Academic literature on the topic 'Geology – Hawaii – Kilauea Volcano'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geology – Hawaii – Kilauea Volcano.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geology – Hawaii – Kilauea Volcano"

1

Moore, Richard B. "Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii." Bulletin of Volcanology 54, no. 6 (August 1992): 475–83. http://dx.doi.org/10.1007/bf00301393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sedwick, P. N., G. M. McMurtry, and G. W. Tribble. "Chemical alteration of seawater by lava from Kilauea Volcano, Hawaii." Marine Geology 96, no. 1-2 (January 1991): 151–58. http://dx.doi.org/10.1016/0025-3227(91)90212-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kauahikaua, Jim. "Geophysical characteristics of the hydrothermal systems of Kilauea volcano, Hawaii." Geothermics 22, no. 4 (August 1993): 271–99. http://dx.doi.org/10.1016/0375-6505(93)90004-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, John R., Alexander Malahoff, and Alexander N. Shor. "Submarine geology of the Hilina slump and morpho-structural evolution of Kilauea volcano, Hawaii." Journal of Volcanology and Geothermal Research 94, no. 1-4 (December 1999): 59–88. http://dx.doi.org/10.1016/s0377-0273(99)00098-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dixon, Jacqueline Eaby, David A. Clague, and Edward M. Stolper. "Degassing History of Water, Sulfur, and Carbon in Submarine Lavas from Kilauea Volcano, Hawaii." Journal of Geology 99, no. 3 (May 1991): 371–94. http://dx.doi.org/10.1086/629501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

GADDIS, LISA, PETE MOUGINIS-MARK, ROBERT SINGER, and VERNE KAUPP. "Geologic analyses of Shuttle Imaging Radar (SIR-B) data of Kilauea Volcano, Hawaii." Geological Society of America Bulletin 101, no. 3 (March 1989): 317–32. http://dx.doi.org/10.1130/0016-7606(1989)101<0317:gaosir>2.3.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Guoqing, Falk Amelung, Yan Lavallée, and Paul G. Okubo. "Seismic evidence for a crustal magma reservoir beneath the upper east rift zone of Kilauea volcano, Hawaii." Geology 42, no. 3 (March 2014): 187–90. http://dx.doi.org/10.1130/g35001.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Phuc, La The, Hiroshi Tachihara, Tsutomu Honda, Luong Thi Tuat, Bui Van Thom, Nguyen Hoang, Yuriko Chikano, et al. "Geological values of lava caves in Krongno Volcano Geopark, Dak Nong, Vietnam." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 4 (September 18, 2018): 299–319. http://dx.doi.org/10.15625/0866-7187/40/4/13101.

Full text
Abstract:
The paper presents the initial results of the study of volcanic cave system and its typical formations in Krongno Volcano Geopark (KVG), Dak Nong, Vietnam. The volcanic caves have been discovered since 2007, under UNESCO sponsored the scientific project, are seen as unique geological heritages. The collaborative surveys and studies between Vietnamese geologists and the members of the Non-Profit Organization, Vulcanospeleological Society of Japan have discovered and surveyed 45 caves, and detailed mapping 20 caves. Using a complex of adequate methods, especially Remote Sensing image interpretation method, Surveying and mapping lava cave method, K/Ar dating isotopic analytical method and Current methodology, the studies aim to affirm endogenous origin of the lava cave system, the formation mechanism, as well as the typical formations of the caves. Up to date, the lava caves and interior formation in lava caves in KVG have been examined and evaluated in term of geological nature and recognized as pillar geological heritages of the Geopark.References Allred K., AllredC., 1997. Development and morphology of Kazumura Cave, Hawaii. Journal of Cave and Karst Studies, 59(2), 67-80.Allred K., Allred C., 1997. Tubular lava stalactites and other related segregations. Journal of Cave and Karst Studies, 60(3), 131-140.Barnabás Korbély, 2014. Diverse volcanic features as dominant landscape elements and pillars of geotourism in the Bakony-Balaton Geopark, Hungary. Abstract Book Workshop “Geoparks in volcanic areas: sustainable development strategies”, October 29th to November 1st, 2014. Terceira and Graciosa Islands, Azores Global Geopark, 35-38.Bird Deanne K., et al., 2014. Southern Iceland: Volcanoes, Tourism and Volcanic Risk Reduction.In Volcanic Tourist Destinations. Springer, Editors: Erfurt-Cooper, Patricia (Ed.). ISBN: 978-3-642-16190-2, 35-46. Cooper Malcolm J.M., 2014. Volcanic National Parks in Japan.In Volcanic Tourist Destinations. Springer, Editors: Erfurt-Cooper, Patricia (Ed.). ISBN: 978-3-642-16190-2, 231-246.Dave Bunnell, 2014. The virtual lava cave Created: August 4, 2000.Last update: December 16, 2014. Reviewed by Kevin & Carlene Allred. Available at:<http://www.goodearthgraphics.com/virtual_tube/virtube.html). Date accessed: 02 May 2018.Gadányi P., 2010. Formation, types and morphology of basalt lava caves. PhD. thesises. University of Pécs Faculty of Natural Sciences Doctoral School of Earth Sciences, Hungary, 1-19.Gaki-Papanastassiou, Kalliopi, et al., 2014. Volcano Tourism in Greece: Two Case Studies of Volcanic Islands.In Volcanic Tourist Destinations. Springer, Editors: Erfurt-Cooper, Patricia (Ed.). ISBN: 978-3-642-16190-2, 69-87.Honda T., Tachihara H., 2015. Vietnam Volcanic Cave Survey. e-NEWSLETTER, UIS Commission on Volcanic caves, 69, 11-12. Honda T., Tinsley J.C., 2016. Classification of lava tubes from Hydrodynamic models for active lava tube, filled lava tube and drained lava tube. 17th International Vulcanospeleology symposium in Hawaii, USA. Sponsored by the Commission on volcanic caves of the International Union of Speleology.Larson C.V., 1991. Nomenclatures of lava tube features. 6th International Symposium on Vulcanospeleology in Hawaii. Published by the National Speleological Society, 231-248.Laumanns M., 2013. Important Lava Tube Caves found in Dong Nai Province Southern Vietnam. e-NEWSLETTER, UIS Commission on Volcanic caves, 67, 13. Machado M., Lima E., 2014. Geotourism and sustainable development partnerships in the Azores Geopark. Abstract Book Workshop “Geoparks in volcanic areas: sustainable development strategies”, October 29th to November 1st. Terceira and Graciosa Islands, Azores Global Geopark, 45-48.Moreira Jasmine Cardozo, et al., 2014.Tourism and Volcanism in the Canary Islands, Spain. In Volcanic Tourist Destinations.Springer, Editors: Erfurt-Cooper, Patricia (Ed.). ISBN: 978-3-642-16190-2, 47-55.Nelson S.A., 2017. Volcanoes and Volcanic Eruptions.EENS 1110. Physical Geology.Tulane University. New Orleans, USA.Nguyen Duc Thang (Ed.), 1989. Geology and Mineral Resources of Ben Khe - Dong Nai sheet at scale 1:200,000. General Department of Geology and Minerals of Vietnam. Hanoi. Nunes, João Caros., 2014. The Azores Archipelago: Islands of Geodiversity.In Volcanic Tourist Destinations. Springer, Editors: Erfurt-Cooper, Patricia (Ed.). ISBN: 978-3-642-16190-2, 57-67.Nunes João Caros., 2014. Azores Geopark volcanoes and volcanic landforms. Valuating the Azorean geodiversity and geosites through the geotourism. Abstract Book Workshop “Geoparks in volcanic areas: sustainable development strategies”, October 29th to November 1st. Terceira and Graciosa Islands, Azores Global Geopark, 41-43.Ogawa T., 1993. On lava caves in Japan and vicinity.Proceedings of the Third International Symposium on Vulcanospeleology, 56- 73.Patricia Erfurt-Cooper, 2014. Volcanic Geo-heritage.Sustainable Tourism Development in Volcanic Regions: Geoparks, National Parks and World Heritage Sites. Abstract Book Workshop “Geoparks in volcanic areas: sustainable development strategies”, October 29th to November 1st. Terceira and Graciosa Islands, Azores Global Geopark, 23-25.Peterson D.W., Holcomb R.T., Tilling R.I., Christiansen R.L., 1994. Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bulletin of Volcanology, 56, 343-360.
APA, Harvard, Vancouver, ISO, and other styles
9

Mouginis-Mark, Peter J., and Harold Garbeil. "Quality of TOPSAR topographic data for volcanology studies at Kilauea Volcano, Hawaii: An assessment using airborne lidar data." Remote Sensing of Environment 96, no. 2 (May 2005): 149–64. http://dx.doi.org/10.1016/j.rse.2005.01.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fiske, R. S., T. R. Rose, D. A. Swanson, D. E. Champion, and J. P. McGeehin. "Kulanaokuaiki Tephra (ca. A.D. 400-1000): Newly recognized evidence for highly explosive eruptions at Kilauea Volcano, Hawai'i." Geological Society of America Bulletin 121, no. 5-6 (April 27, 2009): 712–28. http://dx.doi.org/10.1130/b26327.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Geology – Hawaii – Kilauea Volcano"

1

Sides, Isobel Ruth. "Volatile geochemistry and eruption dynamics at Kīlauea Volcano, Hawai'i." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Phillips, Kathleen A. "Using seafloor geodesy to monitor volcanic collapse on the south flank of Kilauea Volcano, Hawaii." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3208095.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2006.
Title from first page of PDF file (viewed May 22, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 124-129).
APA, Harvard, Vancouver, ISO, and other styles
3

Freeman, Richard A. "Continuous Tracking of Lava Effusion Rate in a Lava Tube at Kilauea Volcano Using Very Low Frequency (VLF) Monitoring." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/etd/2364.

Full text
Abstract:
Measurement of lava effusion rates is a key objective for monitoring basaltic eruptions because it helps constrain geophysical models of magma dynamics, conduit geometry, and both deep and shallow volcano processes. During these eruptions, lava frequently travels through a single "master" lava tube. A new method and instrument for continuously monitoring the crosssectional area of lava streams in tubes and estimating the instantaneous effusion rate (IER) is described. The method uses 2 stationary very low frequency (VLF) radio receivers to measure an unperturbed VLF signal and the influence of highly conductive molten lava on that signal. The difference between these signals is a function of the cross-sectional area of molten lava and the IER. Data from a short test of the instrument are described. This methodology represents a breakthrough in the continuous monitoring of IER because it provides higher temporal resolution than competing methods at a fraction of the cost.
APA, Harvard, Vancouver, ISO, and other styles
4

CRAVEN, KERI. "THE ORIGIN OF ALKALIC BASALTS FROM HALEAKALA VOLCANO, EAST MAUI, HAWAII." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1060891813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gaffney, Amy Michelle. "The role of oceanic lithosphere in inter- and intra-volcano geochemical heterogeneity at Maui Nui, Hawaii /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/6701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vinet, Nicolas. "Mécanismes de solidification des magmas basaltiques : Étude quantitative texturale et géochimique des laves du volcan Kilauea, Hawaï." Phd thesis, 2010. http://tel.archives-ouvertes.fr/tel-00544904.

Full text
Abstract:
Le volcan Kilauea, Hawaï, est probablement le système magmatique basaltique actif le plus étudié sur Terre, et représente donc un site privilégié pour l'étude des processus de solidification basaltique en milieu naturel. Une meilleure compréhension de la solidification magmatique est d'importance majeure dans le raffinement de modèles expliquant le dynamisme des chambres magmatiques, et son étude détaillée est susceptible de grandement améliorer notre connaissance de l'évolution globale des systèmes magmatiques. Dans ce contexte volcanique, les lacs de lave offrent une rare opportunité d'étudier directement la solidification magmatique et peuvent être considérés, en première approximation, comme des analogues superficiels de petites chambres magmatiques. Le but premier de ce doctorat est de déterminer et quantifier les principaux processus de solidification magmatiques à l'œuvre dans la genèse des basaltes tholéiitiques. Ce travail s'articule autour du minéral olivine comme composant central. Dans les deux premiers chapitres, l'approche est double, texture et géochimie, mais l'emphase porte sur l'aspect textural dont l'analyse de la distribution de la taille des cristaux (CSD) est la composante phare. Ce travail a été réalisé sur les laves produites par les éruptions de 1969-1974 (Mauna Ulu) et 1959 (Kilauea Iki) du volcan Kilauea. L'étude des coulées de lave produites par l'éruption du Mauna Ulu permet de mieux comprendre les processus actifs de solidification dans tout le système magmatique superficiel (la "tuyauterie") de l'édifice. L'étude du lac de lave Kilauea Iki renseigne quant à elle sur la solidification en système semi-fermé en sub-surface. Dans un dernier temps, il est question d'évaluer plus en détail l'influence de la déformation magmatique sur la structure interne des olivines, et de la quantifier, en utilisant une technique in situ récente de micro-diffraction des rayons X. Chacun des trois chapitres de cette thèse est un article publié ou destiné à la publication dans une revue scientifique internationale. L'article 1 présente les résultats en éléments majeurs et traces (roche totale), les compositions de l'olivine, et les CSDs de 11 échantillons de laves du Mauna Ulu. Les variations chimiques en roche totale sont interprétées comme étant partiellement produites par addition d'olivine dans le système magmatique. Les profiles CSD suggèrent qu'au moins deux populations d'olivines interviennent : (1) une population d'âges 3-40 ans, caractérisée par une faible densité de "gros" cristaux et des pentes CSD relativement faibles ; et (2) une population d'âges 1,5-15 ans, marquée par une forte densité de petits cristaux et des pentes CSD plus fortes. La gamme de compositions de l'olivine suggère que ces cristaux se sont formés à partir de magmas différents, probablement reliés par crystallisation fractionnée. La présence d'olivines déformées de toutes tailles couvrant la totalité de la gamme de compositions, montre que la population 1 provient principalement de la désintégration et assimilation d'un cumulat déformé. Cette population d'olivines représente un composant magmatique cumulatif précoce qui a subi du mûrissement textural. A l'inverse, la population 2 représente un composant magmatique tardif formé dans la région sommitale de stockage de magma. Nos résultats sont en accord avec l'hypothèse que ces deux composants magmatiques ont suivi deux trajets différents avant d'alimenter l'éruption du Mauna Ulu. Le magma contenant les olivines déformées aurait transité le long du décollement basal sous le Kilauea, puis remonté verticalement par des conduits de type "pipe" sous le rift du Mauna Ulu. Le magma contenant la plupart des olivines non déformées aurait quant à lui transité vers le réservoir sommital à travers le conduit magmatique principal, puis le long de la rift zone où les magmas se seraient finalement mélangés dans de petites chambres magmatiques satellites. La présence de fines zonalités inverses à la bordure de certains cristaux suggère que le mélange s'est fait juste avant l'éruption. L'article 2 présente les compositions et CSDs d'olivine provenant de scories et d'échantillons de forage (0-90 m de profondeur) du lac de lave Kilauea Iki. Trois populations d'olivines sont distinguées sur la base de leur composition en forstérite (Fo) : (1) une population riche en Fo (Fo85-88) ; (2) une population intermédiaire (Fo77-81) ; et (3) une population mineure appauvrie en Fo (Fo72-76). Les populations 1 et 2 sont composées à la fois de cristaux déformés et non déformés. La troisième population pourrait résulter d'une phase de recroissance tardive. Dans les 60 derniers mètres du lac, l'olivine est moins riche en Fo et la proportion de cristaux déformés augmente. Ces observations laissent penser à l'existence d'une stratification minéralogique et chimique verticale dans le lac de lave. L'analyse CSD a permis d'estimer les temps de résidence des olivines dans le magma, 1-60 ans, valeurs qui sont en accord avec les estimations préexistantes. Les CSDs sont globalement uniformes eu égard à la profondeur. Cependant, certaines caractéristiques spécifiques ressortent. Ainsi, les CSDs courbées sont considérées comme évidence de mélange de magmas ou de cristaux. L'inversion de pente aux petites tailles de la plupart des CSDs du lac de lave est interprétée comme résultant du mûrissement. Les résultats de la modélisation CSD suggèrent que la décantation / sédimentation des olivines et la convection à grande échelle ne sont pas significatives dans l'évolution du lac de lave. Enfin, la stratification verticale du lac peut être expliquée de différentes façons. Il peut s'agir d'une caractéristique originelle, résultat de la stratification de la chambre magmatique source. Cependant, plusieurs évidences montrent que le magma du lac a été fortement brassé pendant toute la durée de l'éruption ; cette première hypothèse n'est donc pas crédible. Le remplissage par la base du lac durant l'éruption serait une autre hypothèse à même d'expliquer cette stratification. Cependant, il nous manque encore de quoi définitivement valider cette théorie. L'article 3 présente l'analyse microstructurale in situ par micro-diffraction des rayons X (µXRD) d'olivines déformées et non déformées provenant d'une sélection d'échantillons préalablement étudiés dans les articles 1 et 2. Cette étude utilise une technique innovante, non destructive, peu coûteuse et rapide à mettre en œuvre permettant de recueillir des informations sur la structure interne des cristaux, ainsi que le mode et l'intensité de déformation. Les résultats ont permis de valider les observations pétrographiques de déformation faites à l'aide du microscope. Cette analyse µXRD a aussi permis de confirmer la présence de déformation pour toutes les tailles de grains d'olivine, sans corrélation simple avec leur chimie, et de quantifier cette déformation. Cette technique ne permet cependant pas une estimation simple des conditions pression-température de déformation ou de formation des cristaux, ni d'apporter d'informations sur l'histoire magmatique. Il a cependant été possible de fixer un seuil quantitatif au-delà duquel toute olivine est déformée de façon significative : full width at half maximum (FWHM) > 1°.
APA, Harvard, Vancouver, ISO, and other styles
7

Longo, Bernadette Mae. "The Kilauea Volcano adult health study, Hawai'i, U.S.A." Thesis, 2005. http://hdl.handle.net/1957/29845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gingerich, Stephen B. "The hydrothermal system of the lower East rift zone of Kilauea volcano : conceptual and numerical models of energy and solute transport." Thesis, 1995. http://hdl.handle.net/10125/9868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gomez-Alvarez, Vicente. "Patterns of community change of archaeal and bacterial populations colonizing extreme environments at Kilauea Volcano, Hawaii." 2007. https://scholarworks.umass.edu/dissertations/AAI3275743.

Full text
Abstract:
Volcanic activity creates new landforms that can change dramatically as a consequence of biotic succession, and microbes are essential contributors to successional development. Our objective was to expand our knowledge of the spatial and temporal dynamics of microbial communities in nascent soils. To study primary succession we characterized the microbial diversity on a chronosequence of volcanic deposits ranging from 20 to 300 yr located in the Kilauea Volcano, Hawaii by analysis of Bacteria and Archaea 16S rRNA gene sequences amplified from total DNA, Community-Level Phospholipids Fatty Acid, Community-Level Physiological Profiles using ECOplate, and bacterial isolates. A parallel investigation of the extent of secondary succession was made on a nearby geothermally active site. Primary succession. phylogeny of 16S rRNA gene sequences indicated a high diversity of sequences not related to known taxa with 15 classes within the Bacteria domain and a high relative abundance within the Archaea domain of various unclassified non-thermophilic Crenarchaeota. Bacterial richness and diversity increased significantly with age, while no correlation was found among the archaeal community. The 194 isolates, together encompassing only 1.6% of total culture independent diversity, were not among the dominant clones in the libraries. Carbon utilization profiles and plate counts indicated that heterotrophic communities that are established on older sites were more active and occurred in higher numbers. Multivariate analyses showed not only that the bacterial communities of distinct sites and ecosystem regime shared similar phylotypes, but also revealed a gradual succession of the community structure. Secondary succession. elevated soil temperature (up to 87°C), and steam vents provide evidence of an active geothermal system. Bacterial clones and thermophilic Crenarchaeota were limited to the geothermal system, and not detected in the surrounding area. This not only indicates that the temperature shift resulted in a change of the community structure of these volcanic deposits, but also that the underlying strata might be the source for hyperthermophiles. In general, microbes are able to colonize and establish a community among recent volcanic deposits. However, environmental parameters rather than site age influence this successional development. This work yields new insights into survival and succession of microbes in soils.
APA, Harvard, Vancouver, ISO, and other styles
10

Mandernach, Megan L. "Three-dimensional Vp and Vp/Vs structure of the East Rift Zone and South Flank of Kilauea Volcano, Hawaii." 2001. http://catalog.hathitrust.org/api/volumes/oclc/48199869.html.

Full text
Abstract:
Thesis (M.S.)--University of Wisconsin--Madison, 2001.
Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 25-29).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Geology – Hawaii – Kilauea Volcano"

1

Geological field guide, Kilauea Volcano. Hilo: Hawaii Natural History Association, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hazlett, Richard W. Geological field guide, Kilauea Volcano. Hilo: University of Hawaii, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

TenBruggencate, Jan. Kilauea: The flow to the sea. [Lubbock, Tex.] (P.O. Box 10411, Lubbock 79408): [C.F. Boone Pub. Co.], 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

TenBruggencate, Jan. Kilauea: The flow to the sea. [Lubbock, TX]: [C.F. Boone Pub. Co.], 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heliker, C. C. The ongoing Puʻu ʻŌʻō-Kūpaianaha eruption of Kīlauea Volcano, Hawaiʻi. Hawaii Volcanoes National Park, HI: U.S. Geological Survey, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heliker, C. C. The ongoing Puʻu ʻŌʻō-Kūpaianaha eruption of Kīlauea Volcano, Hawaiʻi. Hawaii Volcanoes National Park, HI: U.S. Geological Survey, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Heliker, C. C. The ongoing Puʻu ʻŌʻō-Kūpaianaha eruption of Kīlauea Volcano, Hawaiʻi. Hawaii Volcanoes National Park, HI: U.S. Geological Survey, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heliker, C. C. The ongoing Puʻu ʻŌʻō-Kūpaianaha eruption of Kīlauea Volcano, Hawaiʻi. Hawaii Volcanoes National Park, HI: U.S. Geological Survey, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Takasaki, K. J. Ground water in Kilauea Volcano and adjacent areas of Mauna Loa Volcano, island of Hawaii. Honolulu, Hawaii: U.S. Geological Survey, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takasaki, K. J. Ground water in Kilauea Volcano and adjacent areas of Mauna Loa Volcano, island of Hawaii. Honolulu, Hawaii: U.S. Geological Survey, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Geology – Hawaii – Kilauea Volcano"

1

Rydelek, Paul A., Paul M. Davis, and Robert Y. Koyanagi. "Tidal Triggering of Earthquake Swarms at Kilauea Volcano, Hawaii." In Collected Reprint Series, 4401–11. Washington, DC: American Geophysical Union, 2014. http://dx.doi.org/10.1002/9781118782064.ch20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fink, J. H., and J. Zimbelman. "Longitudinal Variations in Rheological Properties of Lavas: Puu Oo Basalt Flows, Kilauea Volcano, Hawaii." In IAVCEI Proceedings in Volcanology, 157–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74379-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ryan, Michael P. "The Mechanics and Three-Dimensional Internal Structure of Active Magmatic Systems: Kilauea Volcano, Hawaii." In Collected Reprint Series, 4213–48. Washington, DC: American Geophysical Union, 2014. http://dx.doi.org/10.1002/9781118782064.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Connor, Charles B., Richard E. Stoiber, and Lawrence L. Malinconico. "Variation in Sulfur Dioxide Emissions Related to Earth Tides, Halemaumau Crater, Kilauea Volcano, Hawaii." In Collected Reprint Series, 14867–71. Washington, DC: American Geophysical Union, 2014. http://dx.doi.org/10.1002/9781118782064.ch43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tilling, Robert I. "Fluctuations in Surface Height of Active Lava Lakes During 1972-1974 Mauna Ulu Eruption, Kilauea Volcano, Hawaii." In Collected Reprint Series, 13721–30. Washington, DC: American Geophysical Union, 2014. http://dx.doi.org/10.1002/9781118782064.ch22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geology – Hawaii – Kilauea Volcano"

1

Hoversten, G. Michael, Erika Gasperikova, Greg A. Newman, Jim Kauakihaua, and Nestor Cuevas. "Magnetotelluric imaging of the Kilauea Volcano, Hawaii." In SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2003. http://dx.doi.org/10.1190/1.1817851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Helz, Rosalind T., T. R. Rose, and S. J. Lynton. "PHYSICAL CONSTRAINTS ON THE ORIGIN OF THE MARKER HORIZON IN THE KULANAOKUAIKI TEPHRA, KILAUEA VOLCANO, HAWAII." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-285005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garcia, Michael O., Aaron J. Pietruszka, Jared P. Marske, J. Michael Rhodes, and Andrew R. Greene. "PETROLOGY AND GEOCHEMICAL EVOLUTION OF LAVAS FROM THE ONGOING AND VOLUMINOUS PUU OO ERUPTION OF KILAUEA VOLCANO, HAWAII." In 113th Annual GSA Cordilleran Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017cd-292972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Resmini, Ronald G. "Using remotely sensed thermal infrared multispectral data and thermal modeling to estimate lava tube roof thickness at Kilauea Volcano, Hawaii." In SPIE Defense and Security Symposium, edited by Sylvia S. Shen and Paul E. Lewis. SPIE, 2008. http://dx.doi.org/10.1117/12.771633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lundblad, Steven P., Cheryl Gansecki, and James Lee Anderson. "LONG-TERM GEODETIC AND GEOCHEMICAL MONITORING OF THE LOWER EAST RIFT ZONE, KILAUEA VOLCANO, HAWAII: A FRAMEWORK FOR INTERPRETING ERUPTION BEHAVIOR OF EARLY PHASES OF THE 2018 ERUPTION." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-321645.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geology – Hawaii – Kilauea Volcano"

1

Ingebritsen, S. E., and M. A. Scholl. Annotated bibliography hydrogeology of Kilauea Volcano, Hawaii. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10189656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Janik, C. J., M. Nathenson, and M. A. Scholl. Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/90401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sutton, A. J., T. Elias, and R. Navarrete. Volcanic gas emissions and their impact on ambient air character at Kilauea Volcano, Hawaii. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/71612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Geologic Map of the Summit Region of Kilauea Volcano, Hawaii. US Geological Survey, 2003. http://dx.doi.org/10.3133/i2759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii. US Geological Survey, 2006. http://dx.doi.org/10.3133/i2614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Geologic map of the lower east rift zone of Kilauea Volcano, Hawaii. US Geological Survey, 1991. http://dx.doi.org/10.3133/i2225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bathymetry of Puna Ridge, Kilauea Volcano, Hawaii. US Geological Survey, 1994. http://dx.doi.org/10.3133/mf2237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bathymetry of south flank of Kilauea Volcano, Hawaii. US Geological Survey, 1993. http://dx.doi.org/10.3133/mf2231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

An isotope hydrology study of the Kilauea volcano area, Hawaii. US Geological Survey, 1995. http://dx.doi.org/10.3133/wri954213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maps showing the development of the Pu'u 'O'o-Kupaianaha flow field, June 1984-February 1987, Kilauea Volcano, Hawaii. US Geological Survey, 2001. http://dx.doi.org/10.3133/i2685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography