Academic literature on the topic 'Geoenergia'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geoenergia.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geoenergia"

1

Igliński, Bartłomiej, Roman Buczkowski, Wojciech Kujawski, Marcin Cichosz, and Grzegorz Piechota. "Geoenergy in Poland." Renewable and Sustainable Energy Reviews 16, no. 5 (June 2012): 2545–57. http://dx.doi.org/10.1016/j.rser.2012.01.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MARUNICH, Nikolai, and Violeta BOGDANOVA. "Application of the information system of geo-energy evaluation in educational and scientific extracurricular activities of students." Acta et commentationes: Științe ale Educației 28, no. 2 (August 2022): 50–56. http://dx.doi.org/10.36120/2587-3636.v28i2.50-56.

Full text
Abstract:
The article describes the features of the use of scientific software in the extracurricular activities of students. The concept of automating the geoenergy assessment, the results of the implementation of the information system of the geoenergy approach are described. The importance of the developed information system in the formation of a sustainable interest in information and communication technologies and natural science research from the standpoint of STEAM is emphasized.
APA, Harvard, Vancouver, ISO, and other styles
3

Imansakipova, Botakoz, Shynar Aitkazinova, Auzhan Sakabekov, Gulim Shakiyeva, Meruyert Imansakipova, and Omirzhan Taukebayev. "Improving the accuracy of predicting the hazard of the earth’s surface failure formation during underground mining of mineral deposits." Mining of Mineral Deposits 15, no. 4 (December 2021): 15–24. http://dx.doi.org/10.33271/mining15.04.015.

Full text
Abstract:
Purpose. Development of a new approach to improving the accuracy of predicting situations in which the earth’s surface failures occur as a result of undermining a rock mass during the development of mineral deposits. Methods. The critical situations, including the earth’s surface failures, are predicted on the basis of assessing the value of geoenergy and studying its change as large volumes of rock mass are involved in mining. Analytical solutions based on the fundamental laws of physics and mechanics of continuous media are used. The research is performed using methods of cause-and-effect analysis. Findings. Based on the cause-effect relationship, determined between the change in the value of the mass geoenergy and deformation processes on the daylight surface of the field, an effective method has been developed for ranking it according to the degree of hazard of failure formation with the simultaneous use of two criteria. One of the criteria is determined by the relative change in geoenergy during the system transition from the initial (stable) state to the current one, which becomes unstable under certain conditions. The second criterion is formed on the basis of the change in geoenergy during the transition from the current (possibly unstable) state to the final (stable) state. Originality. For the first time, when zoning the daylight surface of a field according to the degree of hazard of failure formation, two ranking criteria are used simultaneously, based on the assessment of geoenergy accumulated in a heterogeneous mass, when it is undermined in the conditions of triaxial compression. Practical implications. The territory ranking method, developed on the basis of the used criteria for hazard of failure formation, allows improving the quality of situational control, predicting risk situations and their development, as well as optimizing the short-term and long-term plans for the development of mining operations.
APA, Harvard, Vancouver, ISO, and other styles
4

Horsfield, Brian, Magdalena Scheck-Wenderoth, Hans Joachim Krautz, and Maria Mutti. "Geoenergy: From visions to solutions." Geochemistry 70 (August 2010): 1. http://dx.doi.org/10.1016/j.chemer.2010.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Trutnevyte, Evelina, and Olivier Ejderyan. "Managing geoenergy-induced seismicity with society." Journal of Risk Research 21, no. 10 (March 27, 2017): 1287–94. http://dx.doi.org/10.1080/13669877.2017.1304979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Monaghan, Alison A., David A. C. Manning, and Zoe K. Shipton. "Comment on ‘Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential. Watson et al. (2020)’." Energies 13, no. 23 (December 2, 2020): 6373. http://dx.doi.org/10.3390/en13236373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Green, William R. "Reviews." Leading Edge 39, no. 9 (September 2020): 683. http://dx.doi.org/10.1190/tle39090683.1.

Full text
Abstract:
Mathematical Geoenergy: Discovery, Depletion, and Renewal, by Paul Pukite, Dennis Coyne, and Daniel Challou, ISBN 978-1-119-43429-0, 2019, American Geophysical Union, 384 p., US$199.95 (print), US$159.99 (eBook).
APA, Harvard, Vancouver, ISO, and other styles
8

Espinosa-Paredes, G. "Heat Transfer Processes Upscaling in Geoenergy Fields." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36, no. 20 (August 11, 2014): 2254–62. http://dx.doi.org/10.1080/15567036.2011.565308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Yingge, Zhihu Xia, Yanni Li, Anmai Dai, and Jie Wang. "Sustainable Digital Marketing Model of Geoenergy Resources under Carbon Neutrality Target." Sustainability 15, no. 3 (January 20, 2023): 2015. http://dx.doi.org/10.3390/su15032015.

Full text
Abstract:
Geoenergy resources are a new type of clean energy. Carbon neutralization and carbon peaking require significant system reform in the field of energy supply. As a clean, low-carbon, stable and continuous non carbon-based energy, geothermal energy can provide an important guarantee for achieving this goal. Different from the direct way of obtaining energy, ground energy indirectly obtains heat energy from shallow soil and surface water. The vigorous development of geoenergy resources under China’s carbon neutrality goal plays an important role in energy conservation and emission reduction. However, the current carbon trading market is not understood by the public. Therefore, this paper aims to analyze the impact of geoenergy resources on promoting sustainable digital marketing models. Every country around the world is working hard to meet its carbon neutrality goal. This paper analyzed the economic goal of carbon neutrality by analyzing the principle of the carbon trading market. For this reason, this paper designed a carbon trading price prediction algorithm based on the BP neural network (BPNN), which can predict prices in the carbon trading market in order to promote the accurate push of the digital marketing model and finally drive ground energy resources to promote a sustainable digital marketing model. The experimental results of this paper have proved that the price error rate of the BPNN carbon trading price prediction algorithm designed in this paper was within 10%, which was about 20% smaller than the traditional multiple regression analysis algorithm. This proved that the algorithm in this paper has a good performance and can provide accurate information to allow the digital marketing model to achieve sustainable digital marketing.
APA, Harvard, Vancouver, ISO, and other styles
10

Dychkovskyi, Roman, Mykola Tabachenko, Kseniia Zhadiaieva, and Edgar Cabana. "Some aspects of modern vision for geoenergy usage." E3S Web of Conferences 123 (2019): 01010. http://dx.doi.org/10.1051/e3sconf/201912301010.

Full text
Abstract:
The paper represents analysis, which have helped to determine tendencies of usage secondary and renewable resources by means of their utilization within the closed ecological complex while implementing integrated cogeneration systems belonging to various sources. Both the current state and prospects of secondary and renewable resources use within the closed complex of a mining enterprise have been considered. Relying upon philosophical approaches as for the formation of a viewpoint concerning responsibility of the modern society to future generations, tendencies to form energy production and energy consumption on the basis of alternative radical technologies have been proposed. The authors have put forward tendencies to change coal mining and coal use while generating the raw material from the abandoned and out-of-balance reserves. Chances to use cogeneration systems by various energy sources have been considered. Formation of the unified power and chemical system to improve economic and ecologic expediency of the proposed measures is the key tendency of energy perfection as well as minimization of impact on the underground mine environment and on the surface to prolong activities of dying mining territories and to reduce social tension.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Geoenergia"

1

Reis, Antonio Gomes dos. "A arquitetura da integração energética sul-americana, a participação brasileira e a geoenergia humana." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-29042015-171359/.

Full text
Abstract:
Este trabalho tem como objetivo estudar a participação e os interesses brasileiros no processo de integração energética sul americana, com foco nos setores de eletricidade e gás natural, analisando os aspectos políticos, econômicos, sociais e ambientais envolvidos sob a perspectiva daquilo que chamamos de geoenergia humana (termo criado para designar a relação de multicausalidade envolvendo os aspectos sociais, econômicos, ambientais e políticos presente no planejamento energético, e a forma que se distribuem territorialmente os recursos energéticos e possíveis empreendimentos associados a eles). Para isso, é feita, primeiramente, uma discussão sobre a relação entre energia e desenvolvimento socioeconômico, na qual a integração energética faz parte das políticas de desenvolvimento dos Estados. Em seguida, é feita a análise da integração energética sul-americana, relacionando-a ao processo de crescimento econômico da região, baseada na discussão sobre o potencial energético do continente e, em seguida, na revisão histórica do processo de integração energética nessa região onde são identificados os principais projetos e agentes envolvidos. A terceira parte do trabalho se volta para o estudo específico da participação brasileira no processo de integração energética sul americana, o que implica na identificação dos principais projetos que envolvem o Estado brasileiro ou empresas deste país na região e na análise da participação e dos interesses dos principais envolvidos. Por último, é feita a análise dos aspectos socioambientais envolvidos na questão, onde é apresentada a ideia de geoenergia humana e são discutidos conflitos socioambientais presentes neste contexto. Os resultados e as conclusões do trabalho evidenciam a relação direta que existe entre o crescimento econômico dos países e o desenvolvimento dos seus respectivos setores energéticos, o que envolve a comercialização de energia e o processo de integração energética no qual os maiores avanços se deram na União Europeia. Da mesma forma, mostram que nos últimos anos se intensificaram as iniciativas de integração de infraestruturas na América do Sul, bem como os esforços comuns em superar o enfoque bilateral ao qual se restringiam os projetos antigamente, com destaque para a Iniciativa para a Integração da Infraestrutura Regional Sul-Americana (IIRSA) e a União das Nações Sul-Americanas (UNASUL). Neste contexto, é evidente o protagonismo brasileiro, que se dá por meio de políticas de Estado que visam estimular a participação do Banco Nacional do Desenvolvimento Econômico e Social (BNDES) e das empresas nacionais de construção civil. Por último, devem ser destacados os diversos conflitos socioambientais relacionados aos empreendimentos energéticos no continente principalmente na região amazônica e que permitem questionar a concepção de desenvolvimento que está por trás do processo de integração na América do Sul.
This works goal is to study Brazils participation and interests in the process of energetic integration in South America, focusing on electricity and natural gas. It analyses the political, economics, social and environmental aspects involved from the perspective of the human geoenergy (term that refers to the relation between the different variables of the energetic planning that are distributed in space in different ways). In order to do so, the relation between energy and socioeconomical development is analysed, considering the process of energetic integration as intrinsic to the countries development policies. This works discusses the concept of energetic integration, considering the history of disputes between countries because of energy resources, and shows current examples of energy policies in the world. The third part of this work is focused on the specific study of Brazilian participation in the process of energetic integration in South America. This implies in the identification of the main projects that involve Brazil or its companies in the region and in the analysis of the participation and interests of the main parts involved. Finally, an analysis of the socio-environmental aspects involved in the matter is presented. At that point, the idea of human geoenergy is presented and the socio-environmental conflicts within this context are discussed. . The results show a direct relation between the countries economic growth and the development of their energetic sectors, which involves energy commercialization and the process of energetic integration in which the bigger advances happened in the European Union. It is also shown that, in the last years, the initiatives of infrastructure integration in South America were intensified, as were the common efforts to overcome the bilateral approach of the former projects in which the Initiative for the South American Regional Infrastructure Integration (IIRSA) and the Union of the South American Nations (UNASUL) stands out. Within this context, Brazils main role is evident. The countrys policies aim to stimulate the National Bank of Social and Economic Development (BNDES) and the civil construction national companies participation. Finally, the socio-environmental conflicts related to the energy endeavours in the continent, mainly in the Amazon region, that make us question the notion of development behind the South American integration, are put on the spotlight.
APA, Harvard, Vancouver, ISO, and other styles
2

GIDEKULL, MARCUS. "Har geoenergi en chans? Geoenergins relativa fördel i Sveriges kommuner." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-224203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

PREVIATI, ALBERTO. "The subsurface urban heat island in Milan – Anthropogenic heat sources and city-scale modeling of present and future scenarios." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/366244.

Full text
Abstract:
Le risorse sotterranee sono essenziali per l’approvvigionamento idrico ed energetico nelle aree urbane. Tuttavia, le attività umane modificano l’assetto naturale del sottosuolo alterandone le condizioni chimico-fisiche, tra cui il regime termico. L'effetto isola di calore nel sottosuolo (SUHI) è stato osservato in diverse città del mondo con temperature da 2 a 8°C più calde rispetto alle aree suburbane, e trend di riscaldamento sono riconducibili al cambiamento climatico e all’urbanizzazione. Infatti, le città ben sviluppate sono anche più colpite a causa della sovrapposizione di fonti di calore antropiche come i seminterrati degli edifici, le superfici asfaltate, i tunnel e gli impianti geotermici. Tale fenomeno ha implicazioni positive (es: maggior efficienza del riscaldamento con geotermia) e negative (es: l'inquinamento termico) sulle acque sotterranee, e l’integrazione di tecniche di monitoraggio e modellazione è fondamentale per quantificare i contributi di calore naturale/antropico in un ambiente complesso e valutarne l'evoluzione futura. Inoltre, gli obiettivi dell'UE sulla mitigazione del cambiamento climatico si concentrano sullo sviluppo di energie rinnovabili per ridurre le emissioni di gas serra. Tra queste, l’energia geotermica superficiale è considerata una valida alternativa ai sistemi di condizionamento tradizionali in quanto è disponibile quasi ovunque ed ha un bassissimo impatto. L'area metropolitana di Milano è una delle regioni maggiormente popolate d'Europa e ha una domanda energetica molto alta. Inoltre, molte attività legate all'urbanizzazione hanno contribuito ad alterarne la superficie e il sottosuolo, ma una valutazione dello stato termico tutt’ora non esiste. Nella prima parte di questo studio, si è stimato il potenziale geotermico a bassa entalpia a scala regionale integrando dati climatici e parametri idrogeologici/termici del sottosuolo. Tramite soluzioni analitiche si è calcolato il potenziale di impianti a circuito chiuso e aperto, considerando: per i primi, i parametri, la temperatura del sottosuolo, e le caratteristiche dello scambiatore, mentre per secondi, l’abbassamento piezometrico e il salto di temperatura ammessi dalla normativa regionale. I risultati sono stati confrontati con gli usi energetici attuali su base comunale, suggerendo la configurazione più favorevole. Nella seconda parte, si dimostra l'estensione dell’isola di calore sotterranea, di intensità fino a 3°C nella città di Milano. L’analisi spazio-temporale dei record di soggiacenza e temperatura ha messo in luce il ruolo dei principali fattori naturali e antropici: il flusso di calore verso l’acquifero è più intenso dove la tavola d’acqua è superficiale e strutture/infrastrutture antropiche sono densamente distribuite. Questo accumulo di calore si riflette in un trend tra +0.1 e +0.4 °C/a che porta fino a +25 MJ/m2/a nel sottosuolo del centro città. Inoltre, sono anche stati osservati gli effetti dell'urbanizzazione sull'abbondanza microbiologica nella falda superficiale. Infine, è stato sviluppato il primo modello numerico (FEM) di flusso e trasporto di calore alla scala urbana, focalizzandosi su (I) la ricostruzione delle eterogeneità del sottosuolo per simulare il trasporto di calore advettivo, (II) una soluzione analitica accoppiata per definire la condizione al contorno termica alla superficie e (III) l'integrazione di molteplici sorgenti di calore naturali/antropiche. Dalla simulazione dello stato attuale emerge che il flusso di calore dagli edifici e dalle infrastrutture/gallerie contribuisce all'85% dell'accumulo di calore annuale (1.4 PJ). Inoltre, il potenziale termico è stato valutato anche numericamente, e si è dimostrato che l’aumento di calore sotterraneo dovuto ai possibili effetti del riscaldamento globale e dell’espansione urbana è ben maggiore rispetto allo sviluppo geotermico che, per questo motivo, dovrebbe essere valorizzato.
Urban areas rely on subsurface resources to produce drinking water and extract low enthalpy geothermal energy. However, atmospheric and subsurface environment modifications by climate change and/or human activities affect the physical-chemical conditions such as the groundwater thermal regime. The subsurface urban heat island (SUHI) effect was documented in several cities worldwide with 2 to 8°C warmer temperatures than in suburban areas and warming trends were linked to global warming and urbanization. Highly developed cities are more impacted due to the superimposition of anthropogenic heat sources (e.g. building basements, asphalted surfaces, tunnels, geothermal installations), and positive (e.g. heating potential) and negative (e.g. thermal pollution) implications for groundwater uses exist. Thus, monitoring and modeling tools are mandatory to disentangle the complex superimposition of positive/negative heat flows from natural/anthropogenic sources and assess the future evolution. Moreover, EU objectives on climate change mitigation are focused on the development of renewable energies to reduce greenhouse gas emissions. Low enthalpy geothermal energy is considered a valid alternative to common heating/cooling techniques as it is available almost everywhere and has a low carbon footprint, especially where thermal energy is supplied by fossil fuels. The Milan city area (MCA) is one of the most densely populated and industrialized regions in Europe and, consequently, has a very high thermal power demand. Moreover, many activities related to urbanization contribute to modify the groundwater environment but their effects on the subsurface thermal status have never been assessed. In the first part of this study, the low enthalpy geothermal potential of the shallow aquifers was assessed at regional scale. Advantageous hydrogeological characteristics (e.g. highly conductive aquifers) were mapped and different analytical solutions used to estimate the thermal potential of ground coupled (GCHP) and groundwater (GWHP) heat pumps. The potential of GCHP was estimated considering subsurface hydraulic/thermal parameters and temperature, climatic data and borehole characteristics. The potential of GWHP was estimated considering the water drawdown and temperature drop allowed by regulation. The results were compared with heat demand rates on a municipal basis and the most profitable configuration was discussed. Successively, the extent and intensity of the SUHI in the MCA was assessed. Natural and anthropogenic controls on groundwater temperatures were revealed analyzing head and temperature records, and the occurrence of an up to 3° C intense SUHI was demonstrated. Vertical heat fluxes to the aquifer are strongly related to the groundwater depth and density of surface structures/infrastructures. This heat accumulation is reflected by a constant warming trend between +0.1 and +0.4 °C/y leading up to a +25 MJ/m2/y heat storage by densely distributed heat sources. Furthermore, the effects of urbanization, SUHI and physical-chemical conditions on the microbiological abundance were assessed by a flow cytometry analysis. Finally, a holistic city-scale fluid flow and heat transport FEM model was developed focusing on (I) the reconstruction of large-scale aquifer heterogeneities to consider the advective dominated heat transport, (II) the definition of the upper thermal boundary by a coupled analytical solution and (III) the integration of natural and human-related fluid/heat sources as transient boundary conditions. A fluid/heat budget analysis revealed the heat flow from buildings, infrastructures and tunnels contributes to 85% of the net annual heat accumulation (1.4 PJ/y). The thermal potential was evaluated numerically, and it was demonstrated that future climate change and city expansion could lead to the highest subsurface warming compared to shallow geothermic development which, for this reason, should be highly supported.
APA, Harvard, Vancouver, ISO, and other styles
4

Burlin, Jesper. "Geoenergi med och utan värmepump." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-135751.

Full text
Abstract:
Detta examensarbete utfördes på uppdrag av Umeå Kommun. Uppgiften bestod av att utvärdera dagens användning av en borrhålsbrunn samt undersöka vad som är det optimala användningsområdet för borrhålsbrunnen. Borrhålsbrunnen används i dagsläget för att förvärma samt kyla utomhusluft in till kontorsbyggnaden Kubens ventilationsaggregat. Ventilationens förvärmning består av två delar, en markkanal och ett geoenergibatteri. Viktiga parametrar hos förvärmningen analyserades med hjälp av mätvärden för temperatur och flöde. Resultaten jämfördes därefter med alternativet att använda borrhålsbrunnen tillsammans med en värmepump. Då borrhålsbrunnens kapacitet inte var tillräcklig för att klara byggnadens hela uppvärmningsbehov, undersöktes det hur en värmepump skulle kunna köras i kombination med fjärrvärme. Två driftstrategier, Bas och Kapatoppar, undersöktes. Bas leverar en basproduktion under hela vinterperioden medan Kapatoppar startar vid -6°C för att sänka effekttoppar. Utvärderingen av förvärmningen visade att geoenergibatteriet är mer kompatibelt med ventilationsaggregat av VAV-typ (Variable Air Volume) än vad markkanalen är. Däremot är inte förvärmning i kombination med roterande värmeväxlare ett bra koncept för byggnaden som den används idag. På grund av att förvärmningen är placerad före den roterande värmeväxlaren så är bara 15-20 % av förvärmningseffekterna energibesparande. Detta kombinerat med en optimerad drift av aggregatet sett till tidsstyrning och behovsstyrning av flöde gör att förvärmningen har en liten påverkan både på byggnadens maximala effektbehov och totala energibehov. Att köra värmepump i kombination med fjärrvärme för uppvärmning var ekonomiskt lönsamt främst på grund av att värmepumpen kunde kapa byggnadens effektoppar. Kostnaden för storleken på den abonnerade effekten uppgår idag till drygt 40 % av den totala fjärrvärmekostnaden. Dagens relation mellan el- och fjärrvärmepriser bidrog naturligtvis också till att värmepumpsalternativet var lönsamt. För de undersökta förutsättningarna så blev paybacktiden för en värmepump med den lönsammaste driftstrategin, Bas, 4,4 år.
APA, Harvard, Vancouver, ISO, and other styles
5

Runesson, Annie, and Matilda Wilsson. "Passiv kylning och uppvärmning av ventilationsluft med geoenergi." Thesis, Linnéuniversitetet, Institutionen för byggd miljö och energiteknik (BET), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-96952.

Full text
Abstract:
På grund av den globala uppvärmningen kommer efterfrågan på kyla öka i framtiden och ett alternativ som kan tillgodose användarnas kylbehov men samtidigt sänka byggnadens energiförbrukning är passiv kylning med geoenergi. Furuliden är ett äldre- och gruppboende som tillhör det kommunala bostadsbolaget Allbohus som hyr ut lägenheter och lokaler i Alvesta kommun. Majoriteten av de boende i Furuliden tillhör grupper som är extra känsliga för värme och fastigheten har haft problem med att inomhustemperaturen ibland blivit för varm. Möjligheten att kyla och värma ventilationsluften passivt i Furuliden med hjälp av 8 parallella energibrunnarna som är installerade vid fastigheten har undersökts för ett billigare och ett dyrare alternativ. Detta har gjorts genom beräkningar, programmering samt insamling av offerter. Resultatet visar att energibrunnarna har kapacitet att tillgodose kylbehovet för de båda alternativen.
APA, Harvard, Vancouver, ISO, and other styles
6

Forsberg, Anton. "Modellering och simulering av uppvärmning och nedkylning av kontorsbyggnad, via HVAC system där fjärrvärme och fjärrkyla jämförs med borrhålslager som energikälla." Thesis, Karlstads universitet, Institutionen för ingenjörs- och kemivetenskaper (from 2013), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-67893.

Full text
Abstract:
An office building (sthlm new hus 4) located in the south of Hammarbyhamnen overlooking Hammarbybacken is planned in 2018. Climate control of the office building are via radiators, high-temperature chilled beam and pre-treated supply air. The building is currently being designed for district heating and remote cooling. The study aims to investigate whether borehole thermal energy system (BTES) are a reasonable alternative to provide the office building with heat and cooling, from an environmental- and life cycle cost (LCC) perspective. The aim of the study is to generate an energy requirement for the office building, which is done by construct a model of the building using IDA ICE, a simulation software. The energy requirement is covered by either district heating/-cooling (energy system I) or BTES (energy system II) as the primary energy source. A model of the BTES is constructed in excel based on data from experience input. Life cycle cost analysis are used for economical comparison between the energy systems. The environmental assessment is based on Nordic electricity mix, which controls the impact of the energy systems. Energy system II entails a need for energy support to avoid over dimension the heat pump, which is done by complementing the surplus need through district heating and remote cooling. LCC shows an economic breakpoint at 11-year calculation period, where BTES becomes economically advantageously. Environmentally, energy system II releases 14.3 tonnes of CO2eq compared to energy system II which results in a reduced emission of 47 tonnes of CO2eq based on Nordic electricity mix.
APA, Harvard, Vancouver, ISO, and other styles
7

Silva, Gerson. "Systemtemperatur för geoenergi : En teknoekonomisk utvärdering av systemtemperatur i geoenergiprojekt." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79792.

Full text
Abstract:
En energieffektiv geoenergianläggning kan åstadkommas genom att välja rätt systemtemperatur. Systemtemperaturerna påverkas av geoenergisystemets delkomponenter. Syftet har varit att genomföra en teknoekonomisk utvärdering av värmesystemets systemtemperatur i geoenergiprojekt. Arbetet påbörjades med en teknisk utvärdering av systemtemperaturen för att undersöka vilka parametrar som har en betydande inverkan på systemtemperaturen. Därefter genomfördes en ekonomisk utvärdering på systemtemperaturen. Den ekonomiska utvärderingen utfördes genom att utvärdera olika systemtemperaturers livscykelkostnad (LCC) i en referensbyggnad. Resultatet visade tydligt att LCC ökar med sänkt framledningstemperatur. Vid systemtemperaturer över grundfallets systemtemperatur som har framledning-/returtemperatur på 40/30 °C, sjönk LCC med 1–2% per grad och vid framledning-/returtemperaturer under 40/30 °C ökade LCC med 6–8% per grad. De faktorer som hade störst inverkan på systemtemperaturen var byggnadens värmebehov, byggnadens utformning och slutapparaternas effektivitet. Dessa faktorer avgör hur låg systemtemperatur som är möjligt att implementera i en byggnad.
APA, Harvard, Vancouver, ISO, and other styles
8

Gewert, Andreas. "Datormodellering av en värmelagrande konstgräsplan : En temperaturstudie över ett år för en uppvärmd konstgräsplan." Thesis, Karlstads universitet, Institutionen för ingenjörs- och kemivetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-30059.

Full text
Abstract:
I Skattkärr har en konstgräsplan projekterats med uppvärmning för att kunna användas vintertid då snö och kyla sätter stopp för aktiviteter på en ouppvärmd konstgräsplan. I Skattkärr finns inte möjligheten att ansluta anläggningen till ett fjärrvärmenätverk. Tekniken som valts för att värma planen är istället en typ av geoenergi där PVC-rör ligger under konstgräsplanens ytskikt. Intill planen finns totalt 31 borrhål. Ur borrhålen hämtas värmen från berget med kollektorslangar och leds ut till en rörslinga under planen. Till skillnad mot vanlig bergvärme används ingen värmepump. I stället utnyttjas i Skattkärr bergets och markens naturliga värme på uppskattningsvis 7 °C. Det förväntas räcka för att hålla snö och is borta från konstgräsplanen. Sommartid när det inte finns behov av uppvärmning, värms vätskan i rören. Värmen kan vidare lagras i berget till vintersäsongen. Planen kan med andra ord, i princip betraktas som en stor solfångare. Systemets största driftkostnad blir därför dess cirkulationspump. Driften i sig är projekterad att vara intermittent. Det innebär att systemet förväntas stå stilla tills behov av uppvärmning eller kylning finns. Systemet slås sedan av när behovet av uppvärmning eller kylning upphört. Syftet med arbetet är att undersöka hur konstgräsplanen ska värmas och kylas optimalt utan att planen blir obrukbar tack vare dess yttemperatur. Målet med arbetet är att skapa en matematisk modell för systemet som beskriver temperaturen på konstgräsplanens yta. För att studera konstgräsplanens yttemperatur görs en matematisk modell vars uppgift är att dynamiskt analysera energiflöden över tid. Modellen är uppbyggd i programmet Simulink, en del av MATLAB. Modellen av konstgräsplanen består utav flera delberäkningar som i sin tur ger olika energiflöden. Planen betraktas i balansen som en platta på mark med ett värmelager. På så vis kan generaliseringar göras för att underlätta olika beräkningar med ekvationer tillämpade för plattor på mark. Resultatet visar att uppvärmningssystemet har svårt att värma planen till erfordlig temperatur stora delar av vintern. Istället följer planens yttemperatur rådande lufttemperatur likt en ouppvärmd plan. Dessvärre råder okunskap om strömningstillstånd samt vätsketemperatur i systemets rörslinga. Därför krävs vidare arbete för att säkerställa dessa faktorer. På så vis kan värmetillförseln från uppvärmningssystemet, till planens yta säkerställas. Först då kan ett godtyckligt underlag till cirkulationspumpens styrning presenteras.
In Skattkärr has a heated turf field been projected to enable activities during the winter when snow and cold weather put a stop to activities in an unheated turf field. In Skattkärr it’s not possible to connect the system to a district heating network. The technique chosen to heat the field is instead a type of geothermal energy where PVC-pipes are located beneath the artificial turf’s surface. Next to the the field is a total of 31 boreholes located. From those boreholes heat is collected from the mountain and headed out to a coil under the plan. Unlike conventional geothermal, there is no use of a heat-pump. Instead the system in Skattkärr uses the natural heat from the soil, approximately 7 ° C. It is expected to be enough to keep snow and ice away from the artificial turf field. In summer when there is no need of heating, the fluid in the tubes is heated. This heat can later on be stored in the ground for the winter season. The field may, in other words, in principle, be regarded as a solar collector. The system's operating cost is therefore the circulation-pump. The operation itself is projected to be intermittent. This means that the system is expected to stand still until the need for heating or cooling. The system is then turned off when the need for heating or cooling is ceased. The aim of this work is to investigate how an artificial turf field can be heated and cooled optimally without becoming unusable due to its surface temperature. The goal of this work is to create a mathematical model of the system that describes the temperature on the artificial turf's surface. To study the artificial turf field's surface temperature is a mathematical model created, whose mission is to dynamically analyze energy flows over time. The model is built in Simulink, a part of MATLAB. The model of artificial grass field consists of several partial measurement exercises in turn gives different energy flows. The plan considered in the balance as a slab with a heat store. This allows generalizations to be made to facilitate various calculations with equations applied to slabs on ground. The result shows that the heating system has difficulties to heat the field to temperatures demanded during winter. Instead, the surface temperature follows the current air temperature, like an unheated field. Unfortunately, there is lack of knowledge about the flow conditions and fluid temperature in the pipe loop system. Therefore, further work to ensure these factors are needed. Only then can an arbitrary basis for the circulation pump control be presented.
APA, Harvard, Vancouver, ISO, and other styles
9

Carlsson, Johan, and Patric Blomberg. "Geoenergi : En studie på Nyköpings lassarets möjlighet till fri-värme/kyla m.h.a. ett borrhålslager." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-16471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pettersson, Rikard. "Lokalproducerad förnybar energi på tågunderhållsdepåer i befintligt bestånd." Thesis, KTH, Energisystemanalys, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127001.

Full text
Abstract:
Jernhusen AB är ett fastighetsbolag inom transportbranschen och är framförallt inriktade mot järnvägen. Jernhusen har ett uttalat mål att bidra till ett hållbart samhälle. Som ett steg i detta vill Jernhusen undersöka möjligheterna med att investera i lokalproducerad förnybar energi på deras tågunderhållsdepåer.Denna rapport utreder förutsättningarna och möjligheterna med detta. Det finns idag flera olika förnybara energikällor som kan användas lokalt på depåerna. De bäst lämpade teknikerna för Jernhusens tågunderhållsdepåer är att använda solenergi och geoenergi. Solenergin kan användas för att producera elkraft med solceller och värme med solfångare. Det finns flera olika typer av solceller med den mest kommersiellt använda typen är polykristallina kiselsolceller. Underhållsdepåerna har stora effektbehov, både för el och för värme. Effektbehovet är som störst under vintermånaderna när tågen behöver avisas. Depåerna har stora öppna tak och bangårdar som lämpar sig till att använda både solceller, solfångare och geoenergi. De flesta depåerna är gamla och fastigheterna innehåller markföroreningar, vilka behöver beaktas om ett geoenergisystem ska installeras på fastigheten. Det finns goda förutsättningar för Jernhusen att installera olika system som utnyttjar förnybara energikällor. Om ett solcellssystem skulle installeras på Hagalund enligt Tabell 6-1 är återbetalningstiden för investeringen 15 år. Detta får anses som en god investering då ett solcellssystem kan ha en livslängd på 40 år. Hade en geoenergisystem installerats på Raus enligt Tabell 6-3 blir återbetalningstiden 17 år. Ett solfångarsystem har låg lönsamhet oavsett vilket depå det installeras på. Dock blir både geoenergi och solfångare betydligt mer lönsamma om byggnaden är uppvärmd av direktverkande el eller vid nybyggnationer.
Jernhusen AB is a real estate company within the transportation industry and their business is focused towards the railway. Jernhusen has a stated goal that the company should contribute to a sustainable society. As a step in this goal the company explores the possibilities of investing in locally produced renewable energy systems at their maintenance depots. This report investigates the potential in that kind of investment. There are currently several different renewable energy sources that can be used for locally producing renewable energy at the depots. The most appropriate techniques for Jernhusen to use are solar energy and geothermal energy. Solar energy can be used to produce electric power with solar cells and to produce heat with solar panels. There are several different types of solar cells but the most commonly used are polycrystalline silicon based solar cells.The maintenance depots have large power requirements for both electricity and heat. The power demand is greatest during the winter months when the train needs de-icing. The maintenance depots have large open roofs and rail yards suitable for solar cells, solar panels and geothermal systems. Most of the depots are old constructions and the properties contains a lot of soil pollution that need to be considered if a geothermal energy solution is up for investigation. There are good prospects for Jernhusen to install various systems using renewable energy sources. If a solar cell system were installed at Hagalund according to Table 6-1 the payback period for the investment is 15.1 years. This must be seen as a good investment when the solar cells have a lifespan of 40 years. If a geothermal system were installed at Raus according to Table 6-3 the payback period is 17.2 years. A solar panel system has a low profitability regardless of which depot the system is installed at. However, both the geothermal system and the solar panel system are far more profitable if the building is heated by electricity.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Geoenergia"

1

Watanabe, Norihiro, Guido Blöcher, Mauro Cacace, Sebastian Held, and Thomas Kohl. Geoenergy Modeling III. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46581-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shao, Haibing, Philipp Hein, Agnes Sachse, and Olaf Kolditz. Geoenergy Modeling II. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45057-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Böttcher, Norbert, Norihiro Watanabe, Uwe-Jens Görke, and Olaf Kolditz. Geoenergy Modeling I. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31335-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

1952-, Husain Zahid, Barik S. K, and North-East India Council for Social Science Research., eds. Development and environment: Development of geoenergy resources and its impact on environment and man of Northeast India. New Delhi: Regency Publications, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shao, Haibing, Philipp Hein, Olaf Kolditz, and Agnes Sachse. Geoenergy Modeling II: Shallow Geothermal Systems. Springer International Publishing AG, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pukite, Paul, Dennis Coyne, and Daniel Challou. Mathematical Geoenergy: Discovery, Depletion, and Renewal. American Geophysical Union, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pukite, Paul, Dennis Coyne, and Daniel Challou. Mathematical Geoenergy: Discovery, Depletion, and Renewal. American Geophysical Union, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kohl, Thomas, Norihiro Watanabe, Guido Blöcher, Mauro Cacace, and Sebastian Held. Geoenergy Modeling III: Enhanced Geothermal Systems. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pukite, Paul, Dennis Coyne, and Daniel Challou. Mathematical Geoenergy: Discovery, Depletion, and Renewal. American Geophysical Union, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shao, Haibing, Philipp Hein, Olaf Kolditz, and Agnes Sachse. Geoenergy Modeling II: Shallow Geothermal Systems. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Geoenergia"

1

Shao, Haibing, Philipp Hein, Agnes Sachse, and Olaf Kolditz. "Introduction." In Geoenergy Modeling II, 1–5. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45057-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shao, Haibing, Philipp Hein, Agnes Sachse, and Olaf Kolditz. "Theory: Governing Equations and Model Implementations." In Geoenergy Modeling II, 7–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45057-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shao, Haibing, Philipp Hein, Agnes Sachse, and Olaf Kolditz. "OGS Project: Simulating Heat Transport Model with BHEs." In Geoenergy Modeling II, 19–38. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45057-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shao, Haibing, Philipp Hein, Agnes Sachse, and Olaf Kolditz. "BHE Meshing Tool." In Geoenergy Modeling II, 39–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45057-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shao, Haibing, Philipp Hein, Agnes Sachse, and Olaf Kolditz. "Benchmarks." In Geoenergy Modeling II, 47–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45057-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shao, Haibing, Philipp Hein, Agnes Sachse, and Olaf Kolditz. "Case Study: A GSHP System in the Leipzig Area." In Geoenergy Modeling II, 61–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45057-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shao, Haibing, Philipp Hein, Agnes Sachse, and Olaf Kolditz. "Summary and Outlook." In Geoenergy Modeling II, 81. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45057-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Watanabe, Norihiro, Guido Blöcher, Mauro Cacace, Sebastian Held, and Thomas Kohl. "Introduction." In Geoenergy Modeling III, 1–7. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46581-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Watanabe, Norihiro, Guido Blöcher, Mauro Cacace, Sebastian Held, and Thomas Kohl. "Theory." In Geoenergy Modeling III, 9–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46581-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Watanabe, Norihiro, Guido Blöcher, Mauro Cacace, Sebastian Held, and Thomas Kohl. "Open-Source Software." In Geoenergy Modeling III, 17–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46581-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geoenergia"

1

Stoletov, Oleg. "GEOENERGY STRATEGIES OF MODERN STATES IN A GLOBAL TURBULENCE." In Globalistics-2020: Global issues and the future of humankind. Interregional Social Organization for Assistance of Studying and Promotion the Scientific Heritage of N.D. Kondratieff / ISOASPSH of N.D. Kondratieff, 2020. http://dx.doi.org/10.46865/978-5-901640-33-3-2020-712-718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Castilla, R., H. Krietsch, D. Jordan, X. Ma, F. Serbeto, A. Shakas, P. Guntli, et al. "Conceptual Geological Model of the Bedretto Underground Laboratory for Geoenergies." In 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202011912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vincent, C., B. Dashwood, J. Williams, O. Kuras, K. Kirk, P. Antcliff, and M. Barrett. "The UK GeoEnergy Test Bed, a Unique Geoscience Research Platform." In 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201901647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mortada, Adnan, Ruchi Choudhary, and Kenichi Soga. "Multi-Dimensional Simulation of Underground Spaces Coupled with Geoenergy Systems." In 2015 Building Simulation Conference. IBPSA, 2015. http://dx.doi.org/10.26868/25222708.2015.2372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vincent, C., O. Kuras, B. Dashwood, D. Morgan, R. Luckett, P. Wilkinson, P. Meldrum, R. Swift, A. Butcher, and M. Hall. "Site Characterization for the New UK Geoenergy Test Bed Research Facility." In Fourth Sustainable Earth Sciences Conference. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kingdon, A., M. Bianchi, M. Fellgett, E. Hough, and O. Kuras. "UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges." In 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201901503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Monaghan, A., V. Starcher, H. Barron, O. Kuras, C. Abesser, J. Midgley, B. Ó. Dochartaigh, et al. "A new Mine Water Geothermal Research Facility: the UK Geoenergy Observatory in Glasgow, Scotland." In 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201901602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vincent, C. J., O. Kuras, B. Dashwood, D. Morgan, R. Luckett, P. Wilkinson, P. Meldrum, R. Swift, A. Butcher, and M. R. Hall. "The UK GeoEnergy Test Bed – A New Facility for Collaborative Subsurface Low Carbon Energy Research." In EAGE/SEG Research Workshop 2017. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wenning, Q. C., N. Gholizadeh Doonechaly, A. Shakas, M. Hertrich, H. Maurer, D. Giardini, Bedretto Team, et al. "Heat Propagation Through Fractures During Hydraulic Stimulation in Crystalline Rock." In 56th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2022. http://dx.doi.org/10.56952/arma-2022-2112.

Full text
Abstract:
ABSTRACT: The Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) is located in central Switzerland and serves as a test bed for geothermal energy research. Several boreholes were drilled from the laboratory section (ca. 1.1 km overburden) to serve as injection boreholes for stimulation and geophysical monitoring boreholes. During a hydraulic stimulation injection in winter 2020 into injection borehole ST2 interval ranging from 313 to 320 m, we observe a thermal perturbation using distributed fiber optic temperature sensing in a neighboring open borehole (MB1) at a depth of 275 m to 295 m. Prior to injection, there is a thermal anomaly in MB1 at about 289 m due to natural fracture fluid flow. Below this depth the temperature is approximately 1.5 °C higher than above. During injection there is a gradual upward movement of the thermal anomaly to ca. 278 m depth. After injection is stopped, the thermal signal gradually recovers to the original depth. The cause for such a temperature change is potentially due to increased warm water flow reaching the base of MB1 from deeper ST2 or poro-elastic fracture closure of the cold-water conducting fractures at 278 and 289 m depth in MB1 during stimulation. 1. INTRODUCTION Geothermal energy is considered a sustainable form of power generation. While the earth generates over three times the total yearly human energy consumption (Pollack et al., 1993; Davies and Davies, 2010), the use of geothermal energy for power generation at the industrial scale has been limited, largely in part due to the need to engineer and stimulate reservoirs at significant depth to tap into the heat sources. Such ‘enhanced’ or ‘engineered’ geothermal systems (EGS) require hydraulic stimulation or fracturing to achieve economic heat extraction, adding to economic impact of drilling and completing a well, as well as creating additional difficulties like induced seismicity. To date, there are just a few examples from across the world which have had success in producing heat from EGS reservoirs (Brown, 1995; Albright and Pearson, 1982; Moore et al., 2018; Link et al., 2020; Genter et al., 2010).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography