Academic literature on the topic 'Geoeffectiveness'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geoeffectiveness.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geoeffectiveness"

1

Benacquista, Remi, Sandrine Rochel, and Guy Rolland. "Understanding the variability of magnetic storms caused by ICMEs." Annales Geophysicae 35, no. 1 (January 30, 2017): 147–59. http://dx.doi.org/10.5194/angeo-35-147-2017.

Full text
Abstract:
Abstract. In this paper, we study the dynamics of magnetic storms due to interplanetary coronal mass ejections (ICMEs). We used multi-epoch superposed epoch analyses (SEAs) with a choice of epoch times based on the structure of the events. By sorting the events with respect to simple large-scale features (presence of a shock, magnetic structure, polarity of magnetic clouds), this method provides an original insight into understanding the variability of magnetic storm dynamics. Our results show the necessity of seeing ICMEs and their preceding sheaths as a whole since each substructure impacts the other and has an effect on its geoeffectiveness. It is shown that the presence of a shock drives the geoeffectiveness of the sheaths, while both the shock and the magnetic structure impact the geoeffectiveness of the ICMEs. In addition, we showed that the ambient solar wind characteristics are not the same for ejecta and magnetic clouds (MCs). The ambient solar wind upstream magnetic clouds are quieter than upstream ejecta and particularly slower. We also focused on the polarity of magnetic clouds since it drives not only their geoeffectiveness but also their temporal dynamics. South–north magnetic clouds (SN-MCs) and north–south magnetic clouds (NS-MCs) show no difference in geoeffectiveness for our sample of events. Lastly, since it is well-known that sequences of events can possibly induce strong magnetic storms, such sequences have been studied using superposed epoch analysis (SEA) for the first time. We found that these sequences of ICMEs are very usual and concern about 40 % of the ICMEs. Furthermore, they cause much more intense magnetic storms than isolated events do.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Gui-Ang, Ming-Xian Zhao, Gui-Ming Le, and Tian Mao. "What Can We Learn from the Geoeffectiveness of the Magnetic Cloud on 2012 July 15–17?" Research in Astronomy and Astrophysics 22, no. 1 (January 1, 2022): 015002. http://dx.doi.org/10.1088/1674-4527/ac3126.

Full text
Abstract:
Abstract An interplanetary shock and a magnetic cloud (MC) reached the Earth on 2012 July 14 and 15 one after another. The shock sheath and the MC triggered an intense geomagnetic storm. We find that only small part of the MC from 06:45 UT to 10:05 UT on 2012 July 15 made contribution to the intense geomagnetic storm, while the rest part of the MC made no contribution to the intense geomagnetic storm. The averaged southward component of interplanetary magnetic field (B s ) and duskward-electric fields (E y ) within the MC from 10:05 UT, 2012 July 15 to 09:08 UT, 2012 July 16 (hereafter MC_2), are 15.11 nT and 8.01 mV m−1, respectively. According to the empirical formula established by Burton et al. (hereafter Burton equation), the geoeffectiveness of MC_2 should be −655.42 nT, while the geoeffectiveness of MC_2 is −324.68 nT according to the empirical formula established by O’Brien & McPherron (hereafter OM equation). However, the real geoeffectiveness of MC_2 is 39.74 nT. The results indicate that the Burton equation and the OM equation cannot work effectively. The geoeffectiveness of MC_2 shows that large and long duration of B s or E y cannot guarantee the occurrence of an intense geomagnetic storm if the solar wind dynamic pressure is very low. If we use 0.52 as γ, the geoeffectiveness of MC_2 is 40.36 nT according to the empirical formula established by Wang et al., which is very close to the observed value, indicating that the empirical formula established by Wang et al. is much better than the Burton equation and the OM equation.
APA, Harvard, Vancouver, ISO, and other styles
3

Fu, Huiyuan, Yuchao Zheng, Yudong Ye, Xueshang Feng, Chaoxu Liu, and Huadong Ma. "Joint Geoeffectiveness and Arrival Time Prediction of CMEs by a Unified Deep Learning Framework." Remote Sensing 13, no. 9 (April 30, 2021): 1738. http://dx.doi.org/10.3390/rs13091738.

Full text
Abstract:
Fast and accurate prediction of the geoeffectiveness of coronal mass ejections (CMEs) and the arrival time of the geoeffective CMEs is urgent, to reduce the harm caused by CMEs. In this paper, we present a new deep learning framework based on time series of satellites’ optical observations that can give both the geoeffectiveness and the arrival time prediction of the CME events. It is the first time combining these two demands in a unified deep learning framework with no requirement of manually feature selection and get results immediately. The only input of the deep learning framework is the time series images from synchronized solar white-light and EUV observations. Our framework first uses the deep residual network embedded with the attention mechanism to extract feature maps for each observation image, then fuses the feature map of each image by the feature map fusion module and determines the geoeffectiveness of CME events. For the geoeffective CME events, we further predict its arrival time by the deep residual regression network based on group convolution. In order to train and evaluate our proposed framework, we collect 2400 partial-/full-halo CME events and its corresponding images from 1996 to 2018. The F1 score and Accuracy of the geoeffectiveness prediction can reach 0.270% and 75.1%, respectively, and the mean absolute error of the arrival time prediction is only 5.8 h, which are both significantly better than well-known deep learning methods and can be comparable to, or even better than, the best performance of traditional methods.
APA, Harvard, Vancouver, ISO, and other styles
4

Mendoza, Blanca, and Román Pérez Enríquez. "Geoeffectiveness of the heliospheric current sheet." Journal of Geophysical Research 100, A5 (1995): 7877. http://dx.doi.org/10.1029/94ja02867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gopalswamy, N., S. Yashiro, and S. Akiyama. "Geoeffectiveness of halo coronal mass ejections." Journal of Geophysical Research: Space Physics 112, A6 (June 2007): n/a. http://dx.doi.org/10.1029/2006ja012149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mundra, Kashvi, V. Aparna, and Petrus Martens. "Using CME Progenitors to Assess CME Geoeffectiveness." Astrophysical Journal Supplement Series 257, no. 2 (November 12, 2021): 33. http://dx.doi.org/10.3847/1538-4365/ac3136.

Full text
Abstract:
Abstract There have been a few previous studies claiming that the effects of geomagnetic storms strongly depend on the orientation of the magnetic cloud portion of coronal mass ejections (CMEs). Aparna & Martens, using halo-CME data from 2007 to 2017, showed that the magnetic field orientation of filaments at the location where CMEs originate on the Sun can be used to credibly predict the geoeffectiveness of the CMEs being studied. The purpose of this study is to extend their survey by analyzing the halo-CME data for 1996–2006. The correlation of filament axial direction on the solar surface and the corresponding Bz signatures at L1 are used to form a more extensive analysis for the results previously presented by Aparna & Martens. This study utilizes Solar and Heliospheric Observatory Extreme-ultraviolet Imaging Telescope 195 Å, Michelson Doppler Imager magnetogram images, and Kanzelhöhe Solar Observatory and Big Bear Solar Observatory Hα images for each particular time period, along with ACE data for interplanetary magnetic field signatures. Utilizing all these, we have found that the trend in Aparna & Martens’ study of a high likelihood of correlation between the axial field direction on the solar surface and Bz orientation persists for the data between 1996 and 2006, for which we find a match percentage of 65%.
APA, Harvard, Vancouver, ISO, and other styles
7

Plunkett, S. P., and S. T. Wu. "Coronal mass ejections (CMEs) and their geoeffectiveness." IEEE Transactions on Plasma Science 28, no. 6 (2000): 1807–17. http://dx.doi.org/10.1109/27.902210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, James, Peter J. Cargill, and Peter J. Palmadesso. "Predicting solar wind structures and their geoeffectiveness." Journal of Geophysical Research: Space Physics 102, A7 (January 1997): 14701–20. http://dx.doi.org/10.1029/97ja00936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huttunen, E. "Geoeffectiveness of CMEs in the Solar Wind." Proceedings of the International Astronomical Union 2004, IAUS226 (September 2004): 455–56. http://dx.doi.org/10.1017/s1743921305001031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alves, M. V., E. Echer, and W. D. Gonzalez. "Geoeffectiveness of solar wind interplanetary magnetic structures." Journal of Atmospheric and Solar-Terrestrial Physics 73, no. 11-12 (July 2011): 1380–84. http://dx.doi.org/10.1016/j.jastp.2010.07.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Geoeffectiveness"

1

Norenius, Linus. "Geoeffectiveness of Magnetosheath Jets." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-164846.

Full text
Abstract:
In this report we present spacecraft and ground-based observations of magnetosheath jets impacting the magnetosphere, both as a case study and a statistical study. In the case study, jets were detected in the magnetosheath by the Magnetospheric MultiScale mission, MMS. By utilizing a data-based magnetosphericmodel (Tsyganenko T96 [29]), we estimated which jets were likely to impact the magnetopause and where they would do so. We examined ground based magnetometers, GMAGs, at the expected foot-point to the affected magnetic fieldline and compared this with the spacecraft observations. Theoretical transfertimes for a jet to be detectable by GMAGs have been estimated and compared with the observed time delay, from detection to GMAG response, and they were in good agreement for all cases. The times found for this geoeffective responsewere found to be around 1-2 min, and the response in the GMAGs was in the form of a pulse with an amplitude of around 50 nT. We suggest that jets of along enough time duration can be geoeffective in a way that they are detectable at ground level by GMAGs. It was also found that GMAGs fluctuate more during periods containing many detected jets. We performed our statistical study with the intention of comparing fluctuations in GMAG observations during Interplanetary Magnetic Field, IMF, configurations which is suggested to be favorable for jet creation. The IMF observationswas provided by the THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft. This was done by selecting periods of steady IMF with different orientations, and examining the GMAGs observed variations. GMAGs were selected based on a region where most of our foot-points were found in our previous case study. We performed this study over a three year interval, and found that GMAGs observe about 2 nT higher variation, according to their standard deviations, during radial IMF compared to northward IMF. During northward IMF we expect less effects from magnetopause phenomena, thus making it suitable to compare with radial IMF. Our statistical investigation support our findings that magnetosheath jets can be geoeffective in a waythat GMAGs can detect them.
APA, Harvard, Vancouver, ISO, and other styles
2

Bronarska, Katarzyna. "Study of the geoeffectiveness of coronal mass ejections." Praca doktorska, 2019. https://ruj.uj.edu.pl/xmlui/handle/item/79747.

Full text
Abstract:
Niniejsza rozprawa prezentuje wyniki badań nad geoefektywnością koronalnych wyrzutów masy (KWM), Badania były skoncentrowane na dwóch istotnych aspektach dotyczących prognozowania pogody kosmicznej. Jednym aspektem badań było pokazanie korelacji miedzy zjawiskami na słońcu a KWM produkującymi energetyczne cząstki. Badania pokazały, że bardzo wąskie KWM mogą generować w pobliżu Ziemi niskoenergetyczne cząstki (energie poniżej 1 MeV) bez dodatkowej aktywności na Słońcu, Pokazano także, iż obszary aktywne zlokalizowane na wschodniej części tarczy słonecznej mogą produkować energetyczne cząstki jedynie jeżeli ich struktura magnetyczna jest bardzo złożona. Natomiast obszary aktywne zlokalizowane w środkowej oraz zachodniej części tarczy słonecznej nie muszą mieć złożonej struktury magnetycznej aby produkować energetyczne cząstki. Drugi aspekt badań dotyczył zdefiniowania zjawisk wpływających na badanie KWM przy wykorzystaniu koronografów, W tych badaniach oceniono efektywność detekcji koronografów LASCO i pokazano, że te koronografy są w stanie wykryć wszystkie potencjalnie geoefektywne KWM, Jednak obserwacje przy użyciu koronografów są obarczone efektem projekcji, Z tego powodu praktycznie niemożliwe jest wyznaczenie rzeczywistych parametrów KWM przez co trudniej jest przewidzieć ich geoefektywność, W tych badaniach, wykorzystując obserwacje z satelit STEREO będących w kwadraturze względem Ziemi, oszacowany został efekt projekcji wpływający na wyznaczanie prędkość KWM, Pokazano, że ten efekt zależy w dużym stopniu od szerokości kątowych oraz lokalizacji KWM na Słońcu, Wszystkie otrzymane wyniki mogą być bardzo przydatne do prognozowania pogody kosmicznej.
This dissertation is an attempt to investigate geoeffectiveness of CMEs, The study was focused on two important aspects regarding the prediction of space weather. Firstly, it was presented relationship between energetic phenomena on the Sun and CMEs producing solar energetic particles. Scientific considerations demonstrated that very narrow CMEs can generate low energy particles (energies below 1 MeV) in the Earth's vicinity without other activity on the Sun, It was also shown that SEP events associated with active regions from eastern longitudes have to be complex to produce SEP events at Earth, On the other hand, SEP particles originating from mid-longitudes (30°
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Geoeffectiveness"

1

Dryer, M., Z. K. Smith, S. T. Wu, S. M. Han, and T. Yeh. "MHD Simulation of the “Geoeffectiveness” of Interplanetary Disturbances." In Solar Wind — Magnetosphere Coupling, 191–207. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4722-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ameri, Dheyaa, and Eino Valtonen. "Investigation of the Geoeffectiveness of Disk-Centre Full-Halo Coronal Mass Ejections." In Earth-affecting Solar Transients, 59–78. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1570-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turner, Niescja E., Elizabeth J. Mitchell, Delores J. Knipp, and Barbara A. Emery. "Energetics of magnetic storms driven by corotating interaction regions: A study of geoeffectiveness." In Recurrent Magnetic Storms: Corotating Solar Wind Streams, 113–24. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/167gm11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, G. "High-speed streams, coronal mass ejections, and interplanetary shocks: A comparative study of geoeffectiveness." In Recurrent Magnetic Storms: Corotating Solar Wind Streams, 97–111. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/167gm10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aslam, O. P. M., and Badruddin. "Study of the Geoeffectiveness and Galactic Cosmic-Ray Response of VarSITI-ISEST Campaign Events in Solar Cycle 24." In Earth-affecting Solar Transients, 347–63. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1570-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chertok, I. M., V. V. Grechnev, and A. A. Abunin. "An Early Diagnostics of the Geoeffectiveness of Solar Eruptions from Photospheric Magnetic Flux Observations: The Transition from SOHO to SDO." In Earth-affecting Solar Transients, 729–44. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1570-4_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blake, J. B., P. L. Slocum, J. E. Mazur, M. D. Looper, R. S. Selesnick, and K. Shiokawa. "GEOEFFECTIVENESS OF SHOCKS IN POPULATING THE RADIATION BELTS." In Multiscale Coupling of Sun-Earth Processes, 125–33. Elsevier, 2005. http://dx.doi.org/10.1016/b978-044451881-1/50010-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, X. P. "The Geoeffectiveness of Frontside Full Halo Coronal Mass Ejections." In Solar-terrestrial Magnetic Activity and Space Environment - Proceedings of the COSPAR Colloquium on Solar-Terrestrial Magnetic Activity and Space Environment (STMASE) held in the NA OC in Beijing, China September 10-12, 2001, 209–16. Elsevier, 2002. http://dx.doi.org/10.1016/s0964-2749(02)80158-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yermolaev, Yuri I., Irina G. Lodkina, Nadezhda S. Nikolaeva, and Michael Yu Yermolaev. "Geoeffectiveness of Solar and Interplanetary Structures and Generation of Strong Geomagnetic Storms." In Extreme Events in Geospace, 99–113. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-812700-1.00004-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geoeffectiveness"

1

Shlyk, N. S., A. V. Belov, M. A. Abunina, and A. A. Abunin. "GEOEFFECTIVENESS OF PAIRED INTERACTING SOLAR WIND DISTURBANCES." In All-Russia Conference on Solar and Solar-Terrestrial Physics. The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 2021. http://dx.doi.org/10.31725/0552-5829-2021-317-320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yermolaev, Yuri I., Nadezhda S. Nikolaeva, Irina G. Lodkina, Mikhail Yu Yermolaev, M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, and F. Pantellini. "Large-scale solar wind structures: occurrence rate and geoeffectiveness." In TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE. AIP, 2010. http://dx.doi.org/10.1063/1.3395949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Koshovyy, V., O. Ivantyshyn, V. Mezentsev, B. Rusyn, L. Karataeva, and Z. Liubinets'kyj. "Extended interpretation of the term “geoeffectiveness” of active solar processes." In 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2020. http://dx.doi.org/10.23919/ursigass49373.2020.9232405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Rajiv. "STUDY ON CORONAL MASS EJECTION, MAGNETIC CLOUD AND THEIR GEOEFFECTIVENESS." In The 34th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.236.0129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cid, C. "The Geoeffectiveness of Magnetic Clouds as a Function of Their Orientation." In SOLAR WIND TEN: Proceedings of the Tenth International Solar Wind Conference. AIP, 2003. http://dx.doi.org/10.1063/1.1618699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Herdiwijaya, Dhani. "The characteristics of solar wind parameters during minimum periods of solar cycle 24 and impact on geoeffectiveness." In INTERNATIONAL CONFERENCE ON PHYSICS AND ITS APPLICATIONS: (ICPAP 2011). AIP, 2012. http://dx.doi.org/10.1063/1.4730679.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geoeffectiveness"

1

Tassev, Yordan, Peter I. Y. Velinov, and Dimitrinka Tomova. Forecast of Solar Activity Geoeffectiveness in May 2019. Does the Solar Cycle 25 Begin? "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2019. http://dx.doi.org/10.7546/crabs.2019.09.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!