Academic literature on the topic 'GEOGRID REINFORCED'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GEOGRID REINFORCED.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "GEOGRID REINFORCED"

1

TEIXEIRA, CHRISTIANO FARIA. "ANALYSIS OF GEOGRID REINFORCED SOIL TESTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9595@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>A utilização de materiais geossintéticos como reforço em obras geotécnicas vem crescendo bastante nas últimas décadas. A geogrelha, cuja função primária é o reforço de solos, é um entre os diversos tipos de geossintéticos, que vêm sendo utilizados. Diversas são as formas de interação da geogrelha com o solo em um maciço reforçado e o entendimento dos mecanismos que se desenvolvem nestas interações é essencial, pois só a partir daí pode-se obter parâmetros confiáveis para projeto. Pesquisas vêm sendo realizadas por diversos autores, mas muitos aspectos ainda devem ser estudados para que se tenha uma melhor compreensão do comportamento de solos reforçados com geogrelhas. A utilização de uma ferramenta numérica pode ser uma alternativa para que consigamos dar um passo adiante no entendimento da técnica de solo reforçado. Então, modelagens numéricas de ensaios triaxiais e de cisalhamento direto em solos reforçados e não reforçados foram realizadas com a utilização do programa Plaxis. Foram analisadas a influência do reforço no aumento da rigidez e resistência do solo e a resistência de interface solo-reforço. Para calibrar o programa e validar as análises numéricas, foram realizadas retro-análises dos ensaios realizados por Sieira (2003), onde se definiram aspectos importantes para modelar os ensaios, tal como, a melhor forma de impor as condições de contorno. Os resultados obtidos nas análises numéricas dos ensaios triaxiais sugerem que o programa Plaxis permite de forma razoável a reprodução dos ensaios reforçados, sendo possível prever o ganho de resistência do solo com a inclusão do reforço. Uma análise alternativa, onde se aplica um incremento de tensão confinante representativo da influência do reforço, foi também realizada. As análises numéricas dos ensaios de cisalhamento direto em solo arenoso não reforçado permitiram verificar a rotação do eixo das direções das tensões principais quando é aplicado carregamento cisalhante e a presença de uma zona central de cisalhamento (zona de cisalhamento). A resistência de interface sologeogrelha não foi bem reproduzida, indicando que o Plaxis não permite este tipo de avaliação. Quando os reforços encontravam-se inclinados, verificou-se a maior eficiência do reforço rígido e fazendo ângulo de 60º com a superfície de ruptura.<br>The use of geosynthetic materials as reinforcement in geotechnical engineering works is significantly increasing over the past decades. Geogrid, whose primary functions is reinforcing the soil mass, is one of the geosynthetics that has been used. In a reinforced soil structure, there are different types of interaction between soil and geogrid. To be possible to obtain reliable design parameters is essential to know the mobilized mechanisms in the interaction. This situation has been investigated by many researchers, but there are still many aspects to be better understood about geogrid reinforced soil behavior. In this research, numerical tools have been used to improve our knowledge about reinforced soil techniques. Numerical modeling of triaxial and direct shear tests on reinforced and non reinforced soils were carried out using software Plaxis. It was verified the resistance and stiffness increase of the soil due to geogrid inclusion and the interface soil-reinforcement resistance parameters. To calibrate the software and to validate the numerical analyses, back-analyses of the tests carried out by Sieira (2003) were done. These results helped to define important aspects to the tests modeling such as geometry and tests boundary conditions. The numerical analyses of the triaxial tests suggest that the software Plaxis reasonably allow an adequate reproduction of the reinforced soil tests. It was possible to foresee the increase of soil resistance because of reinforcement inclusion. In addition, an alternative analysis, where one applies a confining stress that reproduces the reinforcement influence, it was done. Numerical analyses of non reinforced direct shear tests had numerically evidenced the rotation of the axis of the principal stresses directions and the presence of a central zone of shear (shear zone). The soil- geogrid interface resistance was not well reproduced, indicating that Plaxis does not allow this type of evaluation. To inclined reinforcement relative to failure plane, it was verified the maximum gain of resistance is achieved with inclined reinforcement at 60º and when rigid geogrids are used.
APA, Harvard, Vancouver, ISO, and other styles
2

Gunasekara, Jayalath Chamara Prasad. "Performance of geogrid-reinforced unpaved pavements under cyclic loading." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/208419/1/Chamara%20Prasad_Gunasekara%20Jayalath_Thesis.pdf.

Full text
Abstract:
Composite geogrids can successfully be used as a pavement-reinforcement material to increase the performance of pavement structures. This thesis presents a comprehensive study that has investigated the effectiveness of composite geogrids as subgrade reinforcement in unpaved granular pavements that are subjected to cyclic loading and constructed with local materials available in Queensland, Australia. The research outcomes suggest guidelines to design and construct unpaved granular pavements with the composite geogrid reinforcement at the base-subgrade interface. These guidelines benefit the industry by reducing construction and maintenance costs, and environmental pollution.
APA, Harvard, Vancouver, ISO, and other styles
3

Berkheimer, Scott A. "Instrumented geogrid reinforced mechanically stabilized earth wall undergoing large settlement." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 140 p, 2007. http://proquest.umi.com/pqdweb?did=1338919121&sid=1&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Correia, Natália de Souza. "Performance of flexible pavements enhanced using geogrid-reinforced asphalt overlays." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18132/tde-05032015-100057/.

Full text
Abstract:
The study of innovative pavements is of significant importance in geotechnical engineering in Brazil, due to the continued need to increase the network of roadways. This requires optimized projects, not only for economic, but also for technical reasons. Technical solutions that use geosynthetics in asphalt overlays have been identified to minimize fatigue and reflective cracks. However, the majority of the application of this technology has ignored the possible additional structural benefits brought by the inclusion of geosynthetics as reinforcement in asphalt layers. The objective of this research is to assess the reinforcement benefits of geogrids placed within asphalt overlays on the structural performance of flexible pavements. In addition, this study investigates the tensile-strain response of geogrids under traffic conditions, induced by cyclic wheel loads generated by a new accelerated pavement testing facility (APT) that was specifically developed for this research. The APT facility consists of a large steel testing box, in which field-scale pavement layers could be constructed. Pavement materials included subgrade soil, aggregate base, hot mix asphalt concrete, asphalt emulsion and a PVA geogrid. Pavement performance was assessed by applying a cyclic wheel load pressure of 700 kPa to the pavement surface. The pavement sections investigated in this study included a geogrid-reinforced and an unreinforced asphalt overlay sections, a single new geogrid-reinforced asphalt layer, and a geogrid-reinforced asphalt overlay with reduced base course thickness. A variety of sensors were used to measure asphalt concrete strains, surface plastic and elastic displacements, and induced traffic loads. Displacements along the geogrid specimens were measured using a tell-tail system. As result, several reinforcement mechanisms of this technique could be quantified in the present study. Polymeric geogrid reinforcements were found to have considerably reduced strains developed at the bottom of asphalt layers, as well as to have reduced vertical stresses in pavement lower layers. Resistance to rutting and lateral movement induced by the geogrids were also clearly evidenced in the presented study. The measurement of displacements along the geogrid provided understanding of the distribution of strains during traffic loading. A mobilized length was identified in geogrid-reinforced sections, showing that the bonding between geogrids and asphalt layers and the stiffness of the geogrid ensured satisfactory performance of the pavement sections. The results also illustrated that the lateral restraining mechanisms effect is a governing mechanism to improve the performance of the asphalt layers by the development of shearing resistance with the geogrids. Overall, it was concluded that geogrids within asphalt overlays act as reinforcement and not merely to delay cracks, providing enhanced performance to flexible pavement structures.<br>O estudo de pavimentos é de grande importância na Engenharia Geotécnica brasileira devido à crescente necessidade de melhora da situação da rede rodoviária nacional. Para tanto, o desenvolvimento e a aplicação de novas técnicas são necessários, principalmente no âmbito econômico. A técnica do uso de reforços geossintéticos em capa asfáltica é identificada como uma alternativa ao aumento da vida útil do pavimento através da mitigação de trincas por fadiga e de reflexão. No entanto, a maioria das aplicações desta técnica não correlaciona os benefícios estruturais da inclusão do geossintético na capa asfáltica para a melhora do desempenho global do pavimento. O objetivo desta pesquisa é investigar os benefícios estruturais no desempenho de pavimentos flexíveis trazidos pelo reforço de geogrelhas em camadas asfálticas. Ainda neste estudo, será investigada a reposta tensão-deformação destas geogrelhas sobre as condições de tráfego através do uso de ensaios acelerados de pavimento. Um equipamento foi desenvolvido para esta pesquisa e consiste numa caixa metálica de grande porte, em que seções de pavimento em escala real podem ser construídas. O desempenho das seções de pavimento foi avaliado com a aplicação de cargas cíclicas de roda com pressão de contato de 700 kPa. Os materiais que compõem as seções de pavimento incluem solo de subleito, brita graduada simples, concreto betuminoso usinado à quente, emulsão asfáltica e geogrelha de PVA. Foram estudadas uma seção com geogrelha como reforço no recapeamento da camada asfáltica, uma seção idêntica não reforçada, uma seção com uma única capa asfáltica reforçada com geogrelha e uma seção com geogrelha no recapeamento da camada asfáltica, porém com espessura de base reduzida em relação aos demais ensaios. Sensores nas camadas do pavimento mediram tensões e deformações, e deslocamentos plásticos e elásticos na superfície. Deslocamentos ao longo da geogrelha foram monitorados utilizando o sistema tell-tales. Como resultado, mecanismos de reforço foram identificados neste estudo. O uso de uma geogrelha polimérica reduziu consideravelmente as deformações na fibra inferior da capa asfáltica, assim como as tensões verticais nas camadas subjacentes do pavimento. Resistência à formação de trilhas de roda e solevamentos laterais foram também evidenciadas. As medidas de deslocamentos ao longo da geogrelha forneceram entendimento da distribuição de deformações durante o carregamento. Foi identificado o comprimento de geogrelha mobilizado durante os ensaios, mostrando que a aderência entre a geogrelha e as camadas asfálticas e a rigidez da geogrelha asseguraram o desempenho satisfatório das seções de pavimento. Os resultados também mostraram que o efeito do mecanismo de restrição lateral é um mecanismo que governa a melhora no desempenho da capa asfáltica com o uso da geogrelha através do desenvolvimento de resitência ao cisalhamento. Estas observações permitem concluir que a geogrelha na camada asfáltica atua como reforço e não apenas reduzindo a o potencial de trincamento, levando à um aumento no desempenho de estruturas de pavimentos flexíveis.
APA, Harvard, Vancouver, ISO, and other styles
5

Sinmez, Bugra. "Characterization of Geogrid Reinforced Ballast Behavior Through Finite Element Modeling." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7946.

Full text
Abstract:
Recently, the railway pavement structure system, as an integral part of the transport infrastructure, has been under fast development in some countries such as China, Turkey, and some European Union countries, particularly for the use of high-speed trains. In designing and constructing the railway pavement structure, it is necessary to take into account the infrastructure demand of the High-Speed Railway Lines (HSRL). Compared to traditional railway trains, HSRL can cause more significant problems to the ballast or base layer of commonly used ballasted railway pavements. The deteriorated ballast or base layer may further result in substructure degradation that may cause safety issues and catastrophic accidents. As a consequence, heavy goods or high-speed trains will affect railway efficiency. As a countermeasure, a railway pavement structure may be reinforced by geosynthetic materials in the ballast or base layer. In the literature, however, there is still a need to quantify the effect of geosynthetic materials, geogrid in particular, on the mechanical responses of railway pavement structures to HSRL loads, which is necessary knowledge in supporting the selection of appropriate material and placement location of geogrid. Therefore, the goal of this study is to investigate how a geogrid reinforcement layer can change the essential characteristics of a ballasted railway pavement structure, with focus on the material type and placement location of geogrid that can help minimize the rate of deterioration of the railway pavement structure system. This research attempts to validate the advantage of geogrid reinforcement through numerical simulation in a realistic railway setting. All technical literature on the use of geogrids in the railway system has been studied. A three-dimensional (3D) finite element model was constructed for the numerical simulation, in which three different types of geogrid placed at two different locations (i.e., within the ballast layer, between the ballast and the sub-ballast layer) within a railway pavement structure were analyzed under a range of vertical wheel loads. Therefore, four possible applications of geogrid reinforcement systems (G0: no-reinforcement; G1: reinforced with geogrid having the lowest density and Young’s modulus; G2: reinforced with geogrid having the intermediate Young’s modulus and density; G3: reinforced with geogrid having the highest density and Young’s modulus) were modeled to represent different situations in ballasted railway systems. Railway mechanical responses, such as vertical surface deflection, maximum principal stress and strain, and maximum shear stress were analyzed and compared among the four geogrid reinforcement scenarios and under four vertical wheel load levels (i.e., 75, 100, 150 and 200 kN). The advantages of such geosynthetics in ballast are indicated by result difference in the mechanical responses of railway pavement structures due to the use of different geogrid materials. The results also show that the reinforced structures have lower vertical surface deflection, lower maximum shear stress at the interface of sleeper and ballast, and maximum principal stress at the bottom of the ballast layer than a non-reinforced railway pavement structure. Consequently, the addition of geogrid into the ballast layer, and between the ballast and sub-ballast layer has been shown to reduce critical shear and principal stresses and vertical surface deflection in a ballasted railway pavement structure. Besides that, the results of the analysis confirm that geogrid reinforced layers exhibit higher resistance to deformation than the non-reinforced layers.
APA, Harvard, Vancouver, ISO, and other styles
6

BASTOS, GERSON ALVES. "MECHANICAL BEHAVIOR OF ASPHALT MIXTURES REINFORCED WITH GEOGRID FOR FLEXIBLE PAVEMENTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16585@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>O principal objetivo deste trabalho foi avaliar o comportamento mecânico de misturas asfálticas reforçadas com geogrelhas. Inicialmente foram previstos ensaios a serem executados em um modelo físico de verdadeira grandeza. Entretanto, devido a um comprometimento estrutural localizado num dos componentes deste modelo físico durante a realização dos ensaios, optou-se por interromper a execução destes e então, elaborar um programa experimental de laboratório, que consistia da extração de amostras deste modelo físico de verdadeira grandeza e moldagem de corpos de prova por amassamento através de compactador giratório. Cada conjunto de amostras (extraídas e moldadas) possuía corpos de prova sem ou com reforço, onde foram estudados dois tipos de geogrelha (de fibra de vidro e poliéster). Foram realizados os ensaios de Resistência à Tração por Compressão Diametral, Módulo de Resiliência, Fadiga por compressão diametral sob carga controlada e Tração em Disco Circular com Fenda. Os resultados dos ensaios mostraram que a presença do reforço de geogrelha melhorou o comportamento mecânico das misturas asfálticas, com a tendência de maior resistência à fratura, fato este evidenciado principalmente pelo ensaio de Tração em Disco Circular com Fenda, onde tais corpos de prova não atingiram o critério de finalização do ensaio (redução da carga aplicada a 0,10 kN). Nos ensaios de fadiga constatou-se que a melhor influência das geogrelhas ocorre para os menores níveis de tensão aplicada, sendo que nesta condição é permitido um maior período para as geogrelhas se deformarem, condição essencial para sua atuação como elemento com a função de atrasar a propagação de trincas. Constatouse uma melhoria significativa nos resultados obtidos com as amostras reforçadas com as grelhas, tendo as amostras com camada de geogrelha de poliéster apresentado os melhores resultados.<br>The objective of this study was to evaluate the mechanical behavior of geogrid reinforced asphalt mixtures. Initially tests were planned to be executed on a physical model, however, this tests had to be stopped due to structural problems. Samples were extracted from the physical model and samples were shaped through gyratory compaction, both for analyze the mechanical laboratory tests. Tensile Resistance (Brazilian Test), Resilient Modulus, Fatigue (controlled load) and Disk-Shaped Compact Tension Geometry Tests were carried out in extracted and shaped samples, without reinforcement and with the reinforcement of two geogrid types (fiberglass and polyester). The reinforcement improved the mechanical behavior of asphalt mixtures, with the trend of greater resistance to fracture, and this was evidenced by Disk-Shaped Compact Tension Geometry Tests, where the final criterion of the test was not reached (reduction of the applied load of 0.10 kN). The influence of geogrid is better for lower applied stress levels according with the Fatigue Tests. This condition allows the geogrid to deform for a long period, witch is essential for the performance as an element for delay crack propagation. There was a significant improvement in the results obtained with the reinforced samples, for both geogrids studied, but the polyester geogrid reached better results when compared to fiberglass geogrid.
APA, Harvard, Vancouver, ISO, and other styles
7

Tiwari, Dipak. "BEARING CAPACITY OF SHALLOW FOUNDATION USING GEOGRID REINFORCED DOUBLE LAYERED SOIL." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/theses/772.

Full text
Abstract:
Since the last three decades, several studies have been conducted related to improvement in bearing capacity of pavements, embankments, and shallow foundations resting on geosynthetic reinforced soil. Most of the work has been carried out on single layer soil e.g., sand or clay layer only. Very few studies are available on a double layer soil system; but no study is available on the local soil of Carbondale, Illinois. The present study investigates the physical and engineering properties of a local soil and commonly available sand and improvement in the bearing capacity of a local soil for a rectangular footing by replacing top of the local soil with sand layer and placing geogrids at different depths. Seven tests on the model footing were performed to establish the load versus settlement curves of unreinforced and reinforced soil supporting a rectangular foundation. The improvement in bearing capacity is compared with the bearing capacity of the local soil and double layer unreinforced soil system. The test results focus on the improvement in bearing capacity of local soil and double layer unreinforced soil system in non-dimensional form i.e., BCR (Bearing Capacity Ratio). The results obtained from the present study show that bearing capacity increases significantly with the increasing number of geogrid layers. The bearing capacity for double layer soil increases, by placing three inch sand layer at the top of local soil, was not significant. The bearing capacity of the local soil increased at an average of 7% with three inches sand layer. The bearing capacity for the double layer soil increases with an average of 16.67% using one geogrid layer at interface of soils (i.e., local soil and sand) with u/B equal to 0.67. The bearing capacity for the double layer soil increases with an average of 33.33% while using one geogrid in middle of sand layer having u/B equal to 0.33. The improvement in bearing capacity for double layer soil maintaining u/B equal to 0.33 and h/B equal to 0.33; for two, three and four number geogrid layer were 44.44%, 61.11%, 72.22%, respectively. The results obtained from this research work may be useful for the specific condition or similar type of soil available anywhere to improve the bearing capacity of soil for foundation and pavement design.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Cheng. "Discrete element modelling of geogrid-reinforced railway ballast and track transition zones." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13399/.

Full text
Abstract:
Track deterioration has a serious influence on the safety and efficiency (speed restriction) of train operations. Many expensive, disruptive and frequent repair operations are often required to maintain the ballast characteristics due to the problem of settlement. Because of this, a geogrid solution that has proved to be a simple and economical method of reinforcing track ballast is widely used. This project presents an evaluation of the behaviour of geogrid-reinforced railway ballast. Experimental large box pull-out tests were conducted to examine the key parameters influencing the interaction between ballast and the geogrid. The experimental results demonstrated that the triaxial geogrid with triangular apertures outperforms the biaxial geogrid with square apertures and the geogrid aperture size is more influential than rib profile and junction profile. The discrete element method (DEM) has then been used to model the interaction between ballast and geogrid by simulating large box pull-out tests and comparing with experimental results. The DEM simulation results have been shown to provide good predictions of the pull-out resistance and reveal the distribution of contact forces in the geogrid-reinforced ballast system. The discrete element method has also been used to simulate cyclic loading of geogrid-reinforced ballast under confined and unconfined conditions. For the confined condition, box tests have been simulated on unreinforced samples and reinforced samples with different geogrid positions and geogrid apertures. The response of the ballast layer reinforced with geogrid under repeated loading agrees with experimental results. It was found that the optimum location of geogrid is 100 mm depth from base, and the triaxial geogrid outperforms biaxial geogrid. For the unconfined condition, cyclic loading of a trough of ballast has also been simulated, and the sample with the geogrid at 50mm from the sub-ballast layer performs best. It was also found that the used of two geogrids at both 50mm and 150mm from the sub-ballast gave a smaller settlement than using a single layer geogrid, or the unreinforced ballast. The geogrid reinforcement limits the lateral displacement in reinforced zone, which is approximately 50mm above and below the geogrid. Previous investigations have shown that the abrupt stiffness change in track support is often associated with accelerated rates of deterioration of track geometry, high maintenance demand, and poor ride quality. However, at present, there is no detailed understanding of the mechanisms of track geometry deterioration at transition zones. This work provides insight into the factors that can cause or accelerate track degradation at the transition zones, in order to identify and evaluate appropriate mitigation design. A simple track transition model with dimensions 2.1m x 0.3m x 0.45m was simulated by using PFC3D. In order to identify and evaluate appropriate mitigation methods, two kinds of transition patterns, including a single step change and a multi step-by-step change for subgrade stiffness distribution were tested. The influence of the train direction of travel and speed on the transition were also investigated. In addition, geogrid was used in the ballast layer to examine the effects of geogrid reinforcement.
APA, Harvard, Vancouver, ISO, and other styles
9

Scotland, Ian. "Analysis of horizontal deformations to allow the optimisation of geogrid reinforced structures." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/23323.

Full text
Abstract:
Geogrid reinforced structures have been successfully used for over 25 years. However their design procedures have remained largely focused on ultimate failure mechanisms, originally developed for steel reinforcements. These are widely considered over conservative in determining realistic reinforcement and lateral earth stresses. The poor understanding of deformation performance led many design codes to restrict acceptable soils to selected sand and gravel fills, where deformation is not as concerning. Within UK construction there is a drive to reduce wastage, improve efficiency and reduce associated greenhouse gas emissions. For geogrid reinforced structures this could mean increasing reinforcement spacing and reusing weaker locally sourced soils. Both of these strategies increase deformation, raising concern about the lack of understanding and reliable guidance. As a result they fail to fulfil their efficiency potential. This Engineering Doctorate improved the understanding of horizontal deformation by analysing performance using laboratory testing, laser scanning industry structures and numerical modelling. Full-scale models were used to demonstrate a reduction in deformation by decreasing reinforcement spacing. Their results were combined with primary and secondary case studies to create a diverse database. This was used to validate a finite element model, differentiating between two often used construction methods. Its systematic analysis was extended to consider the deformation consequences of using low shear strength granular fills. The observations offered intend to reduce uncertainty and mitigate excessive deformations, which facilitates the further optimisation of designs.
APA, Harvard, Vancouver, ISO, and other styles
10

Holst, Martin. "Numerical and Analytical Analysis of Geogrid Reinforced Soil Wall Subjected to Dynamic Loading." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for bygg, anlegg og transport, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18803.

Full text
Abstract:
The potential human and economic loss due to structural collapse of geo-synthetic reinforced soil walls during earthquakes us huge. This substantiates the need for reliable design of such structures. The focus of this study was numerical and analytical design geo-synthetic reinforced soil walls under dynamic loading. Two topics were addressed; the effect of reinforcement parameters and verification of pseudo-static methods. The study is based on a 1 m high reduced-scale shaking table model loaded using stepped-amplitude harmonic base acceleration amplitude. A numerical PLAXIS model was developed and verified using physical model data. Material properties of the components (e.g. backfill and reinforcements) were based on information from a similar model developed using FLAC. The numerical model was used in a parameter study of the effects of reinforcement length and strength on the failure surface, facing displacements and reinforcement loads. The accuracy of pseudo-static methods was studied by comparing physical model results with predictions using the Mononobe-Okabe, the horizontal slices and two-part wedge method. Furthermore, guidelines for the Mononobe-Okabe method in different seismic design codes (i.e. Eurocode, FHWA/AASTHO and PIANC) were compared. Based on this comparison a new pseudo-static coefficient was developed. The reinforcement length and strength were found to have a significant effect on model response. For example, an increase in reinforcement axial stiffness will give a shallower failure surface and reduced the lateral facing displacements. Neither the Mononobe-Okabe, nor the horizontal slice, or the two-part wedge method was able to predict both the failure surface and the earth forces for a wide range of acceleration amplitudes. It was found that different pseudo-static methods are suitable for different predictions (e.g. of the failure surface) at different acceleration amplitudes. For example, single wedge pseudo-static methods gave good predictions for the active earth force and failure surface shape for acceleration amplitudes up to 0.30g, but not for higher amplitudes. FHWA/AASHTO were found to give better predictions for the failure surface and earth forced (when using Mononobe-Okabe) than the Eurocode and PIANC guidelines. Even so, the failure surface predicted using FHWA/AASHTO was too shallow compared to the physical measurements for acceleration amplitudes up to 0.30g.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!