-EECO regimes, based primarily on climatically driven changes in fluvial style in combination with sedimentary indicators of lacustrine carbonate deposition, organic matter preservation, salinity, and lake depth. Basinwide siliciclastic dominated intervals were deposited by highly seasonal fluvial systems and record negative organic carbon isotope excursions associated with early Eocene abrupt, transient global warming (hyperthermal) events. Carbonate dominated or organic rich intervals record stable, less seasonal climate periods between hyperthermals, with lower siliciclastic sediment supply allowing the development of carbonate and organic matter preservation. The stratigraphic progression from alternating organic rich and lean zones to the overlying organic rich Mahogany and R8 zones represents the global transition out of the pulsed early Eocene hyperthermal climate regime to a time of sediment starvation and lake stratification, sequestering sedimentary organic carbon. This study provides a novel approach to terrestrial paleoclimate reconstruction that relies largely on unique sedimentary indicators and secondarily on isotopic proxy records within the context of a large basin-wide sedimentologic and stratigraphic data set, thus setting the stage for future detailed geochemical terrestrial paleoclimate proxy development.
APA, Harvard, Vancouver, ISO, and other styles
6

Magyar, Imre, István Cziczer, Orsolya Sztanó, Árpád Dávid, and Michael Johnson. "Palaeobiology, palaeoecology and stratigraphic significance of the Late Miocene cockle Lymnocardium soproniense from Lake Pannon." Geologica Carpathica 67, no. 6 (December 1, 2016): 561–71. http://dx.doi.org/10.1515/geoca-2016-0035.

Full text
Abstract:
Abstract Stratigraphic subdivision of the Upper Miocene deposits in the Pannonian Basin has been traditionally based on the endemic mollusc species of Lake Pannon. The cockle species Lymnocardium soproniense Vitális, apparently evolving through a sympatric speciation event in the sublittoral zone of Lake Pannon about 10.2-10.3 Ma, attained wide geographical distribution in the Pannonian basin and thus may serve as a good stratigraphic marker. Lymnocardium soproniense was one of the few large-sized cockles in Lake Pannon, most closely related to its ancestor, L. schedelianum (Fuchs), and to another descendant of the latter, L. variocostatum Vitális. According to the δ18O stable isotope record of its shells, the large size of L. soproniense was coupled with an extended life time of more than 10 years, probably reflecting a stable lake environment with increased resource availability and decreased predation. The species lived in quiet offshore conditions, below the storm wave base, where clay was deposited from suspension and the influence of currents was negligible. The base of the Lymnocardium soproniense Zone in the sublittoral deposits of Lake Pannon is defined by the first occurrence of the species, whereas the top of the zone is marked with the base of the overlying Congeria praerhomboidea Zone, defined by the FAD of C. praerhomboidea.
APA, Harvard, Vancouver, ISO, and other styles
7

Palzer-Khomenko, Markus, Michael Wagreich, Wolfgang Knierzinger, Maria Meszar, Susanne Gier, Mădălina-Elena Kallanxhi, and Ali Soliman. "A calcite crisis unravelling Early Miocene (Ottnangian) stratigraphy in the North Alpine–Carpathian Foreland Basin: a litho- and chemostratigraphic marker for the Rzehakia Lake System." Geologica Carpathica 69, no. 4 (August 1, 2018): 315–34. http://dx.doi.org/10.1515/geoca-2018-0019.

Full text
Abstract:
Abstract Within the Lower Austrian part of the North Alpine Foreland Basin (NAFB), up to 1000 m of sediments were deposited throughout the Ottnangian (Early Miocene, Burdigalian). According to homogeneous compositions and sparse biostratigraphic resolution, a consistent stratigraphic concept from the basin margins into the foreland depocenter was still lacking. New investigations on several deep drill cores throughout the basin provide comprehensive sedimentological, mineralogical, chemical and micropaleontological data. A calcite poor, fossil- and pyrite-free, smectite-rich, up to 800 m thick interval was identified and correlated to the time interval of the late Ottnangian brackish Rzehakia Lake System. For this section, we introduce the term Calcite Minimum Interval (CMI). We define the onset of the CMI by a sharp decrease of calcite contents and the disappearance of autochthonous (and reworked) calcareous nannofossils. We define the termination of the CMI by the permanent increase of pyrite contents and the reappearance of calcareous nannofossils. The CMI as a litho- and chemostratigraphical marker for the Rzehakia Lake System constitutes a stratigraphic key horizon. Within the NAFB in Lower Austria, its onset corresponds to the middle/upper Ottnangian transition while its termination correlates roughly to the Ottnangian / Karpatian boundary. This allows a precise definition, identification and correlation of (upper) Ottnangian stratigraphic units of the NAFB. For the central basinal parts of the Rzehakia Lake System, we introduce the new lithostratigraphic term Wildendürnbach Formation which correlates to the marginal Traisen Formation.
APA, Harvard, Vancouver, ISO, and other styles
8

Normandeau, Alexandre, Patrick Lajeunesse, Annie-Pier Trottier, Antoine G. Poiré, and Reinhard Pienitz. "Sedimentation in isolated glaciomarine embayments during glacio-isostatically induced relative sea level fall (northern Champlain Sea basin)." Canadian Journal of Earth Sciences 54, no. 10 (October 2017): 1049–62. http://dx.doi.org/10.1139/cjes-2017-0002.

Full text
Abstract:
The nature of glaciomarine sediments deposited during ice margin retreat can vary according to physiographic setting and relative sea level fluctuations. To understand the effects of these two parameters on sedimentation, we analyzed the sediment records of four lakes located within former isolated glaciomarine embayments of the northern Champlain Sea basin. These lakes were initially inundated by marine water of the Champlain Sea, following deglaciation, and have subsequently experienced basin isolation owing to glacio-isostatic rebound. Three of these lakes reveal a common litho- and acoustic stratigraphic succession, characterized by an IRD-free glaciomarine to marine facies consisting of homogeneous to faintly laminated clayey silts grading into well-laminated silts with rapidly deposited layers. These two units recorded the transitional environment from glaciomarine sedimentation below multiyear shorefast ice to increased terrestrial runoff and rapid glacio-isostatic rebound once the ice margin retreated inland. During ice margin retreat, relative sea level fell concomitantly resulting in the deposition of coarser sediments in marine embayments. Upon the complete retreat of the ice margin, the supply of terrestrial sediments diminished and lake isolation, driven by relative sea level fall, led to higher biogenic content and increased bioturbation. This study provides a framework for sedimentation in isolated glaciomarine embayments which differs from deep-water sedimentation owing to the presence of shorefast sea-ice and their protected location from major ice-stream outlets.
APA, Harvard, Vancouver, ISO, and other styles
9

Rigueti, Ariely L., Patrick Führ Dal' Bó, Leonardo Borghi, and Marcelo Mendes. "Bioclastic accumulation in a lake rift basin: The Early Cretaceous coquinas of the Sergipe–Alagoas Basin, Brazil." Journal of Sedimentary Research 90, no. 2 (February 27, 2020): 228–49. http://dx.doi.org/10.2110/jsr.2020.11.

Full text
Abstract:
ABSTRACT Coquinas constitute widespread deposits in lacustrine, estuarine, and shallow marine settings, where they are a valuable source of information on environmental conditions. Thick coquina successions were deposited in a series of lacustrine rift basins that formed along the Brazilian Continental Margin during the early stages of the opening of the South Atlantic Ocean, in the Early Cretaceous. In the Sergipe–Alagoas Basin, the coquina sequence, equivalent to the Morro do Chaves Formation, crops out in the Atol Quarry, and is considered a relevant analog for the economically important hydrocarbon reservoirs in the Pre-salt strata (Barremian to Aptian) of the Campos Basin (Pampo, Badejo, and Linguado oil fields), which occur only in the subsurface. The aim of this study is to generate a depositional and stratigraphic model through facies and stratigraphic analyses of a well core. These analyses allowed the geological characterization of the Morro do Chaves Formation and of its transition to the adjacent stratigraphic units, the Coqueiro Seco Formation above and the Penedo Formation below, contributing to the growing knowledge of sedimentation in rift basins and exploratory models in hydrocarbon-producing reservoirs. Facies analysis consists of sedimentological, taphonomic, and stratigraphic features of the rocks. Fourteen depositional facies were recognized, stacked into low-frequency and high-frequency, deepening-upward and shallowing-upward cycles driven by the interaction between climate and tectonism. A depositional model is presented, based on the correlation between well-core and outcrop data described in previous studies, providing insights into the spatial distribution of facies. The detailed analysis of facies and stacking patterns sheds light on depositional processes, paleoenvironmental conditions, and the evolution of the system through time, so we may better understand analogous deposits in the geological record.
APA, Harvard, Vancouver, ISO, and other styles
10

Johnson, Ronald, Justin Birdwell, and Paul Lillis. "Stratigraphic Intervals for Oil and Tar Sand Deposits in the Uinta Basin, Utah." Mountain Geologist 54, no. 4 (November 2017): 227–64. http://dx.doi.org/10.31582/rmag.mg.54.4.227.

Full text
Abstract:
To better understand oil and bitumen generation and migration in the Paleogene lacustrine source rocks of the Uinta Basin, Utah, analyses of 182 oil samples and tar-impregnated intervals from 82 core holes were incorporated into a well-established stratigraphic framework for the basin. The oil samples are from the U.S. Geological Survey Energy Resources Program Geochemistry Laboratory Database; the tar-impregnated intervals are from core holes drilled at the Sunnyside and P.R. Spring-Hill Creek tar sands deposits. The stratigraphic framework includes transgressive and regressive phases of the early freshwater to near freshwater lacustrine interval of Lake Uinta and the rich and lean zone architecture developed for the later brackish-to-hypersaline stages of the lake. Two types of lacustrine-sourced oil are currently recognized in the Uinta Basin: (1) Green River A oils, with high wax and low β-carotane contents thought to be generated by source rocks in the fresh-to-brackish water lacustrine interval, and (2) much less common Green River B oils, an immature asphaltic oil with high β-carotane content thought to be generated by marginally mature to mature source rocks in the hypersaline lacustrine interval. Almost all oil samples from reservoir rocks in the fresh-to-brackish water interval are Green River A oils; however four samples of Green River A oils were present in the hypersaline interval, which likely indicates vertical migration. In addition, two samples of Green River B oil are from intervals that were assumed to contain only Green River A oil. Tar sand at the P.R. Spring-Hill Creek deposit are restricted to marginal lacustrine and fluvial sandstones deposited during the hypersaline phase of Lake Uinta, suggesting a genetic relationship to Green River B oils. Tar sand at the Sunnyside deposit, in contrast, occur in marginal lacustrine and alluvial sandstones deposited from the early fresh to nearly freshwater phase of Lake Uinta through the hypersaline phase. The Sunnyside deposit occurs in an area with structural dips that range from 7 to 14 degrees, and it is possible that some tar migrated stratigraphically down section.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Geology stratigraphic – Champlain, Lake"

1

Belrose, Ashliegh Theresa. "The Champlain Sea/Lake Champlain Transition Recorded In The Northeast Arm Of Lake Champlain, USA-Canada." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/349.

Full text
Abstract:
Sediment accumulated on a lakebed archives information about past climate and changes in the regional environment. Previous studies (Burgess, 2007; Koff, 2011; Palmer, 2012) in the Northeast Arm of Lake Champlain, specifically Missisquoi Bay and Saint Albans Bay, showed a period (~9,400 - 8,600 yBP) of elevated organic matter deposition in both bays, indicating a productive event that pre-dated any possible anthropogenic influence. However, the record was abruptly cut off and any documentation representing the span of time leading up to this event was not found. The elevated organic matter levels were explained as being the result of a warm, dry environment that reduced lake level and promoted productivity within the bay. A new goal was formulated to lengthen the Holocene record for Missisquoi Bay (MSB) and Saint Albans Bay (SAB) in order to compare paleorecords and capture the span of time leading up to this highly productive event, possibly related to the Champlain Sea/Lake Champlain Transition (~10,000 yBP). One sediment core was taken from each bay as close to the original coordinates as the sediment cores obtained in previous studies (Koff, 2011; Palmer, 2012). The sediment cores were processed in the lab and sediment samples were tested for water content (WC), %C, %N, C:N, and diatom content. Each bay's sediment record consisted of a distinct marker representing lowest water level, separating a Champlain Sea unit at the bottom and an overlying Lake Champlain unit. A warming climate coupled with low lake level during this time may be the cause of the increase of productivity (%C) associated with the markers in both bays. Between ~8,600 - 9,400 yBP, a distinct marker represented evidence of a wetland in Saint Albans Bay before the onset of Lake Champlain. Diatom content in the wetland sediments indicated a generally shallow oligotrophic and alkaline body of water that shifted back and forth from brackish to freshwater. The record shows the wetland was eventually drowned as water level continued to rise, slowly transitioning into the Lake Champlain unit. Proxy results showed that internal processes within the lake continued to change in response to climatic and environmental drivers until present day conditions were reached. At ~9,400 yBP in Missisquoi Bay, there is an erosional unconformity between the Champlain Sea and Lake Champlain units, which corresponds to the low water levels also inferred from the SAB record during that time. After this unconformity, %C results show production within MSB fluctuated, similar to SAB, in response to changing climate and water levels until the present-day conditions of Lake Champlain were established. In sum, MSB and SAB each contain evidence of an ancient shoreline marker in different forms. Both markers indicate that lowest water levels occurred ~9,400 yBP and that lake level has risen ~7 - 8.5 meters since that time. The rise in lake level is associated with the transition into Lake Champlain. This Champlain Sea/Lake Champlain Transition lasted from ~9,400 yBP until ~8,600 yBP. Therefore, the oldest Lake sediment in the Northeast Arm of Lake Champlain is only 8,600 yBP.
APA, Harvard, Vancouver, ISO, and other styles
2

Wolf, David Eny. "The Burntside Lake and Shagawa/Knife Lake shear zones : deformation kinematics, geochemistry and geochronology; Wawa Subprovince, Ontario, Canada." Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Fall2006/d_wolf_010807.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bullock, Michelle. "Holocene sediments and geological history, Woolley Lake, near Beachport, South Australia /." Adelaide : Thesis (B. Sc.(Hons)) -- University of Adelaide, Dept. of Geology and Geophysics, 1994. http://web4.library.adelaide.edu.au/theses/09SB/09sbb938.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Green, George Meredith 1964 Carleton University Dissertation Geology. "Detailed sedimentology of the Bowser Lake group, northern Bowser basin, north-central British Columbia." Ottawa.:, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muehlberg, Jessica M. "Geology of the Tahoe City sub-basin, Lake Tahoe, California-Nevada." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1442871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Burbidge, Susan M. (Susan Margot) Carleton University Dissertation Earth Sciences. "Holocene environmental history of lake Winnipeg; thecamoebians and stable lead isotopes." Ottawa, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goodacre, Ian Robert. "Microbial carbonates in lacustrine settings : an investigation into the Carboniferous East Kirkton Limestone." Thesis, University of Aberdeen, 1999. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=130768.

Full text
Abstract:
The East Kirkton Limestone outcrops in the Bathgate Hills area of central Scotland. The deposit is Visean (Lower Carboniferous) in age and is the site of a tropical freshwater lake set within a richly vegetated volcanic terrain. The succession consists of an unusual sequence of laminated, spherulitic and massive limestone beds, interbedded with thin mudstones, siltstones and abundant volcaniclastic horizons. This study investigates the palaeoenvironment of the East Kirkton lake, and for the first time presents convincing evidence for the presence of hot springs at East Kirkton. Two distinct mounds of massive limestone are located at the north end of the East Kirkton quarry and are interpreted as hot spring vent deposits. Calcite samples from the Lower Mound have light δ18OPDB values consistent with precipitation at elevated temperatures ranging from 45°C to ˜80°C, whereas samples from the laminated lake sediments have heavier δ18OPDB values, consistent with precipitation at lower temperatures. The East Kirkton Limestone is unique because it contains a variety of unusual radial fibrous calcite (RFC) precipitates, including mm-sized spherules, oncoids, and laminated botryoidal accretions. These are found within the laminated limestone and also within the Lower Mound of massive limestone, and many of them contained filamentous and cellular microbial remains and are within the definition of microbial carbonates. This study provides good evidence for a microbial involvement in the formation of the East Kirkton laminated accretions. A study of modern stromatolites from Lake Tasek Dayang Bunting, Malaysia highlights close similarities with the East Kirkton accretions in terms of morphology and microstructure. Both have a nodular growth morphology and laminated interior consisting of layers of radial fibrous carbonate botryoids interspersed with organic-rich micritic laminae. The modern stromatolites are covered by a microbial community comprising filamentous bacteria and cyanophytes, plus diatoms and associated mucilage, and microbes are thought to have played an essential role in the morphogenesis of both the modern and ancient examples.
APA, Harvard, Vancouver, ISO, and other styles
8

Kahmann-Robinson, Julia A. Atchley Stacy C. "The sequence stratigraphic evolution of the Sturgeon Lake bank, central Alberta, Canada and its regional implications." Waco, Tex. : Baylor University, 2005. http://hdl.handle.net/2104/3016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Ting Jennifer. "Holocene evolution of a hypersaline lake Lagkor Tso, western Tibet /." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B39634140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hartley, Kelley A. "Stratigraphic anaylsis [sic] of areal discontinuities of late Wisconsinan till sheets near Conneaut Lake, northwestern Pennsylvania." Akron, OH : University of Akron, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1248371875.

Full text
Abstract:
Thesis (M.S.)--University of Akron, Dept. of Geology, 2009.
"August, 2009." Title from electronic thesis title page (viewed 10/21/2009) Advisor, John P. Szabo; Faculty readers, Linda Barrett, LaVerne Friberg; Department Chair, John P. Szabo; Dean of the College, Chand Midha; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Geology stratigraphic – Champlain, Lake"

1

Geological Association of Canada. Meeting. Quaternary geology of the western basin of the Champlain Sea. Ottawa: Geological Association of Canada, Mineralogical Assoication of Canada, Canadian Geophysical Union, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eade, K. E. Precambrian geology of the Tulemalu Lake--Yathkyed Lake area, District of Keewatin. Ottawa, Canada: Energy, Mines and Resources Canada, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

R, Gadd N., ed. The Late Quaternary development of the Champlain Sea basin. St. John's, Nfld., Canada: Geological Association of Canada, Dept. of Earth Sciences, Memorial University of Newfoundland, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Late Wisconsinan Laurentide glacial limits of Northwestern Canada: The Tutsieta Lake and Kelly Lake phases. Ottawa, Canada: Geological Survey of Canada, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fraser, Gordon S. Quaternary evolution of the Prairie Creek lake basin, Daviess County, Indiana. Bloomington, Ind: State of Ind., Dept. of Natural Resources, Geological Survey, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Richard, S. H. Radiocarbon dates from the Western Basin of the Champlain Sea. Ottawa: Energy, Mines and Resources Canada, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Frisch, T. Precambrian geology of Ian Calder Lake, Cape Barclay, and part of Darby Lake map areas, south-central Nunavut. Ottawa, Ont: Geological Survey of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Frith, R. A. Precambrian geology of the Indin Lake map area, district of Mackenzie, Northwest Territories. Ottawa: Geological Survey of Canada, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Geddes, R. S. Quaternary features and scenery along the North Shore of Lake Superior. Ottawa: National Research Council of Canada, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

McCarthy, Francine. Late Holocene water levels in Lake Ontario: Evidence from Grenadier Pond. Toronto: [The Author], 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Geology stratigraphic – Champlain, Lake"

1

Amgaa, Tsolmon, Dieter Mader, Wolf Uwe Reimold, and Christian Koeberl. "Tabun Khara Obo impact crater, Mongolia: Geophysics, geology, petrography, and geochemistry." In Large Meteorite Impacts and Planetary Evolution VI. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.2550(04).

Full text
Abstract:
ABSTRACT Tabun Khara Obo is the only currently known impact crater in Mongolia. The crater is centered at 44°07′50″N and 109°39′20″E in southeastern Mongolia. Tabun Khara Obo is a 1.3-km-diameter, simple bowl-shaped structure that is well visible in topography and clearly visible on remote-sensing images. The crater is located on a flat, elevated plateau composed of Carboniferous arc-related volcanic and volcanosedimentary rocks metamorphosed to upper amphibolite to greenschist facies (volcaniclastic sandstones, metagraywacke, quartz-feldspar–mica schist, and other schistose sedimentary rocks). Some geophysical data exist for the Tabun Khara Obo structure. The gravity data correlate well with topography. The −2.5–3 mGal anomaly is similar to that of other, similarly sized impact craters. A weak magnetic low over the crater area may be attributed to impact disruption of the regional trend. The Tabun Khara Obo crater is slightly oval in shape and is elongated perpendicular to the regional lithological and foliation trend in a northeasterly direction. This may be a result of crater modification, when rocks of the crater rim preferentially slumped along fracture planes parallel to the regional structural trend. Radial and tangential faults and fractures occur abundantly along the periphery of the crater. Breccias occur along the crater periphery as well, mostly in the E-NE parts of the structure. Monomict breccias form narrow (<1 m) lenses, and polymict breccias cover the outer flank of the eastern crater rim. While geophysical and morphological data are consistent with expectations for an impact crater, no diagnostic evidence for shock metamorphism, such as planar deformation features or shatter cones, was demonstrated by earlier authors. As it is commonly difficult to find convincing impact evidence at small craters, we carried out further geological and geophysical work in 2005–2007 and drilling in 2007–2008. Surface mapping and sampling did not reveal structural, mineralogical, or geochemical evidence for an impact origin. In 2008, we drilled into the center of the crater to a maximum depth of 206 m, with 135 m of core recovery. From the top, the core consists of 3 m of eolian sand, 137 m of lake deposits (mud, evaporites), 34 m of lake deposits (gypsum with carbonate and mud), 11 m of polymict breccia (with greenschist and gneiss clasts), and 19 m of monomict breccia (brecciated quartz-feldspar–mica schist). The breccias start at 174 m depth as polymict breccias with angular clasts of different lithologies and gradually change downward to breccias constituting the dominant lithology, until finally grading into monomict breccia. At the bottom of the borehole, we noted strongly brecciated quartz-feldspar schist. The breccia cement also changes over this interval from gypsum and carbonate cement to fine-grained clastic matrix. Some quartz grains from breccia samples from 192, 194.2, 196.4, 199.3, 201.6, and 204 m depth showed planar deformation features with impact-characteristic orientations. This discovery of unambiguous shock features in drill core samples confirms the impact origin of the Tabun Khara Obo crater. The age of the structure is not yet known. Currently, it is only poorly constrained to post-Cretaceous on stratigraphic grounds.
APA, Harvard, Vancouver, ISO, and other styles
2

Sarna-Wojcicki, Andrei M. "Late Cenozoic paleogeographic reconstruction of the San Francisco Bay area from analysis of stratigraphy, tectonics, and tephrochronology." In Regional Geology of Mount Diablo, California: Its Tectonic Evolution on the North America Plate Boundary. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.1217(17).

Full text
Abstract:
ABSTRACT The Neogene stratigraphic and tectonic history of the Mount Diablo area is a consequence of the passage of the Mendocino triple junction by the San Francisco Bay area between 12 and 6 Ma, volcanism above a slab window trailing the Mendocino triple junction, and crustal transpression beginning ca. 8–6 Ma, when the Pacific plate and Sierra Nevada microplate began to converge obliquely. Between ca. 12 and 6 Ma, parts of the Sierra Nevada microplate were displaced by faults splaying from the main trace of the San Andreas fault and incorporated into the Pacific plate. The Mount Diablo anticlinorium was formed by crustal compression within a left-stepping, restraining bend of the eastern San Andreas fault system, with southwest-verging thrusting beneath, and with possible clockwise rotation between faults on its southeast and northwest sides. At ca. 10.5 Ma, a drainage divide formed between the northern Central Valley and the ocean. Regional uplift accelerated at ca. 6 Ma with onset of transpression between the Pacific and North America plates. Marine deposition ceased in the eastern Coast Range basins as a consequence of the regional uplift accompanying passage of the Mendocino triple junction, and trailing slab-window volcanism. From ca. 11 to ca. 5 Ma, andesitic volcanic intrusive rocks and lavas were erupted along the northwest crest of the central to northern Sierra Nevada and deposited on its western slope, providing abundant sediment to the northern Central Valley and the northeastern Coast Ranges. Sediment filled the Central Valley and overtopped the Stockton fault and arch, forming one large, south-draining system that flowed into a marine embayment at its southwestern end, the ancestral San Joaquin Sea. This marine embayment shrunk with time, and by ca. 2.3 Ma, it was eventually cut off from the ocean. Fluvial drainage continued southwest in the Central Valley until it was cut off in turn, probably by some combination of sea-level fluctuations and transpression along the San Andreas fault that uplifted, lengthened, and narrowed the outlet channel. As a consequence, a great lake, Lake Clyde, formed in the Central Valley at ca. 1.4 Ma, occupying all of the ancestral San Joaquin Valley and part of the ancestral Sacramento Valley. The lake rose and fell with global glacial and interglacial cycles. After a long, extreme glacial period, marine oxygen isotope stage (MIS) 16, it overtopped the Carquinez sill at 0.63 Ma and drained via San Francisco valley (now San Francisco Bay) and the Colma gap into the Merced marine embayment of the Pacific Ocean. Later, a new outlet for Central Valley drainage formed between ca. 130 and ca. 75 ka, when the Colma gap closed due to transpression and right-slip motion on the San Andreas fault, and Duxbury Point at the south end of the Point Reyes Peninsula moved sufficiently northwest along the San Andreas fault to unblock a bedrock notch, the feature we now call the Golden Gate.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geology stratigraphic – Champlain, Lake"

1

Koopman, E. R., M. R. Patterson, J. M. Franklin, and K. H. Poulsen. Stratigraphic and Structural Geology of the Lyon Lake Massive Sulphide Deposit, Sturgeon Lake, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leckie, D. A., B. Kjarsgaard, J. W. Peirce, A. M. Grist, M. Collins, A. Sweet, L. Stasiuk, et al. Geology of a late Cretaceous possible kimberlite at Mountain Lake, Alberta - chemistry, petrology, indicator minerals, aeromagnetic signature, age, stratigraphic position and setting. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/208916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tweet, Justin, Holley Flora, Summer Weeks, Eathan McIntyre, and Vincent Santucci. Grand Canyon-Parashant National Monument: Paleontological resource inventory (public version). National Park Service, December 2021. http://dx.doi.org/10.36967/nrr-2289972.

Full text
Abstract:
Grand Canyon-Parashant National Monument (PARA) in northwestern Arizona has significant paleontological resources, which are recognized in the establishing presidential proclamation. Because of the challenges of working in this remote area, there has been little documentation of these resources over the years. PARA also has an unusual management situation which complicates resource management. The majority of PARA is administered by the Bureau of Land Management (BLM; this land is described here as PARA-BLM), while about 20% of the monument is administered by the National Park Service (NPS; this land is described here as PARA-NPS) in conjunction with Lake Mead National Recreation Area (LAKE). Parcels of state and private land are scattered throughout the monument. Reports of fossils within what is now PARA go back to at least 1914. Geologic and paleontologic reports have been sporadic over the past century. Much of what was known of the paleontology before the 2020 field inventory was documented by geologists focused on nearby Grand Canyon National Park (GRCA) and LAKE, or by students working on graduate projects; in either case, paleontology was a secondary topic of interest. The historical record of fossil discoveries in PARA is dominated by Edwin McKee, who reported fossils from localities in PARA-NPS and PARA-BLM as part of larger regional projects published from the 1930s to the 1980s. The U.S. Geological Survey (USGS) has mapped the geology of PARA in a series of publications since the early 1980s. Unpublished reports by researchers from regional institutions have documented paleontological resources in Quaternary caves and rock shelters. From September to December 2020, a field inventory was conducted to better understand the scope and distribution of paleontological resources at PARA. Thirty-eight localities distributed across the monument and throughout its numerous geologic units were documented extensively, including more than 420 GPS points and 1,300 photos, and a small number of fossil specimens were collected and catalogued under 38 numbers. In addition, interviews were conducted with staff to document the status of paleontology at PARA, and potential directions for future management, research, protection, and interpretation. In geologic terms, PARA is located on the boundary of the Colorado Plateau and the Basin and Range provinces. Before the uplift of the Colorado Plateau near the end of the Cretaceous 66 million years ago, this area was much lower in elevation and subject to flooding by shallow continental seas. This led to prolonged episodes of marine deposition as well as complex stratigraphic intervals of alternating terrestrial and marine strata. Most of the rock formations that are exposed in the monument belong to the Paleozoic part of the Grand Canyon section, deposited between approximately 510 and 270 million years ago in mostly shallow marine settings. These rocks have abundant fossils of marine invertebrates such as sponges, corals, bryozoans, brachiopods, bivalves, gastropods, crinoids, and echinoids. The Cambrian–Devonian portion of the Grand Canyon Paleozoic section is represented in only a few areas of PARA. The bulk of the Paleozoic rocks at PARA are Mississippian to Permian in age, approximately 360 to 270 million years old, and belong to the Redwall Limestone through the Kaibab Formation. While the Grand Canyon section has only small remnants of younger Mesozoic rocks, several Mesozoic formations are exposed within PARA, mostly ranging in age from the Early Triassic to the Early Jurassic (approximately 252 to 175 million years ago), as well as some middle Cretaceous rocks deposited approximately 100 million years ago. Mesozoic fossils in PARA include marine fossils in the Moenkopi Formation and petrified wood and invertebrate trace fossils in the Chinle Formation and undivided Moenave and Kayenta Formations.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography