Academic literature on the topic 'Geology Queensland Mount Roseby Region'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geology Queensland Mount Roseby Region.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Geology Queensland Mount Roseby Region"

1

McConachie, Bruce Alan. "Basin analysis and economic geology of the Northern Mount Isa Basin." Thesis, Queensland University of Technology, 1993. https://eprints.qut.edu.au/37179/12/37179_V1.pdf.

Full text
Abstract:
The Mount Isa Basin is a new concept used to describe the area of Palaeo- to Mesoproterozoic rocks south of the Murphy Inlier and inappropriately described presently as the Mount Isa Inlier. The new basin concept presented in this thesis allows for the characterisation of basin-wide structural deformation, correlation of mineralisation with particular lithostratigraphic and seismic stratigraphic packages, and the recognition of areas with petroleum exploration potential. The northern depositional margin of the Mount Isa Basin is the metamorphic, intrusive and volcanic complex here referred to as the Murphy Inlier (not the "Murphy Tectonic Ridge"). The eastern, southern and western boundaries of the basin are obscured by younger basins (Carpentaria, Eromanga and Georgina Basins). The Murphy Inlier rocks comprise the seismic basement to the Mount Isa Basin sequence. Evidence for the continuity of the Mount Isa Basin with the McArthur Basin to the northwest and the Willyama Block (Basin) at Broken Hill to the south is presented. These areas combined with several other areas of similar age are believed to have comprised the Carpentarian Superbasin (new term). The application of seismic exploration within Authority to Prospect (ATP) 423P at the northern margin of the basin was critical to the recognition and definition of the Mount Isa Basin. The Mount Isa Basin is structurally analogous to the Palaeozoic Arkoma Basin of Illinois and Arkansas in southern USA but, as with all basins it contains unique characteristics, a function of its individual development history. The Mount Isa Basin evolved in a manner similar to many well described, Phanerozoic plate tectonic driven basins. A full Wilson Cycle is recognised and a plate tectonic model proposed. The northern Mount Isa Basin is defined as the Proterozoic basin area northwest of the Mount Gordon Fault. Deposition in the northern Mount Isa Basin began with a rift sequence of volcaniclastic sediments followed by a passive margin drift phase comprising mostly carbonate rocks. Following the rift and drift phases, major north-south compression produced east-west thrusting in the south of the basin inverting the older sequences. This compression produced an asymmetric epi- or intra-cratonic clastic dominated peripheral foreland basin provenanced in the south and thinning markedly to a stable platform area (the Murphy Inlier) in the north. The fmal major deformation comprised east-west compression producing north-south aligned faults that are particularly prominent at Mount Isa. Potential field studies of the northern Mount Isa Basin, principally using magnetic data (and to a lesser extent gravity data, satellite images and aerial photographs) exhibit remarkable correlation with the reflection seismic data. The potential field data contributed significantly to the unravelling of the northern Mount Isa Basin architecture and deformation. Structurally, the Mount Isa Basin consists of three distinct regions. From the north to the south they are the Bowthorn Block, the Riversleigh Fold Zone and the Cloncurry Orogen (new names). The Bowthom Block, which is located between the Elizabeth Creek Thrust Zone and the Murphy Inlier, consists of an asymmetric wedge of volcanic, carbonate and clastic rocks. It ranges from over 10 000 m stratigraphic thickness in the south to less than 2000 min the north. The Bowthorn Block is relatively undeformed: however, it contains a series of reverse faults trending east-west that are interpreted from seismic data to be down-to-the-north normal faults that have been reactivated as thrusts. The Riversleigh Fold Zone is a folded and faulted region south of the Bowthorn Block, comprising much of the area formerly referred to as the Lawn Hill Platform. The Cloncurry Orogen consists of the area and sequences equivalent to the former Mount Isa Orogen. The name Cloncurry Orogen clearly distinguishes this area from the wider concept of the Mount Isa Basin. The South Nicholson Group and its probable correlatives, the Pilpah Sandstone and Quamby Conglomerate, comprise a later phase of now largely eroded deposits within the Mount Isa Basin. The name South Nicholson Basin is now outmoded as this terminology only applied to the South Nicholson Group unlike the original broader definition in Brown et al. (1968). Cored slimhole stratigraphic and mineral wells drilled by Amoco, Esso, Elf Aquitaine and Carpentaria Exploration prior to 1986, penetrated much of the stratigraphy and intersected both minor oil and gas shows plus excellent potential source rocks. The raw data were reinterpreted and augmented with seismic stratigraphy and source rock data from resampled mineral and petroleum stratigraphic exploration wells for this study. Since 1986, Comalco Aluminium Limited, as operator of a joint venture with Monument Resources Australia Limited and Bridge Oil Limited, recorded approximately 1000 km of reflection seismic data within the basin and drilled one conventional stratigraphic petroleum well, Beamesbrook-1. This work was the first reflection seismic and first conventional petroleum test of the northern Mount Isa Basin. When incorporated into the newly developed foreland basin and maturity models, a grass roots petroleum exploration play was recognised and this led to the present thesis. The Mount Isa Basin was seen to contain excellent source rocks coupled with potential reservoirs and all of the other essential aspects of a conventional petroleum exploration play. This play, although high risk, was commensurate with the enormous and totally untested petroleum potential of the basin. The basin was assessed for hydrocarbons in 1992 with three conventional exploration wells, Desert Creek-1, Argyle Creek-1 and Egilabria-1. These wells also tested and confrrmed the proposed basin model. No commercially viable oil or gas was encountered although evidence of its former existence was found. In addition to the petroleum exploration, indeed as a consequence of it, the association of the extensive base metal and other mineralisation in the Mount Isa Basin with hydrocarbons could not be overlooked. A comprehensive analysis of the available data suggests a link between the migration and possible generation or destruction of hydrocarbons and metal bearing fluids. Consequently, base metal exploration based on hydrocarbon exploration concepts is probably. the most effective technique in such basins. The metal-hydrocarbon-sedimentary basin-plate tectonic association (analogous to Phanerozoic models) is a compelling outcome of this work on the Palaeo- to Mesoproterozoic Mount lsa Basin. Petroleum within the Bowthom Block was apparently destroyed by hot brines that produced many ore deposits elsewhere in the basin.
APA, Harvard, Vancouver, ISO, and other styles
2

McLaren, Sandra N. (Sandra Noeline). "Long-term consequences of the redistribution of heat producing elements within the continental crust: Australian examples / Sandra N. McLaren." 2001. http://hdl.handle.net/2440/19839.

Full text
Abstract:
Includes copies of articles co-authored by author during the preparation of this thesis in back pocket.
Includes bibliographical references (leaves 113-124).
viii, 172 leaves : ill. (some col.), maps ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Focuses on the impact of change in the distribution of heat producing elements on lithospheric thermal regimes and on temperature dependent processes such as metamorphism, magmatism and deformation, with application to Proteozoic Australia (Mount Isa and Mount Painter inliers).
Thesis (Ph.D.)--Adelaide University, Dept. of Geology and Geophysics, 2001
APA, Harvard, Vancouver, ISO, and other styles
3

McLaren, Sandra N. (Sandra Noeline). "Long-term consequences of the redistribution of heat producing elements within the continental crust: Australian examples / Sandra N. McLaren." Thesis, 2001. http://hdl.handle.net/2440/19839.

Full text
Abstract:
Includes copies of articles co-authored by author during the preparation of this thesis in back pocket.
Includes bibliographical references (leaves 113-124).
viii, 172 leaves : ill. (some col.), maps ; 30 cm.
Focuses on the impact of change in the distribution of heat producing elements on lithospheric thermal regimes and on temperature dependent processes such as metamorphism, magmatism and deformation, with application to Proteozoic Australia (Mount Isa and Mount Painter inliers).
Thesis (Ph.D.)--Adelaide University, Dept. of Geology and Geophysics, 2001
APA, Harvard, Vancouver, ISO, and other styles
4

Beardsmore, Trevor John. "Petrogenesis of Mount Dore-style breccia-hosted copper ± gold mineralization in the Kuridala-Selwyn region of northwestern Queensland." Thesis, 1992. https://researchonline.jcu.edu.au/1344/1/01front.pdf.

Full text
Abstract:
Mount Dore-style breccia-hosted copper-gold deposits define a 70 kilometre-long, north-trending lineament from Kuridala (65 kilometres south of Cloncurry), southwards. The type deposit lies 130 kilometres south of Cloncurry, and a detailed study of it was undertaken to produce a metallogenic model applicable (with suitable modifications) to all deposits having this style. Regional geology results from a combination of (i) at least two cycles of ensialic rift sedimentation, (ii) later compressional tectonics and associated metamorphism to a maximum middle amphibolite grade, and (iii) intrusion of late-tectonic granitoids (Beardsmore et al., 1988 and Newbery et al., in prep.). Mount Dore-style deposits are largely restricted to rocks of the upper part of the Middle Proterozoic Maronan Supergroup, a newly-recognized package of rift-basin sediments. The precise age of this unit is presently unknown; it could belong to either rift episode, or be older or younger. The Mount Dore deposit occurs within steeply east-dipping quartz-muscovite schists and carbonaceous slates of the uppermost Maronan Supergroup structurally overlying meta-calcarenites, calcilutites, marbles and metabasalts of the Staveley Formation. The structural history includes early, subhorizontal (D1) detachment of the Staveley Formation from older units, followed by upright, northtrending, tight to isoclinal folding (D2), accompanied by peak metamorphism in the lower to middle amphibolite facies (Jaques et al., 1982). The events are tentatively dated at 1545 Ma, by analogy with D2 and metamorphic history derived for the western part of the Mount Isa Inlier (Page and Bell, 1986). Northwest-trending corridors of open, upright folds belonging to the D3 deformation event are scattered across the region, and one of these passes through the Mount Dore orebody. Latest tectonism produced the Mount Dore Fault Zone, a moderately- to steeply east-dipping reverse fault-zone about 250 metres wide, which passes through Mount Dore and reactivates the D1 structure. The fault zone contains a thin sliver of uppermost Maronan Supergroup, sandwiched between footwall Staveley Formation and hangingwall (truncated) Mount Dore Granite. The granite is dated at 1510 Ma (Nisbet et al., 1983). Mount Dore displays a complex history of brecciation and alteration. Both are related to movement along the Mount Dore Fault Zone and to associated hydrothermal activity. Brecciation was a continuum process, with any particular "event" first producing angular, commonly tabular, crenulated schistose fragments. The crenulation is identified with S3, but is randomly orientated from clast to clast, arguing for post-D3 brecciation. Subsequent reworking of the early fragments involved tectonic and hydrothermal milling. Replacement and infill in the breccias are extensive. Early alteration produced Kfeldspar (or biotite), tourmaline, sericite and quartz. Later alteration produced carbonate (dolomite and calcite), apatite and chlorite. All phases are associated with all brecciation styles, but the most pervasive alteration is associated with the intensively milled breccias. Sulphide mineralization is associated temporally with carbonate alteration, and occurs late in the history of development of the Mount Dore deposit. Primary sulphide mineralization comprises pyrite and chalcopyrite, with minor sphalerite and galena. Pyrite is early, and is replaced by the other phases. Chalcocite also clearly replaces earlier pyrite, but is restricted to shallow depths, and probably formed by deep leaching of the deposit during Recent weathering. Alteration, fluid inclusion and stable isotope geochemistry identify a primary deep-seated, hot (>500oC?), oxidized, CO2-bearing, highly-saline (65-70 wt% salt) metamorphic or magmatic fluid containing K+, Na+, Fe2+, Ca2+, B, SiO2, H+, Cl- and possibly SO2. After initial separation and loss of an immiscible CO2-rich phase, the residual aqueous fluid became more dilute with time, probably by mixing with cooler, lower salinity (<20 wt% salt), low-CO2 fluid, possibly also of metamorphic origin. A model accounting for mineralization at Mount Dore invokes dilation and hydraulic brecciation during movement along the Mount Dore Fault Zone, where the fault intersects D3 "corridors" of shallowly-dipping bedding and S2 foliation. Early potassic and silicic alteration released ore metals (Cu, Pb, Zn, Ag, Co, U, Au) to the fluid from the host rocks at this time. Sulphide precipitation was controlled by sulphate reduction with carbon released from host. Pyrite scavenged most of this, and later Cu-, Pb- and Zn-sulphides formed by scavenging of S from pyrite. Data concerning other Mount Dore-style deposits (Mount Elliott, S.W.A.N., Hampden) are limited, but suggest they may have formed by similar processes, with superficial differences arising from variations in geological setting. These deposits apparently all formed during a single metallogenic event related to late tectonism in the eastern part of the Mount Isa Inlier. A speculative regional model proposes emplacement of at least one large allochthonous slab of Maronan Supergroup over the carbonate-evaporite successions of the Mary Kathleen Group. The latter passed highly saline, CO2-bearing connate and prograde metamorphic fluids upwards into and along the decollement. Subsequent upright to inclined F2 antiforms may have ponded these fluids, allowing them to "stew" for some time in contact with relatively metal-rich rocks in the overriding plate. Alternatively, or additionally, the fluid may have migrated dissolved in Williams Batholith magmas, which were produced by partial melting of deep crustal material probably at the peak of regional metamorphism. Eventual release of hydrothermal fluid to higher crustal levels occurred only when vapour separation occurred in the rising plutons, and when permeable, latetectonic reverse faults, which also controlled the solid-state emplacement of at least some of the plutons, breached F2 structures. Passing rapidly upwards along the faults, the fluids encountered local dilatant zones, where high fluid fluxes and rapidly changing physical and chemical conditions instigated extensive alteration and sulphide precipitation. Low salinity fluids of meteoric, or more likely upper-plate metamorphic derivation also migrated into the dilatant zones when the deeply penetrating fault structures became available, and subsequently mixed with the saline fluids, perhaps initiating some styles of mineralization in the process. Epigenetic mineralization across the Cloncurry Fold Belt (and perhaps the entire Mount Isa Inlier) appears to be the result of large-scale devolatilization of the crust during the waning stages of regional deformation and metamorphism. The characteristics of individual deposits depends on the combination of local factors such as structure and rock types available adjacent to these structures for leaching of metals.
APA, Harvard, Vancouver, ISO, and other styles
5

Beardsmore, Trevor John. "Petrogenesis of Mount Dore-style breccia-hosted copper + [or] - gold mineralization in the Kuridala-Selwyn region of northwestern Queensland /." 1992. http://eprints.jcu.edu.au/1344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography