Journal articles on the topic 'Geochemistry South Australia Gawler Craton'

To see the other types of publications on this topic, follow the link: Geochemistry South Australia Gawler Craton.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Geochemistry South Australia Gawler Craton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Brotodewo, Adrienne, Caroline Tiddy, Diana Plavsa, and Adrian Fabris. "Using zircon geochemistry to map alteration in the Gawler Craton, South Australia." ASEG Extended Abstracts 2019, no. 1 (November 11, 2019): 1–4. http://dx.doi.org/10.1080/22020586.2019.12073026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hoatson, D. M. "Late Archean Lake Harris Komatiite, Central Gawler Craton, South Australia: Geologic Setting and Geochemistry." Economic Geology 100, no. 2 (March 1, 2005): 349–74. http://dx.doi.org/10.2113/100.2.349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lintern, Mel, Malcolm Sheard, and Nicky Buller. "The gold-in-calcrete anomaly at the ET gold prospect, Gawler Craton, South Australia." Applied Geochemistry 26, no. 12 (December 2011): 2027–43. http://dx.doi.org/10.1016/j.apgeochem.2011.06.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lech, Megan E., Patrice de Caritat, Subhash Jaireth, and Amy Kernich. "Baseline geochemical studies in Australia with particular reference to geohealth studies in the Gawler Craton of South Australia." Chinese Journal of Geochemistry 25, S1 (March 2006): 64. http://dx.doi.org/10.1007/bf02839858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt Mumm, Andreas, and Frank Reith. "Biomediation of calcrete at the gold anomaly of the Barns prospect, Gawler Craton, South Australia." Journal of Geochemical Exploration 92, no. 1 (January 2007): 13–33. http://dx.doi.org/10.1016/j.gexplo.2006.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chapman, N. D., M. Ferguson, S. J. Meffre, A. Stepanov, R. Maas, and K. J. Ehrig. "Pb-isotopic constraints on the source of A-type Suites: Insights from the Hiltaba Suite - Gawler Range Volcanics Magmatic Event, Gawler Craton, South Australia." Lithos 346-347 (November 2019): 105156. http://dx.doi.org/10.1016/j.lithos.2019.105156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lintern, M. J., M. J. Sheard, and A. R. Chivas. "The source of pedogenic carbonate associated with gold-calcrete anomalies in the western Gawler Craton, South Australia." Chemical Geology 235, no. 3-4 (December 2006): 299–324. http://dx.doi.org/10.1016/j.chemgeo.2006.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ferguson, Matthew R. M., Kathy Ehrig, and Sebastien Meffre. "Insights into magma histories through silicate-oxide crystal clusters: Linking the Hiltaba Suite intrusive rocks to the Gawler Range Volcanics, Gawler Craton, South Australia." Precambrian Research 321 (February 2019): 103–22. http://dx.doi.org/10.1016/j.precamres.2018.11.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schaefer, B. F., N. C. Chalmers, and C. E. Fricke. "Lithospheric and geodynamic evolution of the Gawler Craton, South Australia: Integration of Os, Hf and Nd isotopic investigations." Geochimica et Cosmochimica Acta 70, no. 18 (August 2006): A559. http://dx.doi.org/10.1016/j.gca.2006.06.1034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reid, Anthony, Richard Flint, Roland Maas, Katherine Howard, and Elena Belousova. "Geochronological and isotopic constraints on Palaeoproterozoic skarn base metal mineralisation in the central Gawler Craton, South Australia." Ore Geology Reviews 36, no. 4 (December 2009): 350–62. http://dx.doi.org/10.1016/j.oregeorev.2009.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Courtney-Davies, Liam, Cristiana L. Ciobanu, Nigel J. Cook, Max R. Verdugo-Ihl, Ashley Slattery, Sarah E. Gilbert, and Kathy Ehrig. "Metallic-Pb nanospheres in zircon from the Challenger Au deposit, South Australia: probing metamorphic and ore formation histories." Mineralogical Magazine 85, no. 6 (November 2, 2021): 868–78. http://dx.doi.org/10.1180/mgm.2021.81.

Full text
Abstract:
AbstractAncient metamorphic processes are recorded by the formation of metallic-Pb nanospheres in zircon, a product of internal Pb mobilisation and thermally driven concentration. Here, metallic-Pb nanospheres formed within an ore deposit are characterised for the first time using high-angle annular dark field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy element-distribution mapping. Exceptional examples from the migmatite-hosted Archean–Paleoproterozoic Challenger Au deposit (Central Gawler Craton, South Australia) support widespread metallic-Pb nanosphere formation in zircon from rocks experiencing granulite-facies metamorphism. We also report new trace-element associations found with metallic-Pb nanospheres and a new mode of occurrence, in which Sc ‘haloes’ form adjacent to metallic-Pb nanospheres within the crystalline zircon lattice. This differs to previously characterised examples of metallic-Pb nanospheres associated with amorphous Si-rich glasses and unidentified Al–Ti, or Fe-bearing phases. Multiple modes of metallic-Pb nanosphere occurrences and trace-element associations suggests multiple modes of formation, probably dependant on zircon composition and metamorphic conditions. Identification of metallic-Pb nanospheres in a growing range of geological settings further highlights the mobility of Pb in zircon and the importance of detailed, nanoscale mineral characterisation, in order to constrain accurate geochronological histories for rocks within high-temperature geological environments.
APA, Harvard, Vancouver, ISO, and other styles
12

Zang, Wen-Long. "Deposition and deformation of late Archaean sediments and preservation of microfossils in the Harris Greenstone Domain, Gawler Craton, South Australia." Precambrian Research 156, no. 1-2 (June 2007): 107–24. http://dx.doi.org/10.1016/j.precamres.2007.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Halpin, Jacqueline A., and Anthony J. Reid. "Earliest Paleoproterozoic high-grade metamorphism and orogenesis in the Gawler Craton, South Australia: The southern cousin in the Rae family?" Precambrian Research 276 (May 2016): 123–44. http://dx.doi.org/10.1016/j.precamres.2016.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Belousova, E. A., A. J. Reid, W. L. Griffin, and Suzanne Y. O’Reilly. "Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: Evidence from U–Pb and Hf isotopes in detrital zircon." Lithos 113, no. 3-4 (December 2009): 570–82. http://dx.doi.org/10.1016/j.lithos.2009.06.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Glorie, Stijn, James W. Hall, Angus Nixon, Alan S. Collins, and Anthony Reid. "Carboniferous fault reactivation at the northern margin of the metal-rich Gawler Craton (South Australia): Implications for ore deposit exhumation and preservation." Ore Geology Reviews 115 (December 2019): 103193. http://dx.doi.org/10.1016/j.oregeorev.2019.103193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kelka, Ulrich, Cericia Martinez, Carmen Krapf, Stefan Westerlund, Ignacio Gonzalez-Alvarez, Mark Pawley, and Clive Foss. "Establishing an integrated workflow identifying and linking surface and subsurface lineaments for mineral exploration under cover: example from the Gawler Craton, South Australia." Solid Earth 13, no. 4 (April 29, 2022): 827–47. http://dx.doi.org/10.5194/se-13-827-2022.

Full text
Abstract:
Abstract. Mineral exploration in areas comprising thick and complex cover represents an intrinsic challenge. Cost- and time-efficient methods that help to narrow down exploration areas are therefore of particular interest to the Australian mining industry and for mineral exploration worldwide. Based on a case study around the Tarcoola gold mine in the regolith-dominated South Australian central Gawler Craton, we suggest an exploration targeting workflow based on the joint analysis of surface and subsurface lineaments. The datasets utilised in this study are a digital elevation model and radiometric data that represent surface signals and total magnetic intensity and gravity attributed to subsurface signals. We compare automatically and manually mapped lineament sets derived from remotely sensed data. In order to establish an integrated concept for exploration through cover based on the best-suited lineament data, we will point out the most striking differences between the automatically and manually detected lineaments and compare the datasets that represent surficial in contrast to subsurface structures. We further show how lineaments derived from surface and subsurface datasets can be combined to obtain targeting maps that help to narrow down areas for mineral exploration. We propose that target areas are represented by high lineament densities which are adjacent to regions comprising high density of lineament intersections.
APA, Harvard, Vancouver, ISO, and other styles
17

Reid, Anthony J., Elizabeth A. Jagodzinski, Geoffrey L. Fraser, and Mark J. Pawley. "SHRIMP U–Pb zircon age constraints on the tectonics of the Neoarchean to early Paleoproterozoic transition within the Mulgathing Complex, Gawler Craton, South Australia." Precambrian Research 250 (September 2014): 27–49. http://dx.doi.org/10.1016/j.precamres.2014.05.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Courtney-Davies, Ciobanu, Verdugo-Ihl, Slattery, Cook, Dmitrijeva, Keyser, et al. "Zircon at the Nanoscale Records Metasomatic Processes Leading to Large Magmatic–Hydrothermal Ore Systems." Minerals 9, no. 6 (June 16, 2019): 364. http://dx.doi.org/10.3390/min9060364.

Full text
Abstract:
The petrography and geochemistry of zircon offers an exciting opportunity to better understand the genesis of, as well as identify pathfinders for, large magmatic–hydrothermal ore systems. Electron probe microanalysis, laser ablation inductively coupled plasma mass spectrometry, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging, and energy-dispersive X-ray spectrometry STEM mapping/spot analysis were combined to characterize Proterozoic granitic zircon in the eastern Gawler Craton, South Australia. Granites from the ~1.85 Ga Donington Suite and ~1.6 Ga Hiltaba Suite were selected from locations that are either mineralized or not, with the same style of iron-oxide copper gold (IOCG) mineralization. Although Donington Suite granites are host to mineralization in several prospects, only Hiltaba Suite granites are considered “fertile” in that their emplacement at ~1.6 Ga is associated with generation of one of the best metal-endowed IOCG provinces on Earth. Crystal oscillatory zoning with respect to non-formula elements, notably Fe and Cl, are textural and chemical features preserved in zircon, with no evidence for U or Pb accumulation relating to amorphization effects. Bands with Fe and Ca show mottling with respect to chloro–hydroxy–zircon nanoprecipitates. Lattice defects occur along fractures crosscutting such nanoprecipitates indicating fluid infiltration post-mottling. Lattice stretching and screw dislocations leading to expansion of the zircon structure are the only nanoscale structures attributable to self-induced irradiation damage. These features increase in abundance in zircons from granites hosting IOCG mineralization, including from the world-class Olympic Dam Cu–U–Au–Ag deposit. The nano- to micron-scale features documented reflect interaction between magmatic zircon and corrosive Fe–Cl-bearing fluids in an initial metasomatic event that follows magmatic crystallization and immediately precedes deposition of IOCG mineralization. Quantification of α-decay damage that could relate zircon alteration to the first percolation point in zircon gives ~100 Ma, a time interval that cannot be reconciled with the 2–4 Ma period between magmatic crystallization and onset of hydrothermal fluid flow. Crystal oscillatory zoning and nanoprecipitate mottling in zircon intensify with proximity to mineralization and represent a potential pathfinder to locate fertile granites associated with Cu–Au mineralization.
APA, Harvard, Vancouver, ISO, and other styles
19

Webb, A. W., B. P. Thomson, A. H. Blissett, S. J. Daly, R. B. Flint, and A. J. Parker. "Geochronology of the Gawler Craton, South Australia." Australian Journal of Earth Sciences 33, no. 2 (June 1986): 119–43. http://dx.doi.org/10.1080/08120098608729355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Reid, A., M. Hand, E. Jagodzinski, D. Kelsey, and N. Pearson. "Paleoproterozoic orogenesis in the southeastern Gawler Craton, South Australia∗." Australian Journal of Earth Sciences 55, no. 4 (June 2008): 449–71. http://dx.doi.org/10.1080/08120090801888594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Forbes, C. J., D. Giles, F. Jourdan, K. Sato, S. Omori, and M. Bunch. "Cooling and exhumation history of the northeastern Gawler Craton, South Australia." Precambrian Research 200-203 (April 2012): 209–38. http://dx.doi.org/10.1016/j.precamres.2011.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Williams, Peter, David Frances, Jerome Gillman, and Chris Bonwick. "Geophysical characterisation of the Challenger gold deposit, Gawler Craton, South Australia." ASEG Extended Abstracts 2003, no. 3 (December 2003): 19–27. http://dx.doi.org/10.1071/asegspec12_02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Reid, Anthony J., and Martin Hand. "Mesoarchean to Mesoproterozoic evolution of the southern Gawler Craton, South Australia." Episodes 35, no. 1 (March 1, 2012): 216–25. http://dx.doi.org/10.18814/epiiugs/2012/v35i1/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zang, W. L., C. M. Fanning, A. C. Purvis, O. L. Raymond, and R. A. Both. "Early Mesoproterozoic bimodal plutonism in the southeastern Gawler Craton, South Australia." Australian Journal of Earth Sciences 54, no. 5 (July 2007): 661–74. http://dx.doi.org/10.1080/08120090701305210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dutch, R., M. Hand, and P. D. Kinny. "High-grade Paleoproterozoic reworking in the southeastern Gawler Craton, South Australia ∗." Australian Journal of Earth Sciences 55, no. 8 (December 2008): 1063–81. http://dx.doi.org/10.1080/08120090802266550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fraser, Geoffrey, Stacey McAvaney, Narelle Neumann, Michael Szpunar, and Anthony Reid. "Discovery of early Mesoarchean crust in the eastern Gawler Craton, South Australia." Precambrian Research 179, no. 1-4 (May 2010): 1–21. http://dx.doi.org/10.1016/j.precamres.2010.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Thiel, S., G. Heinson, and A. White. "Tectonic evolution of the southern Gawler Craton,South Australia, from electromagnetic sounding." Australian Journal of Earth Sciences 52, no. 6 (December 2005): 887–96. http://dx.doi.org/10.1080/08120090500304281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Creaser, Robert A. "Neodymium isotopic constraints for the origin of Mesoproterozoic felsic magmatism, Gawler Craton, South Australia." Canadian Journal of Earth Sciences 32, no. 4 (April 1, 1995): 460–71. http://dx.doi.org/10.1139/e95-039.

Full text
Abstract:
Mesoproterozoic felsic magmatism of the Gawler Range Volcanics and Hiltaba Suite granites occurred at 1585–1595 Ma across much of the Gawler Craton, South Australia. Nd isotopic analysis of this felsic magmatism, combined with petrological and geochemical arguments, suggest derivation by partial melting of both Paleoproterozoic and Archean crust. The majority of samples analyzed have Nd isotopic and geochemical characteristics compatible with the involvement of Paleoproterozoic crust stabilized during the 1.85–1.71 Ga Kimban orogeny as sources for the Mesoproterozoic magmatism; others require derivation from sources dominated by Archean rocks. This cycle of Paleoproterozoic crustal stabilization followed by involvement of this crust Mesoproterozoic felsic magmatism is one previously documented from many parts of Mesoproterozoic Laurentia. On the basis of models proposing East Australia–Antarctica to be the conjugate landmass at the rifted margin of western North America, it appears that the voluminous magmatism of South Australia is another example of a typically Mesoproterozoic style of magmatism linked to Laurentia. This Mesoproterozoic magmatism appears temporally linked to regional high-temperature, low-pressure metamorphism of the region, and together with the presence of mantle-derived magmas, implicates the operation of large-scale tectono-thermal processes in the origin of felsic magmatism at 1590 Ma.
APA, Harvard, Vancouver, ISO, and other styles
29

Okan, E. O., A. Kepic, M. Urosevic, and S. Ziramov. "A Case for Regional Seismic Reflection Surveys in the Gawler Craton, South Australia." ASEG Extended Abstracts 2015, no. 1 (December 2015): 1–4. http://dx.doi.org/10.1071/aseg2015ab307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rankin, L. R., A. R. Martin, and A. J. Parker. "Early Proterozoic history of the Karari Fault Zone, northwest Gawler Craton, South Australia." Australian Journal of Earth Sciences 36, no. 1 (March 1989): 123–33. http://dx.doi.org/10.1080/14400958908527955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Uvarova, Yulia A., Mark A. Pearce, Weihua Liu, James S. Cleverley, and Robert M. Hough. "Geochemical signatures of copper redistribution in IOCG-type mineralisation, Gawler Craton, South Australia." Mineralium Deposita 53, no. 4 (July 7, 2017): 477–92. http://dx.doi.org/10.1007/s00126-017-0749-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tiddy, Caroline, Diana Zivak, June Hill, David Giles, Jim Hodgkison, Mitchell Neumann, and Adrienne Brotodewo. "Monazite as an Exploration Tool for Iron Oxide-Copper-Gold Mineralisation in the Gawler Craton, South Australia." Minerals 11, no. 8 (July 26, 2021): 809. http://dx.doi.org/10.3390/min11080809.

Full text
Abstract:
The chemistry of hydrothermal monazite from the Carrapateena and Prominent Hill iron oxide-copper-gold (IOCG) deposits in the IOCG-rich Gawler Craton, South Australia, is used here to define geochemical criteria for IOCG exploration in the Gawler Craton as follows: Monazite associated with IOCG mineralisation: La + Ce > 63 wt% (where La > 22.5 wt% and Ce > 37 wt%), Y and/or Th < 1 wt% and Nd < 12.5 wt%; Intermediate composition monazite (between background and ore-related compositions): 45 wt% < La + Ce < 63 wt%, Y and/or Th < 1 wt%. Intermediate monazite compositions preserving Nd > 12.5 wt% are considered indicative of Carrapateena-style mineralisation; Background compositions: La + Ce < 45 wt% or Y or Th > 1 wt%. Mineralisation-related monazite compositions are recognised within monazite hosted within cover sequence materials that directly overly IOCG mineralisation at Carrapateena. Similar observations have been made at Prominent Hill. Recognition of these signatures within cover sequence materials demonstrates that the geochemical signatures can survive processes of weathering, erosion, transport and redeposition into younger cover sequence materials that overlie older, mineralised basement rocks. The monazite geochemical signatures therefore have the potential to be dispersed within the cover sequence, effectively increasing the geochemical footprint of mineralisation.
APA, Harvard, Vancouver, ISO, and other styles
33

SWAIN, G., M. HAND, J. TEASDALE, L. RUTHERFORD, and C. CLARK. "Age constraints on terrane-scale shear zones in the Gawler Craton, southern Australia." Precambrian Research 139, no. 3-4 (September 9, 2005): 164–80. http://dx.doi.org/10.1016/j.precamres.2005.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hoatson, D. M., S. S. Sun, M. B. Duggan, M. B. Davies, S. J. Daly, and A. C. Purvis. "Late Archean Lake Harris Komatiite, Central Gawler Craton, South Australia:Geologic Setting and Geochemistry." Economic Geology 100, no. 2 (March 1, 2005): 349–74. http://dx.doi.org/10.2113/gsecongeo.100.2.349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fraser, G. L., R. G. Skirrow, A. Schmidt-Mumm, and O. Holm. "Mesoproterozoic Gold in the Central Gawler Craton, South Australia: Geology, Alteration, Fluids, and Timing." Economic Geology 102, no. 8 (December 1, 2007): 1511–39. http://dx.doi.org/10.2113/gsecongeo.102.8.1511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wilson, I. H. "Discussion: Early Proterozoic history of the Karari Fault Zone, northwest Gawler Craton, South Australia." Australian Journal of Earth Sciences 36, no. 4 (December 1989): 595–96. http://dx.doi.org/10.1080/08120098908729513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Creaser, R. A., and C. M. Fanning. "A U‐Pb zircon study of the Mesoproterozoic Charleston Granite, Gawler Craton, South Australia." Australian Journal of Earth Sciences 40, no. 6 (December 1993): 519–26. http://dx.doi.org/10.1080/08120099308728101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

FANNING, C., R. FLINT, A. PARKER, K. LUDWIG, and A. BLISSETT. "Refined Proterozoic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology." Precambrian Research 40-41 (October 1988): 363–86. http://dx.doi.org/10.1016/0301-9268(88)90076-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hall, James W., Stijn Glorie, Anthony J. Reid, Samuel C. Boone, Alan S. Collins, and Andrew Gleadow. "An apatite U–Pb thermal history map for the northern Gawler Craton, South Australia." Geoscience Frontiers 9, no. 5 (September 2018): 1293–308. http://dx.doi.org/10.1016/j.gsf.2017.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hou, B., L. A. Frakes, N. F. Alley, and J. D. A. Clarke. "Characteristics and evolution of the Tertiary palaeovalleys in the northwest Gawler Craton, South Australia." Australian Journal of Earth Sciences 50, no. 2 (April 2003): 215–30. http://dx.doi.org/10.1046/j.1440-0952.2003.00987.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Maier, R., G. Heinson, S. Thiel, K. Selway, R. Gill, and M. Scroggs. "A 3D lithospheric electrical resistivity model of the Gawler Craton, Southern Australia." Applied Earth Science 116, no. 1 (March 2007): 13–21. http://dx.doi.org/10.1179/174327507x167037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Morrow, Nicole, and Jocelyn McPhie. "Mingled silicic lavas in the Mesoproterozoic Gawler Range Volcanics, South Australia." Journal of Volcanology and Geothermal Research 96, no. 1-2 (February 2000): 1–13. http://dx.doi.org/10.1016/s0377-0273(99)00143-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Curtis, Stacey, and Stephan Thiel. "Identifying lithospheric boundaries using magnetotellurics and Nd isotope geochemistry: An example from the Gawler Craton, Australia." Precambrian Research 320 (January 2019): 403–23. http://dx.doi.org/10.1016/j.precamres.2018.11.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Harris, Thomas M., Finbarr C. Murphy, Charles W. Funk, and Peter G. Betts. "Mt Woods 2D Seismic Reflection Survey, Gawler Craton, South Australia: An Integrated Minerals Exploration Case Study." ASEG Extended Abstracts 2013, no. 1 (December 2013): 1–4. http://dx.doi.org/10.1071/aseg2013ab247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rankin, L. R., L. R. Martin, and A. J. Parker. "Reply to Discussion: Early Proterozoic history of the Karari Fault Zone, northwest Gawler Craton, South Australia." Australian Journal of Earth Sciences 36, no. 4 (December 1989): 596–98. http://dx.doi.org/10.1080/08120098908729514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fraser, G., A. Reid, and R. Stern. "Timing of deformation and exhumation across the Karari Shear Zone, north-western Gawler Craton, South Australia." Australian Journal of Earth Sciences 59, no. 4 (June 2012): 547–70. http://dx.doi.org/10.1080/08120099.2012.678586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Beyer, S. R., K. Kyser, P. A. Polito, and G. L. Fraser. "Mesoproterozoic rift sedimentation, fluid events and uranium prospectivity in the Cariewerloo Basin, Gawler Craton, South Australia." Australian Journal of Earth Sciences 65, no. 3 (March 12, 2018): 409–26. http://dx.doi.org/10.1080/08120099.2018.1439098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Brotodewo, Adrienne, Caroline Tiddy, Diana Zivak, Adrian Fabris, David Giles, Shaun Light, and Ben Forster. "Recognising Mineral Deposits from Cover; A Case Study Using Zircon Chemistry in the Gawler Craton, South Australia." Minerals 11, no. 9 (August 25, 2021): 916. http://dx.doi.org/10.3390/min11090916.

Full text
Abstract:
Detrital zircon grains preserved within clasts and the matrix of a basal diamictite sequence directly overlying the Carrapateena IOCG deposit in the Gawler Craton, South Australia are shown here to preserve U–Pb ages and geochemical signatures that can be related to underlying mineralisation. The zircon geochemical signature is characterised by elevated heavy rare-earth element fractionation values (GdN/YbN ≥ 0.15) and high Eu ratios (Eu/Eu* ≥ 0.6). This geochemical signature has previously been recognised within zircon derived from within the Carrapateena orebody and can be used to distinguish zircon associated with IOCG mineralisation from background zircon preserved within stratigraphically equivalent regionally unaltered and altered samples. The results demonstrate that zircon chemistry is preserved through processes of weathering, erosion, transport, and incorporation into cover sequence materials and, therefore, may be dispersed within the cover sequence, effectively increasing the geochemical footprint of the IOCG mineralisation. The zircon geochemical criteria have potential to be applied to whole-rock geochemical data for the cover sequence diamictite in the Carrapateena area; however, this requires understanding of the presence of minerals that may influence the HREE fractionation (GdN/YbN) and/or Eu/Eu* results (e.g., xenotime, feldspar).
APA, Harvard, Vancouver, ISO, and other styles
49

Thiel, S., and G. Heinson. "Modelling the effects of ocean and sediments on electromagnetic fields, example from the Gawler Craton, South Australia." ASEG Extended Abstracts 2009, no. 1 (2009): 1. http://dx.doi.org/10.1071/aseg2009ab126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lintern, Melvyn, Rob Hough, and Chris Ryan. "Experimental studies on the gold-in-calcrete anomaly at Edoldeh Tank Gold Prospect, Gawler Craton, South Australia." Journal of Geochemical Exploration 112 (January 2012): 189–205. http://dx.doi.org/10.1016/j.gexplo.2011.08.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography