Academic literature on the topic 'Genomics and transcriptomics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Genomics and transcriptomics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Genomics and transcriptomics"

1

Carpenter, Seren, and R. Steven Conlan. "Clinical Functional Genomics." Cancers 13, no. 18 (September 15, 2021): 4627. http://dx.doi.org/10.3390/cancers13184627.

Full text
Abstract:
Functional genomics is the study of how the genome and its products, including RNA and proteins, function and interact to affect different biological processes. The field of functional genomics includes transcriptomics, proteomics, metabolomics and epigenomics, as these all relate to controlling the genome leading to expression of particular phenotypes. By studying whole genomes—clinical genomics, transcriptomes and epigenomes—functional genomics allows the exploration of the diverse relationship between genotype and phenotype, not only for humans as a species but also in individuals, allowing an understanding and evaluation of how the functional genome ‘contributes’ to different diseases. Functional variation in disease can help us better understand that disease, although it is currently limited in terms of ethnic diversity, and will ultimately give way to more personalized treatment plans.
APA, Harvard, Vancouver, ISO, and other styles
2

Kiechle, Frederick L., and Carol A. Holland-Staley. "Genomics, Transcriptomics, Proteomics, and Numbers." Archives of Pathology & Laboratory Medicine 127, no. 9 (September 1, 2003): 1089–97. http://dx.doi.org/10.5858/2003-127-1089-gtpan.

Full text
Abstract:
Abstract Objective.—To review the advances in clinically useful molecular biologic techniques and to identify their applications in clinical practice, as presented at the 11th Annual William Beaumont Hospital DNA Symposium. Data Sources.—The 8 manuscripts submitted were reviewed, and their major findings were compared with literature on the same or related topics. Study Selection.—Manuscripts address the use of molecular techniques in microbiology to evaluate infectious disease and epidemiology; molecular microbiology methods, including rapid-cycle real-time polymerase chain reaction; peroxisome proliferator–activated receptor γ as a potential therapeutic target in inflammatory bowel disease or colon cancer; the effect of nonapoptotic doses of the bisbenizamide dye Hoechst 33342 on luciferase expression in plasmid-transfected BC3H-1 myocytes; the routine use of cystic fibrosis screening and its challenges; and the use of flow cytometry and/or chromosomal translocation in the diagnostic evaluation of hematopoietic malignancies. Data Synthesis.—Three current issues related to the use of molecular tests in clinical laboratories are (1) the restriction on introducing new tests secondary to existing patents or licenses; (2) the preanalytic variables for the different specimen types currently in use, including whole blood, plasma, serum, fresh or frozen tissues, and free-circulating DNA; and (3) the interpretation of studies evaluating the association of complex diseases with a single mutation or single-nucleotide polymorphism. Molecular methods have had a major impact on infectious disease through the rapid identification of organisms, the evaluation of outbreaks, and the characterization of drug resistance when compared with standard culture techniques. The activation of peroxisome proliferator–activated receptor γ stimulated by thiazolidinedione is useful in the treatment of type II diabetes mellitus and may have value in preventing inflammatory bowel disease or colon cancer. Hoechst 33342 binding to adenine-thymine–rich regions in the minor groove of DNA is a fluorescent stain for DNA and initiates apoptosis at >10 μg/mL. Lower doses of Hoechst 33342 promote luciferase expression by a mechanism that may involve binding to cryptic promoters facilitated by dye-associated misalignment of the tertiary structure of DNA. The routine use of cystic fibrosis screening is complicated by the more than 1000 mutations associated with the disease. The use of 4-color flow cytometry and the detection of chromosomal translocation are both invaluable aids in establishing the diagnosis of lymphoid or myeloid hematopoietic malignancies. Conclusions.—The current postgenomic era will continue to emphasize the use of microarrays and database software for genomic, transcriptomic, and proteomic screening in the search for useful clinical assays. The number of molecular pathologic techniques will expand as additional disease-associated mutations are defined.
APA, Harvard, Vancouver, ISO, and other styles
3

Cooper, Edwin L. "JECM: TMU Proteomics Genomics Transcriptomics." Journal of Experimental & Clinical Medicine 2, no. 2 (April 2010): 43–46. http://dx.doi.org/10.1016/s1878-3317(10)60007-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kawai, J., P. Carninci, and Y. Hayashizaki. "Transcriptomics resources for functional genomics." Briefings in Functional Genomics and Proteomics 6, no. 3 (August 20, 2007): 171–79. http://dx.doi.org/10.1093/bfgp/elm024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schaechter, M., J. L. Ingraham, and J. Soler. "What limits genomics, proteomics, transcriptomics?" International Microbiology 5, no. 2 (May 29, 2002): 51–52. http://dx.doi.org/10.1007/s10123-002-0065-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tzika, Athanasia C., Asier Ullate-Agote, Djordje Grbic, and Michel C. Milinkovitch. "Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics." Genome Biology and Evolution 7, no. 6 (June 2015): 1827–41. http://dx.doi.org/10.1093/gbe/evv106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, W., and J. Messing. "Status of duckweed genomics and transcriptomics." Plant Biology 17 (July 4, 2014): 10–15. http://dx.doi.org/10.1111/plb.12201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dopazo, Joaquin. "Genomics and transcriptomics in drug discovery." Drug Discovery Today 19, no. 2 (February 2014): 126–32. http://dx.doi.org/10.1016/j.drudis.2013.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Tiancheng, Lin Yu, Lei Liu, Hong Li, and Yixue Li. "Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing." Computational and Mathematical Methods in Medicine 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/896176.

Full text
Abstract:
High throughput technology has prompted the progressive omics studies, including genomics and transcriptomics. We have reviewed the improvement of comparative omic studies, which are attributed to the high throughput measurement of next generation sequencing technology. Comparative genomics have been successfully applied to evolution analysis while comparative transcriptomics are adopted in comparison of expression profile from two subjects by differential expression or differential coexpression, which enables their application in evolutionary developmental biology (EVO-DEVO) studies. EVO-DEVO studies focus on the evolutionary pressure affecting the morphogenesis of development and previous works have been conducted to illustrate the most conserved stages during embryonic development. Old measurements of these studies are based on the morphological similarity from macro view and new technology enables the micro detection of similarity in molecular mechanism. Evolutionary model of embryo development, which includes the “funnel-like” model and the “hourglass” model, has been evaluated by combination of these new comparative transcriptomic methods with prior comparative genomic information. Although the technology has promoted the EVO-DEVO studies into a new era, technological and material limitation still exist and further investigations require more subtle study design and procedure.
APA, Harvard, Vancouver, ISO, and other styles
10

Mubarak, Ghada, and Farah R. Zahir. "Recent Major Transcriptomics and Epitranscriptomics Contributions toward Personalized and Precision Medicine." Journal of Personalized Medicine 12, no. 2 (February 1, 2022): 199. http://dx.doi.org/10.3390/jpm12020199.

Full text
Abstract:
With the advent of genome-wide screening methods—beginning with microarray technologies and moving onto next generation sequencing methods—the era of precision and personalized medicine was born. Genomics led the way, and its contributions are well recognized. However, “other-omics” fields have rapidly emerged and are becoming as important toward defining disease causes and exploring therapeutic benefits. In this review, we focus on the impacts of transcriptomics, and its extension—epitranscriptomics—on personalized and precision medicine efforts. There has been an explosion of transcriptomic studies particularly in the last decade, along with a growing number of recent epitranscriptomic studies in several disease areas. Here, we summarize and overview major efforts for cancer, cardiovascular disease, and neurodevelopmental disorders (including autism spectrum disorder and intellectual disability) for transcriptomics/epitranscriptomics in precision and personalized medicine. We show that leading advances are being made in both diagnostics, and in investigative and landscaping disease pathophysiological studies. As transcriptomics/epitranscriptomics screens become more widespread, it is certain that they will yield vital and transformative precision and personalized medicine contributions in ways that will significantly further genomics gains.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Genomics and transcriptomics"

1

Burnham, Katie. "Functional genomics of the sepsis response." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:cb98af40-1b66-4966-a643-ae8dfec2c122.

Full text
Abstract:
Sepsis is defined as a dysregulated immune response to infection causing organ dysfunction, and is a major area of unmet clinical need. Although conventionally considered a unified disease with a common pathway to organ failure and death, substantial clinical and molecular heterogeneity is seen, which has limited efforts to understand pathophysiology and improve therapeutic strategies. Sepsis is associated with global changes in gene expression, and genetic variants are known to affect the response to infection. This thesis therefore uses an integrated functional genomics approach to investigate disease mechanisms and variation in the sepsis response. Data are presented for 551 patients admitted to intensive care with sepsis due to community acquired pneumonia (CAP) or faecal peritonitis (FP). The sepsis response is explored using genome-wide gene expression and proteomics data, and molecular quantitative trait loci (QTL) are mapped in the context of disease. Comparisons with cardiac surgery patients are performed to identify shared and specific aspects of the host response. The host transcriptomic response was largely shared across sources of sepsis, although some specificity relating to viral infection and interferon signalling was observed and validated in prospectively recruited patients. Expression-based sepsis response signature (SRS) subgroups previously described in CAP were validated, and were additionally observed in FP. SRS1 is associated with higher early mortality, and shows enrichment of pathways relating to T cell exhaustion, cell death, and endotoxin tolerance. Differences between SRS groups were also observed in the FP plasma proteome. Serial sampling enabled the investigation of temporal changes in gene expression and protein abundance within patients. Lastly, disease-relevant expression QTL were identified, and interactions with source of sepsis and SRS determined, highlighting the potential impact of regulatory variation on the sepsis response. This thesis demonstrates the benefit of an integrative functional genomics approach to explore heterogeneity in sepsis, and highlights opportunities for patient stratification and personalised medicine.
APA, Harvard, Vancouver, ISO, and other styles
2

Krishnan, Vandhana. "Computational approaches for comparative genomics and transcriptomics using 454 sequencing technology." Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Thesis/Summer2009/v_krishnan_072409.pdf.

Full text
Abstract:
Thesis (M.S. in computer science)--Washington State University, August 2009.
Title from PDF title page (viewed on Aug. 12, 2009). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 80-87).
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Xiaofang. "Genomics and Transcriptomics Analysis of the Asian Malaria Mosquito Anopheles stephensi." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/79959.

Full text
Abstract:
Anopheles stephensi is a potent vector of malaria throughout the Indian subcontinent and Middle East. An. stephensi is emerging as a model for molecular and genetic studies of mosquito-parasite interactions. Here we conducted a series of genomic and transcriptomic studies to improve the understanding of the biology of Anopheles stephensi and mosquito in general. First we reported the genome sequence and annotation of the Indian strain of the type form of An. stephensi. The 221 Mb genome assembly was produced using a combination of 454, Illumina, and PacBio sequencing. This hybrid assembly method was significantly better than assemblies generated from a single data source. A total of 11,789 protein-encoding genes were annotated using a combination of homology and de novo prediction. Secondly, we demonstrated the presence of complete dosage compensation in An. stephensi by determining that autosomal and X-linked genes have very similar levels of expression in both males and females. The uniformity of average expression levels of autosomal and X-linked genes remained when An. stephensi gene expression was normalized by that of their Ae. aegypti orthologs, strengthening the conclusion of complete dosage compensation in Anopheles. Lastly, we investigated trans-splicing events in Anopheles stephensi. We identified six trans-splicing events and all the trans-splicing sites are conserved and present in Ae. aegypti. The proteins encoded by the trans-spliced mRNAs are also highly conserved and their orthologs are co-linearly transcribed in out-groups of family Culicidae. This finding indicates the need to preserve the intact mRNA and protein function of the broken-up genes by trans-splicing during evolution. In summary, we presented the first genome assembly of Anopheles stephensi and studied two interesting evolution events" dosage compensation and trans-splicing - via transcriptomic analysis.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Ghobakhlou, Abdollah. "Genomics, Transcriptomics and Metabolomics of cold adaptation in arctic Mesorhizobium sp. N33." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29489/29489.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Kevin Joseph. "Transcriptomics of malaria host-pathogen interactions in primates." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54264.

Full text
Abstract:
Malaria is a pernicious disease that has greatly impacted and continues to affect the human population. While much research has been performed to understand the underlying nature of this disease, gaps in the knowledge-base persist. In order to address these deficiencies, a multi-disciplinary, multi-institutional project has been funded to study the systems biology of the host pathogen interaction during malaria infection in both humans and non-human primates. In the course of investigating the transcriptome during two 100-day experiments in Macaca mulatta, this work elucidated many of the underlying molecular pathways of the host and parasite that are affected by antimalarial drugs, as well as through host-pathogen interactions. The malaria-disease-related host pathways are related to, not surprisingly, immune-associated signalling and hematopoesis, and the altered parasite pathways demonstrate an association between disease severity and parasite life stage abundance. Continuing integration of this research with other data-types collected during the course of these experiments will improve our understanding of malaria systems biology and improve targeted malaria therapies.
APA, Harvard, Vancouver, ISO, and other styles
6

Bohnert, Regina [Verfasser], and Gunnar [Akademischer Betreuer] Rätsch. "Computational Methods for High-Throughput Genomics and Transcriptomics / Regina Bohnert ; Betreuer: Gunnar Rätsch." Tübingen : Universitätsbibliothek Tübingen, 2011. http://d-nb.info/1162699280/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nelson, A. D. L., E. S. Forsythe, U. K. Devisetty, D. S. Clausen, A. K. Haug-Batzell, A. M. R. Meldrum, M. R. Frank, E. Lyons, and M. A. Beilstein. "A Genomic Analysis of Factors Driving lincRNA Diversification: Lessons from Plants." GENETICS SOCIETY AMERICA, 2016. http://hdl.handle.net/10150/621708.

Full text
Abstract:
Transcriptomic analyses from across eukaryotes indicate that most of the genome is transcribed at some point in the developmental trajectory of an organism. One class of these transcripts is termed long intergenic noncoding RNAs (lincRNAs). Recently, attention has focused on understanding the evolutionary dynamics of lincRNAs, particularly their conservation within genomes. Here, we take a comparative genomic and phylogenetic approach to uncover factors influencing lincRNA emergence and persistence in the plant family Brassicaceae, to which Arabidopsis thaliana belongs. We searched 10 genomes across the family for evidence of >5000 lincRNA loci from A. thaliana. From loci conserved in the genomes of multiple species, we built alignments and inferred phylogeny. We then used gene tree/species tree reconciliation to examine the duplication history and timing of emergence of these loci. Emergence of lincRNA loci appears to be linked to local duplication events, but, surprisingly, not whole genome duplication events (WGD), or transposable elements. Interestingly, WGD events are associated with the loss of loci for species having undergone relatively recent polyploidy. Lastly, we identify 1180 loci of the 6480 previously annotated A. thaliana lincRNAs (18%) with elevated levels of conservation. These conserved lincRNAs show higher expression, and are enriched for stress-responsiveness and cis-regulatory motifs known as conserved noncoding sequences (CNSs). These data highlight potential functional pathways and suggest that CNSs may regulate neighboring genes at both the genomic and transcriptomic level. In sum, we provide insight into processes that may influence lincRNA diversification by providing an evolutionary context for previously annotated lincRNAs.
APA, Harvard, Vancouver, ISO, and other styles
8

Hearn, Jack. "Exploring population history and gall induction in cynipid gall wasps using genomics and transcriptomics." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/8925.

Full text
Abstract:
Cynipid gall wasps have fascinating biology that has piqued the interest of naturalists throughout history. They induce morphologically complex, sometimes spectacular, gall structures on plants in which the larval stages develop. Gall wasps have therefore evolved an intimate association with their hosts - both metabolically, and in terms of their population histories. Gall wasps must both interact physiologically with their hosts to induce galls, and track their host plants through space and time. My thesis centres on two uses of genomic data in understanding the biology of the oak apple gall wasp Biorhiza pallida. I provide a comprehensive investigation into patterns of oak and gall wasp gene expression associated with gall induction, and a population genomic reconstruction of the population history of this species across the Western Palaearctic. While advances in sequencing technology and reduced costs have made these aims possible, analysis of the massive resulting datasets generated creates new challenges. Firstly, in reconstructing the population history of B. pallida, I describe the use of shotgun sequencing and an informatic pipeline to generate alignments of several thousand loci for three B. pallida individuals sampled from putative glacial refugia across the Western Palaearctic in Iberia, the Balkans and Iran. This dataset was analysed using a new maximum likelihood method capable of estimating population splitting and admixture among refugia across very large numbers of loci. The results showed an ancient divide between Iberia and the other two refugia, followed by very recent admixture between easternmost and westernmost regions. This suggests that gall wasps have migrated westwards along the North African coast as well as through mainland Europe. Second, I compare the gene expression profiles of gall wasp and oak tissues sampled from each of three stages of gall development, leading to new insights into potential mechanisms of gall wasp-oak interaction. A highly expressed gall wasp protein was identified that is hypothesised to stimulate somatic embryogenesis-like development of the gall through interaction with oak tissue glycoproteins. Highly expressed oak genes include those coding for nodulin-like proteins similar to those involved in legume nodule formation. Finally, analysis of the gall wasp genome has revealed potential, but as yet unconfirmed, horizontal gene transfer events into gall wasp genomes. Genes discovered in three gall wasp genomes and expressed in three transcriptomes encode plant cell wall degrading enzymes. They are not of hymenopteran origin, and are most homologous to genes of plant pathogenic bacteria. These genes could be involved in several aspects of gall wasp biology, including feeding and developmental manipulation of host plant tissue.
APA, Harvard, Vancouver, ISO, and other styles
9

Cortes, Bermudez Diego Fernando. "Functional genomics through metabolite profiling and gene expression analysis in Arabidopsis thaliana." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28457.

Full text
Abstract:
In the post-genomic era, one of the most important goals for the community of plant biologists is to take full advantage of the knowledge generated by the Arabidopsis thaliana genome project, and to employ state-of-the-art functional genomics techniques to assign function to each gene. This will be achieved through a complete understanding of what all cellular components do, and how they interact with one another to produce a phenotype. Among the proteins encoded by the Arabidopsis genome are 24 related carboxyl methyltransferases that belong to the SABATH family. Several of the SABATH methyltransferases convert plant hormones, like jasmonic acid, indole-3-acetic acid, salicylic acid, gibberellins, and other plant constituents into methyl esters, thereby regulating the biological activity of these molecules and, consequently, myriad important physiological processes. Our research aims to decipher the function of proteins belonging to the SABATH family by applying a combination of genomics tools, including genome-wide expression analysis and gas-chromatography coupled with mass spectrometry-based metabolite profiling. Our results, combined with available biochemical information, provide a better understanding of the physiological role of SABATH methyltransferases, further insights into secondary plant metabolism and deeper knowledge of the consequences of modulating the expression of SABATH methyltransferases, both at the genome-wide expression and metabolite levels.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Xue, Xia. "Genomics and Transcriptomics of Antarctic Nematodes Reveal Drivers of Life History Evolution and Genome Evolution." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7422.

Full text
Abstract:
Elemental stoichiometry defines a critical understanding of the relationship between nutrient availability and usage throughout different levels of the biological community. We found there is a link between available phosphorus (P), cellular phosphorus, and nematode development as postulated by the growth rate hypothesis (GRH). I predicted that in a P-poor environment, cellular RNA concentrations would be lower than they are in P-rich environment, and thus the 18s rRNA expression level will have reduced. To most efficiently regulate the uptake of limited P, I predicted that nematodes in P-poor environments would decrease the number of copies of the 18s rRNA gene in their genome. I measured life history traits as well as rRNA gene expression and gene copy number. We found that elemental stoichiometry predicts evolutionary changes consistent with the Growth Rate Hypothesis. We sequenced and assembled a draft genome of P. murrayi. Although we expected to find genes responsible for stress tolerance, we hypothesized that in response to strong selection pressure associated with living in a simplified ecosystem, over time the genome of P. murrayi should have undergone significant decay (gene loss) relative to species in ecosystems structured more strongly by biotic interactions. We found significantly fewer genes in P. murrayi. To compare patterns of gene expression between two highly divergent Antarctic nematode species, we sequenced and assembled the transcriptomes of S. lindsayae and P. murrayi. Under laboratory conditions at 4˚C, S. lindsayae had significantly lower rates of gene expression but expressed a significantly larger number of genes. We speculate that the differences in gene expression are correlated with life history traits (developmental rates) while the differences in the number of genes expressed can be explained by their different genetic systems (S. lindsayae is amphimictic, P. murrayi is parthenogenic) and the soil environments to which they are adapted. Since we previously showed that differences in available P content can influence the evolution of gene expression via gene copy number, and that this ultimately influences growth rate, we wondered how much of this response is driven by genetics versus how strongly these patterns are driven by temperature. To better understand this, we maintained wild type populations of P. murrayi in P-rich and P-poor conditions at 5˚C, 10˚C and 15˚C in the laboratory for over 40 generations and sequenced the transcriptomes prepared from each treatment group. We found that nutrient levels played an important role in gene expression when the temperature is optimal for P. murrayi culturing and that temperature is more important in gene expression when the available P is limited. This work underscores the utility of using principles of elemental stoichiometry coupled with genomic and transcriptomics research tools to make and test predictions about life history evolution. The results of my work also inform inferences about the ways in which nutrient availability also drives the organization of trophic interactions and ultimately ecosystems.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Genomics and transcriptomics"

1

The dictionary of gene technology: Genomics, transcriptomics, proteomics. 2nd ed. Weinheim: Wiley-VCH, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

The dictionary of genomics, transcriptomics and proteomics: L - Q. 4th ed. Weinheim: Wiley-VCH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Westerfield, Monte, Detrich III H. William, and Leonard Zon. Zebrafish : Genetics, Genomics, and Transcriptomics: Genetics, Genomics, and Transcriptomics. Elsevier Science & Technology Books, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Munro, Carol A., and Duncan Wilson. Fungal genomics and transcriptomics. Edited by Christopher C. Kibbler, Richard Barton, Neil A. R. Gow, Susan Howell, Donna M. MacCallum, and Rohini J. Manuel. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755388.003.0006.

Full text
Abstract:
The advent of whole-genome sequencing has resulted in a range of platforms for large-scale analysis of the DNA (genomics), RNA (transcriptomics), protein (proteomics), and metabolite (metabolomics) content of cells. These inclusive ‘omics’ approaches have allowed for unparalleled insights into fungal biology. In this chapter we will discuss how genomics and transcriptomics have been used to broaden our understanding of the biology of human pathogenic fungi and their interactions with their hosts.
APA, Harvard, Vancouver, ISO, and other styles
5

Westerfield, Monte, Detrich III H. William, and Leonard Zon. Zebrafish: Genetics, Genomics, and Transcriptomics. Elsevier Science & Technology Books, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kahl, Guenter. Dictionary of Genomics, Transcriptomics and Proteomics. Wiley & Sons, Limited, John, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Plant Genomics and Transcriptomics [Working Title]. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.82964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

The Zebrafish - Genetics, Genomics, and Transcriptomics. Elsevier, 2016. http://dx.doi.org/10.1016/s0091-679x(16)x0005-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kahl, Guenter. Dictionary of Genomics, Transcriptomics and Proteomics. Wiley & Sons, Incorporated, John, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The Dictionary Of Genomics Transcriptomics And Proteomics. Wiley-VCH Verlag GmbH, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Genomics and transcriptomics"

1

Kaur, Lovejot, S. Dharshini, Bakshi Ram, and C. Appunu. "Sugarcane Genomics and Transcriptomics." In Sugarcane Biotechnology: Challenges and Prospects, 13–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58946-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Becker, A., and F. J. de Bruijn. "Transcriptomics in Sinorhizobium Meliloti." In Genomes and Genomics of Nitrogen-fixing Organisms, 169–81. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3054-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Satya, Pratik, Sougata Bhattacharjee, Debabrata Sarkar, Suman Roy, Laxmi Sharma, and Nur Alam Mandal. "Transcriptomics in Plant." In Plant Genomics for Sustainable Agriculture, 99–127. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6974-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Noori-Daloii, M. R., and A. Nejatizadeh. "Nutritional Transcriptomics." In Genomics, Proteomics and Metabolomics in Nutraceuticals and Functional Foods, 545–56. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118930458.ch43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ikegami, Hidetoshi, and Kenta Shirasawa. "Fig Genetics, Genomics, and Transcriptomics." In Advances in Fig Research and Sustainable Production, 343–63. GB: CABI, 2022. http://dx.doi.org/10.1079/9781789242492.0020a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lefèvre, Christophe M., Karensa Menzies, Julie A. Sharp, and Kevin R. Nicholas. "Comparative Genomics and Transcriptomics of Lactation." In Evolutionary Biology – Concepts, Molecular and Morphological Evolution, 115–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12340-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chaudhary, Spandan, Pooja Chaudhary, and Shiv Patel. "Genomics, Transcriptomics, Proteomics and Metabolomics Approaches." In Fenugreek, 355–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1197-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chaudhary, Spandan, Pooja Chaudhary, and Shiv Patel. "Genomics, Transcriptomics, Proteomics and Metabolomics Approaches." In Fenugreek, 355–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1197-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Coate, Jeremy E., and Jeff J. Doyle. "Genomics and Transcriptomics of Photosynthesis in Polyploids." In Polyploid and Hybrid Genomics, 153–69. Oxford, UK: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118552872.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nowrousian, Minou. "7 Genomics and Transcriptomics to Analyze Fruiting Body Development." In Fungal Genomics, 149–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45218-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Genomics and transcriptomics"

1

"Genomics and transcriptomics of preeclampsia." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Alkaloid chemophenetics and transcriptomics of the Nicotiana genus." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Transcriptomics of plants in the Chernobyl exclusion zone: a step closer to understand the adaptation to chronic radiation exposure." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mahmoud, Hassan, and Benjamin Haibe-Kains. "Abstract 33: Drug sensitivity prediction modeling from genomics, transcriptomics and inferred protein activity." In Abstracts: AACR Special Conference on Advancing Precision Medicine Drug Development: Incorporation of Real-World Data and Other Novel Strategies; January 9-12, 2020; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3265.advprecmed20-33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Phelix, Clyde F., and Jason L. Dugan. "Integrating information on genomics, transcriptomics, proteomics, and metabolomics into biosimulations for individualized personalized medicine." In 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2016. http://dx.doi.org/10.1109/bhi.2016.7455897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Y., G. Wu, Y. Shang, Y. Shang, Y. Qi, H. Chen, and S. Ning. "ILDGDB: A Manually Curated Database of Genomics, Transcriptomics, Proteomics and Drug Information for Interstitial Lung Diseases." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a4020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, Neetu, Anil Kumar Tripathi, Dinesh Kumar Sahu, Archana Mishra, Margaret Linan, Bianca Argente, Julia Varkey, et al. "Abstract 3435: Differential genomics and transcriptomics between tyrosine kinase inhibitor sensitive versus resistant BCR-ABL dependent chronic myeloid leukemia." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boldt, Clayton, Archana Simmons, Hong Wang, Keith Baggerly, Robert Bast, and Samir Hanash. "Abstract AS12: Integrating genomics, transcriptomics, and proteomics for the discovery of novel biomarkers to complement CA125 in ovarian cancer early detection." In Abstracts: 10th Biennial Ovarian Cancer Research Symposium; September 8-9, 2014; Seattle, WA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3265.ovcasymp14-as12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moon, Yong Wha, Eunbyeol Lee, Sohyun Hwang, Kamal Pandey, Nahee Park, Jin Hur, Young Bin Cho, et al. "Abstract P1-21-06: Deregulated immune pathway associated with palbociclib resistance in breast cancer preclinical models: Integrative analysis of genomics and transcriptomics." In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-p1-21-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Transcriptomic analysis of radish (Raphanus sativus L.) spontaneous tumors." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-200.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Genomics and transcriptomics"

1

Ron, Eliora, and Eugene Eugene Nester. Global functional genomics of plant cell transformation by agrobacterium. United States Department of Agriculture, March 2009. http://dx.doi.org/10.32747/2009.7695860.bard.

Full text
Abstract:
The aim of this study was to carry out a global functional genomics analysis of plant cell transformation by Agrobacterium in order to define and characterize the physiology of Agrobacterium in the acidic environment of a wounded plant. We planed to study the proteome and transcriptome of Agrobacterium in response to a change in pH, from 7.2 to 5.5 and identify genes and circuits directly involved in this change. Bacteria-plant interactions involve a large number of global regulatory systems, which are essential for protection against new stressful conditions. The interaction of bacteria with their hosts has been previously studied by genetic-physiological methods. We wanted to make use of the new capabilities to study these interactions on a global scale, using transcription analysis (transcriptomics, microarrays) and proteomics (2D gel electrophoresis and mass spectrometry). The results provided extensive data on the functional genomics under conditions that partially mimic plant infection and – in addition - revealed some surprising and significant data. Thus, we identified the genes whose expression is modulated when Agrobacterium is grown under the acidic conditions found in the rhizosphere (pH 5.5), an essential environmental factor in Agrobacterium – plant interactions essential for induction of the virulence program by plant signal molecules. Among the 45 genes whose expression was significantly elevated, of special interest is the two-component chromosomally encoded system, ChvG/I which is involved in regulating acid inducible genes. A second exciting system under acid and ChvG/Icontrol is a secretion system for proteins, T6SS, encoded by 14 genes which appears to be important for Rhizobium leguminosarum nodule formation and nitrogen fixation and for virulence of Agrobacterium. The proteome analysis revealed that gamma aminobutyric acid (GABA), a metabolite secreted by wounded plants, induces the synthesis of an Agrobacterium lactonase which degrades the quorum sensing signal, N-acyl homoserine lactone (AHL), resulting in attenuation of virulence. In addition, through a transcriptomic analysis of Agrobacterium growing at the pH of the rhizosphere (pH=5.5), we demonstrated that salicylic acid (SA) a well-studied plant signal molecule important in plant defense, attenuates Agrobacterium virulence in two distinct ways - by down regulating the synthesis of the virulence (vir) genes required for the processing and transfer of the T-DNA and by inducing the same lactonase, which in turn degrades the AHL. Thus, GABA and SA with different molecular structures, induce the expression of these same genes. The identification of genes whose expression is modulated by conditions that mimic plant infection, as well as the identification of regulatory molecules that help control the early stages of infection, advance our understanding of this complex bacterial-plant interaction and has immediate potential applications to modify it. We expect that the data generated by our research will be used to develop novel strategies for the control of crown gall disease. Moreover, these results will also provide the basis for future biotechnological approaches that will use genetic manipulations to improve bacterial-plant interactions, leading to more efficient DNA transfer to recalcitrant plants and robust symbiosis. These advances will, in turn, contribute to plant protection by introducing genes for resistance against other bacteria, pests and environmental stress.
APA, Harvard, Vancouver, ISO, and other styles
2

Aharoni, Asaph, Zhangjun Fei, Efraim Lewinsohn, Arthur Schaffer, and Yaakov Tadmor. System Approach to Understanding the Metabolic Diversity in Melon. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7593400.bard.

Full text
Abstract:
Fruit quality is determined by numerous genetic factors that affect taste, aroma, ‎color, texture, nutritional value and shelf life. To unravel the genetic components ‎involved in the metabolic pathways behind these traits, the major goal of the project was to identify novel genes that are involved in, or that regulate, these pathways using correlation analysis between genotype, metabolite and gene expression data. The original and specific research objectives were: (1) Collection of replicated fruit from a population of 96 RI lines derived from parents distinguished by great diversity in fruit development and quality phenotypes, (2) Phenotypic and metabolic profiling of mature fruit from all 96 RI lines and their parents, (3) 454 pyrosequencing of cDNA representing mRNA of mature fruit from each line to facilitate gene expression analysis based on relative EST abundance, (4) Development of a database modeled after an existing database developed for tomato introgression lines (ILs) to facilitate online data analysis by members of this project and by researchers around the world. The main functions of the database will be to store and present metabolite and gene expression data so that correlations can be drawn between variation in target traits or metabolites across the RI population members and variation in gene expression to identify candidate genes which may impact phenotypic and chemical traits of interest, (5) Selection of RI lines for segregation and/or hybridization (crosses) analysis to ascertain whether or not genes associated with traits through gene expression/metabolite correlation analysis are indeed contributors to said traits. The overall research strategy was to utilize an available recombinant inbred population of melon (Cucumis melo L.) derived from phenotypically diverse parents and for which over 800 molecular markers have been mapped for the association of metabolic trait and gene expression QTLs. Transcriptomic data were obtained by high throughput sequencing using the Illumina platform instead of the originally planned 454 platform. The change was due to the fast advancement and proven advantages of the Illumina platform, as explained in the first annual scientific report. Metabolic data were collected using both targeted (sugars, organic acids, carotenoids) and non-targeted metabolomics analysis methodologies. Genes whose expression patterns were associated with variation of particular metabolites or fruit quality traits represent candidates for the molecular mechanisms that underlie them. Candidate genes that may encode enzymes catalyzingbiosynthetic steps in the production of volatile compounds of interest, downstream catabolic processes of aromatic amino acids and regulatory genes were selected and are in the process of functional analyses. Several of these are genes represent unanticipated effectors of compound accumulation that could not be identified using traditional approaches. According to the original plan, the Cucurbit Genomics Network (http://www.icugi.org/), developed through an earlier BARD project (IS-3333-02), was expanded to serve as a public portal for the extensive metabolomics and transcriptomic data resulting from the current project. Importantly, this database was also expanded to include genomic and metabolomic resources of all the cucurbit crops, including genomes of cucumber and watermelon, EST collections, genetic maps, metabolite data and additional information. In addition, the database provides tools enabling researchers to identify genes, the expression patterns of which correlate with traits of interest. The project has significantly expanded the existing EST resource for melon and provides new molecular tools for marker-assisted selection. This information will be opened to the public by the end of 2013, upon the first publication describing the transcriptomic and metabolomics resources developed through the project. In addition, well-characterized RI lines are available to enable targeted breeding for genes of interest. Segregation of the RI lines for specific metabolites of interest has been shown, demonstrating the utility in these lines and our new molecular and metabolic data as a basis for selection targeting specific flavor, quality, nutritional and/or defensive compounds. To summarize, all the specific goals of the project have been achieved and in many cases exceeded. Large scale trascriptomic and metabolomic resources have been developed for melon and will soon become available to the community. The usefulness of these has been validated. A number of novel genes involved in fruit ripening have been selected and are currently being functionally analyzed. We thus fully addressed our obligations to the project. In our view, however, the potential value of the project outcomes as ultimately manifested may be far greater than originally anticipated. The resources developed and expanded under this project, and the tools created for using them will enable us, and others, to continue to employ resulting data and discoveries in future studies with benefits both in basic and applied agricultural - scientific research.
APA, Harvard, Vancouver, ISO, and other styles
3

Dudareva, Natalia, Alexander Vainstein, Eran Pichersky, and David Weiss. Integrating biochemical and genomic approaches to elucidate C6-C2 volatile production: improvement of floral scent and fruit aroma. United States Department of Agriculture, September 2007. http://dx.doi.org/10.32747/2007.7696514.bard.

Full text
Abstract:
The specific objectives of approved proposal include to: 1. Elucidate the C6-C2 biochemical pathways leading to the biosynthesis of phenylacetaldehyde, phenylethyl alcohol and phenylethyl acetate in floral tissues of ornamentally important plants, pefunia and roses. 2. Isolate and characterrze genes responsible for the production of these C6-C2 compounds and those involved in the regulation of the pathway using genomic and transcriptomic tools. 3. Determine whether altering the expression of key genes of this pathway can result in changing the aroma characteristics of flowers. Aldehydes are intermediates in a variety of biochemical pathways including those involved in the metabolism of carbohydrates, vitamins, steroids, amino acids, benzylisoquinoline alkaloids, hormones, and lipids. In plants they are also synthesized in response to environmental stresses such as salinity, cold, and heat shock or as flavors and aromas in fruits and flowers. Phenylacetaldehyde along with 2-phenylethanol and its acetate ester, are important scent compounds in numerous flowers, including petunias and roses. However, little is known about the biosynthesis of these volatile compounds in plants. We have shown that the formation PHA and 2-phenylethanol from Phe does not occur via trans-cinnamic acid and instead competes with the key enzyme of phenypropanoid metabolism Pheammonia-lyase (PAL) for Phe utilization. Using functional genomic approach and comparative gene expression profiling, we have isolated and characterized a novel enzyme from petunia and rose flowers that catalyzes the formation of the Ca-Czcompound phenylacetaldehyde (PHA) from L-phenylalanine (Phe) by the removal of both the carboxyl and amino groups. This enzyme, designated as phenylacetaldehyde synthases (PAAS), is a bifunctional enzyme that catalyzes the unprecedented efficient coupling of phenylalanine decarboxylation to oxidation, generating phenylacetaldehyde, CO2, ammonia, and hydrogen peroxide in stoichiometric amounts. Down-regulation of PAAS expression via RNA interference-based (RNAi) technology in petunia resulted in no PHA emission when compared with controls. These plants also produced no 2-phenylethanol, supporting our conclusion that PHA is a precursor of 2-phenylethanol. To understand the regulation of scent formation in plants we have also generated transgenic petunia and tobacco plants expressing the rose alcohol acetyltransferase (RhAAT) gene under the control of a CaMV-35S promoter. Although the preferred substrate of RhAAT in vitro is geraniol, in transgenic petunia flowers, it used phenylethyl alcohol and benzyl alcohol to produce the corresponding acetate esters, not generated by control flowers. These results strongly point to the dependence of volatile production on substrate availability. Analysis of the diurnal regulation of scent production in rose flowers revealed that although the daily emission of most scent compounds is synchronized, various independently evolved mechanisms control the production, accumulation and release of different volatiles. This research resulted in a fundamental discovery of biochemical pathway, enzymes and genes involved in biosynthesis of C6-C2s compounds, and provided the knowledge for future engineering plants for improved scent quality.
APA, Harvard, Vancouver, ISO, and other styles
4

Cohen, Yuval, Christopher A. Cullis, and Uri Lavi. Molecular Analyses of Soma-clonal Variation in Date Palm and Banana for Early Identification and Control of Off-types Generation. United States Department of Agriculture, October 2010. http://dx.doi.org/10.32747/2010.7592124.bard.

Full text
Abstract:
Date palm (Phoenix dactylifera L.) is the major fruit tree grown in arid areas in the Middle East and North Africa. In the last century, dates were introduced to new regions including the USA. Date palms are traditionally propagated through offshoots. Expansion of modern date palm groves led to the development of Tissue Culture propagation methods that generate a large number of homogenous plants, have no seasonal effect on plant source and provide tools to fight the expansion of date pests and diseases. The disadvantage of this procedure is the occurrence of off-type trees which differ from the original cultivar. In the present project we focused on two of the most common date palm off-types: (1) trees with reduced fruit setting, in which most of the flowers turn into three-carpel parthenocarpic fruits. In a severe form, multi-carpel flowers and fruitlets (with up to six or eight carpels instead of the normal three-carpel flowers) are also formed. (2) dwarf trees, having fewer and shorter leaves, very short trunk and are not bearing fruits at their expected age, compared to the normal trees. Similar off-types occur in other crop species propagated by tissue culture, like banana (mainly dwarf plants) or oil palm (with a common 'Mantled' phenotype with reduced fruit setting and occurrence of supernumerary carpels). Some off-types can only be detected several years after planting in the fields. Therefore, efficient methods for prevention of the generation of off-types, as well as methods for their detection and early removal, are required for date palms, as well as for other tissue culture propagated crops. This research is aimed at the understanding of the mechanisms by which off-types are generated, and developing markers for their early identification. Several molecular and genomic approaches were applied. Using Methylation Sensitive AFLP and bisulfite sequencing, we detected changes in DNA methylation patterns occurring in off-types. We isolated and compared the sequence and expression of candidate genes, genes related to vegetative growth and dwarfism and genes related to flower development. While no sequence variation were detected, changes in gene expression, associated with the severity of the "fruit set" phenotype were detected in two genes - PdDEF (Ortholog of rice SPW1, and AP3 B type MADS box gene), and PdDIF (a defensin gene, highly homologous to the oil palm gene EGAD). We applied transcriptomic analyses, using high throughput sequencing, to identify genes differentially expressed in the "palm heart" (the apical meristem and the region of embryonic leaves) of dwarf vs. normal trees. Among the differentially expressed genes we identified genes related to hormonal biosynthesis, perception and regulation, genes related to cell expansion, and genes related to DNA methylation. Using Representation Difference Analyses, we detected changes in the genomes of off-type trees, mainly chloroplast-derived sequences that were incorporated in the nuclear genome and sequences of transposable elements. Sequences previously identified as differing between normal and off-type trees of oil palms or banana, successfully identified variation among date palm off-types, suggesting that these represent highly labile regions of monocot genomes. The data indicate that the date palm genome, similarly to genomes of other monocot crops as oil palm and banana, is quite unstable when cells pass through a cycle of tissue culture and regeneration. Changes in DNA sequences, translocation of DNA fragments and alteration of methylation patterns occur. Consequently, patterns of gene expression are changed, resulting in abnormal phenotypes. The data can be useful for future development of tools for early identification of off-type as well as for better understanding the phenomenon of somaclonal variation during propagation in vitro.
APA, Harvard, Vancouver, ISO, and other styles
5

Gur, Amit, Edward Buckler, Joseph Burger, Yaakov Tadmor, and Iftach Klapp. Characterization of genetic variation and yield heterosis in Cucumis melo. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7600047.bard.

Full text
Abstract:
Project objectives: 1) Characterization of variation for yield heterosis in melon using Half-Diallele (HDA) design. 2) Development and implementation of image-based yield phenotyping in melon. 3) Characterization of genetic, epigenetic and transcriptional variation across 25 founder lines and selected hybrids. The epigentic part of this objective was modified during the course of the project: instead of characterization of chromatin structure in a single melon line through genome-wide mapping of nucleosomes using MNase-seq approach, we took advantage of rapid advancements in single-molecule sequencing and shifted the focus to Nanoporelong-read sequencing of all 25 founder lines. This analysis provides invaluable information on genome-wide structural variation across our diversity 4) Integrated analyses and development of prediction models Agricultural heterosis relates to hybrids that outperform their inbred parents for yield. First generation (F1) hybrids are produced in many crop species and it is estimated that heterosis increases yield by 15-30% globally. Melon (Cucumismelo) is an economically important species of The Cucurbitaceae family and is among the most important fleshy fruits for fresh consumption Worldwide. The major goal of this project was to explore the patterns and magnitude of yield heterosis in melon and link it to whole genome sequence variation. A core subset of 25 diverse lines was selected from the Newe-Yaar melon diversity panel for whole-genome re-sequencing (WGS) and test-crosses, to produce structured half-diallele design of 300 F1 hybrids (MelHDA25). Yield variation was measured in replicated yield trials at the whole-plant and at the rootstock levels (through a common-scion grafted experiments), across the F1s and parental lines. As part of this project we also developed an algorithmic pipeline for detection and yield estimation of melons from aerial-images, towards future implementation of such high throughput, cost-effective method for remote yield evaluation in open-field melons. We found extensive, highly heritable root-derived yield variation across the diallele population that was characterized by prominent best-parent heterosis (BPH), where hybrids rootstocks outperformed their parents by 38% and 56 % under optimal irrigation and drought- stress, respectively. Through integration of the genotypic data (~4,000,000 SNPs) and yield analyses we show that root-derived hybrids yield is independent of parental genetic distance. However, we mapped novel root-derived yield QTLs through genome-wide association (GWA) analysis and a multi-QTLs model explained more than 45% of the hybrids yield variation, providing a potential route for marker-assisted hybrid rootstock breeding. Four selected hybrid rootstocks are further studied under multiple scion varieties and their validated positive effect on yield performance is now leading to ongoing evaluation of their commercial potential. On the genomic level, this project resulted in 3 layers of data: 1) whole-genome short-read Illumina sequencing (30X) of the 25 founder lines provided us with 25 genome alignments and high-density melon HapMap that is already shown to be an effective resource for QTL annotation and candidate gene analysis in melon. 2) fast advancements in long-read single-molecule sequencing allowed us to shift focus towards this technology and generate ~50X Nanoporesequencing of the 25 founders which in combination with the short-read data now enable de novo assembly of the 25 genomes that will soon lead to construction of the first melon pan-genome. 3) Transcriptomic (3' RNA-Seq) analysis of several selected hybrids and their parents provide preliminary information on differentially expressed genes that can be further used to explain the root-derived yield variation. Taken together, this project expanded our view on yield heterosis in melon with novel specific insights on root-derived yield heterosis. To our knowledge, thus far this is the largest systematic genetic analysis of rootstock effects on yield heterosis in cucurbits or any other crop plant, and our results are now translated into potential breeding applications. The genomic resources that were developed as part of this project are putting melon in the forefront of genomic research and will continue to be useful tool for the cucurbits community in years to come.
APA, Harvard, Vancouver, ISO, and other styles
6

Lers, Amnon, Majid R. Foolad, and Haya Friedman. genetic basis for postharvest chilling tolerance in tomato fruit. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7600014.bard.

Full text
Abstract:
ABSTRACT Postharvest losses of fresh produce are estimated globally to be around 30%. Reducing these losses is considered a major solution to ensure global food security. Storage at low temperatures is an efficient practice to prolong postharvest performance of crops with minimal negative impact on produce quality or human health and the environment. However, many fresh produce commodities are susceptible to chilling temperatures, and the application of cold storage is limited as it would cause physiological chilling injury (CI) leading to reduced produce quality. Further, the primary CI becomes a preferred site for pathogens leading to decay and massive produce losses. Thus, chilling sensitive crops should be stored at higher minimal temperatures, which curtails their marketing life and in some cases necessitates the use of other storage strategies. Development of new knowledge about the biological basis for chilling tolerance in fruits and vegetables should allow development of both new varieties more tolerant to cold, and more efficient postharvest storage treatments and storage conditions. In order to improve the agricultural performance of modern crop varieties, including tomato, there is great potential in introgression of marker-defined genomic regions from wild species onto the background of elite breeding lines. To exploit this potential for improving tomato fruit chilling tolerance during postharvest storage, we have used in this research a recombinant inbred line (RIL) population derived from a cross between the red-fruited tomato wild species SolanumpimpinellifoliumL. accession LA2093 and an advanced Solanum lycopersicumL. tomato breeding line NCEBR-1, developed in the laboratory of the US co-PI. The original specific objectives were: 1) Screening of RIL population resulting from the cross NCEBR1 X LA2093 for fruit chilling response during postharvest storage and estimation of its heritability; 2) Perform a transcriptopmic and bioinformatics analysis for the two parental lines following exposure to chilling storage. During the course of the project, we learned that we could measure greater differences in chilling responses among specific RILs compared to that observed between the two parental lines, and thus we decided not to perform transcriptomic analysis and instead invest our efforts more on characterization of the RILs. Performing the transcriptomic analysis for several RILs, which significantly differ in their chilling tolerance/sensitivity, at a later stage could result with more significant insights. The RIL population, (172 lines), was used in field experiment in which fruits were examined for chilling sensitivity by determining CI severity. Following the field experiments, including 4 harvest days and CI measurements, two extreme tails of the response distribution, each consisting of 11 RILs exhibiting either high sensitivity or tolerance to chilling stress, were identified and were further examined for chilling response in greenhouse experiments. Across the RILs, we found significant (P < 0.01) correlation between field and greenhouse grown plants in fruit CI. Two groups of 5 RILs, whose fruits exhibited reproducible chilling tolerant/sensitive phenotypes in both field and greenhouse experiments, were selected for further analyses. Numerous genetic, physiological, biochemical and molecular variations were investigated in response to postharvest chilling stress in the selected RILs. We confirmed the differential response of the parental lines of the RIL population to chilling stress, and examined the extent of variation in the RIL population in response to chilling treatment. We determined parameters which would be useful for further characterization of chilling response in the RIL population. These included chlorophyll fluorescence Fv/Fm, water loss, total non-enzymatic potential of antioxidant activity, ascorbate and proline content, and expression of LeCBF1 gene, known to be associated with cold acclimation. These parameters could be used in continuation studies for the identification and genetic mapping of loci contributing to chilling tolerance in this population, and identifying genetic markers associated with chilling tolerance in tomato. Once genetic markers associated with chilling tolerance are identified, the trait could be transferred to different genetic background via marker-assisted selection (MAS) and breeding. The collaborative research established in this program has resulted in new information and insights in this area of research and the collaboration will be continued to obtain further insights into the genetic, molecular biology and physiology of postharvest chilling tolerance in tomato fruit. The US Co-PI, developed the RIL population that was used for screening and measurement of the relevant chilling stress responses and conducted statistical analyses of the data. Because we were not able to grow the RIL population under field conditions in two successive generations, we could not estimate heritability of response to chilling temperatures. However, we plan to continue the research, grow the RIL progeny in the field again, and determine heritability of chilling tolerance in a near future. The IS and US investigators interacted regularly and plan to continue and expand on this study, since combing the expertise of the Co-PI in genetics and breeding with that of the PI in postharvest physiology and molecular biology will have great impact on this line of research, given the significant findings of this one-year feasibility project.
APA, Harvard, Vancouver, ISO, and other styles
7

Fridman, Eyal, and Eran Pichersky. Tomato Natural Insecticides: Elucidation of the Complex Pathway of Methylketone Biosynthesis. United States Department of Agriculture, December 2009. http://dx.doi.org/10.32747/2009.7696543.bard.

Full text
Abstract:
Plant species synthesize a multitude of specialized compounds 10 help ward off pests. and these in turn may well serve as an alternative to synthetic pesticides to reduce environmental damage and health risks to humans. The general goal of this research was to perform a genetic and biochemical dissection of the natural-insecticides methylketone pathway that is specific to the glandular trichomes of the wild species of tomato, Solanumhabrochaites f. glabratum (accession PI126449). Previous study conducted by us have demonstrated that these compounds are synthesized de novo as a derivate pathway of the fatty acid biosynthesis, and that a key enzyme. designated MethylketoneSynthase 1 (MKS 1). catalyzes conversion of the intermediate B-ketoacyl- ACPs to the corresponding Cn-1 methylketones. The approach taken in this proposed project was to use an interspecific F2 population. derived from the cross between the cultivated lV182 and the wild species PIl26449. for three objectives: (i) Analyze the association between allelic status of candidate genes from the fatty acid biosynthesis pathway with the methylketone content in the leaves (ii) Perform bulk segregant analysis of genetic markers along the tomato genome for identifying genomic regions that harbor QTLs for 2TD content (iii) Apply differential gene expression analysis using the isolated glands of bulk segregant for identifying new genes that are involved in the pathway. The genetic mapping in the interspecific F2 population included app. 60 genetic markers, including the candidate genes from the FAS pathway and SSR markers spread evenly across the genome. This initial; screening identified 5 loci associated with MK content including the candidate genes MKS1, ACC and MaCoA:ACP trans. Interesting observation in this genetic analysis was the connection between shape and content of the glands, i.e. the globularity of the four cells, typical to the wild species. was associated with increased MK in the segregating population. In the next step of the research transcriptomic analysis of trichomes from high- and 10w-MK plants was conducted. This analysis identified a new gene, Methy1ketone synthase 2 (MKS2), whose protein product share sequence similarity to the thioesterase super family of hot-dog enzymes. Genetic analysis in the segregating population confirmed its association with MK content, as well as its overexpression in E. coli that led to formation of MK in the media. There are several conclusions drawn from this research project: (i) the genetic control of MK accumulation in the trichomes is composed of biochemical components in the FAS pathway and its vicinity (MKS 1 and MKS2). as well as genetic factors that mediate the morphology of these specialized cells. (ii) the biochemical pathway is now realized different from what was hypothesized before with MKS2 working upstream to I\1KS 1 and serves as the interface between primary (fatty acids) and secondary (MK) metabolism. We are currently testing the possible physical interactions between these two proteins in vitro after the genetic analysis showed clear epistatic interactions. (iii) the regulation of the pathway that lead to specialized metabolism in the wild species is largely mediated by transcription and one of the achievements of this project is that we were able to isolate and verify the specificity of the MKS1 promoter to the trichomes which allows manipulation of the pathways in these cells (currently in progress). The scientific implications of this research project is the advancement in our knowledge of hitherto unknown biochemical pathway in plants and new leads for studying a new family in plants (hot dog thioesterase). The agricultural and biotechnological implication are : (i) generation of new genetic markers that could assist in importing this pathway to cultivated tomato hence enhancing its natural resistance to insecticides, (ii) the discovery of MKS2 adds a new gene for genetic engineering of plants for making new fatty acid derived compounds. This could be assisted with the use of the isolated and verified MKS1 promoter. The results of this research were summarized to a manuscript that was published in Plant Physiology (cover paper). to a chapter in a proceeding book. and one patent was submitted in the US.
APA, Harvard, Vancouver, ISO, and other styles
8

Minz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson, and Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598153.bard.

Full text
Abstract:
Research objectives : Identify genetic potential and community structure of soil and rhizosphere microbial community structure as affected by treated wastewater (TWW) irrigation. This objective was achieved through the examination soil and rhizosphere microbial communities of plants irrigated with fresh water (FW) and TWW. Genomic DNA extracted from soil and rhizosphere samples (Minz laboratory) was processed for DNA-based shotgun metagenome sequencing (Green laboratory). High-throughput bioinformatics was performed to compare both taxonomic and functional gene (and pathway) differences between sample types (treatment and location). Identify metabolic pathways induced or repressed by TWW irrigation. To accomplish this objective, shotgun metatranscriptome (RNA-based) sequencing was performed. Expressed genes and pathways were compared to identify significantly differentially expressed features between rhizosphere communities of plants irrigated with FW and TWW. Identify microbial gene functions and pathways affected by TWW irrigation*. To accomplish this objective, we will perform a metaproteome comparison between rhizosphere communities of plants irrigated with FW and TWW and selected soil microbial activities. Integration and evaluation of microbial community function in relation to its structure and genetic potential, and to infer the in situ physiology and function of microbial communities in soil and rhizospere under FW and TWW irrigation regimes. This objective is ongoing due to the need for extensive bioinformatics analysis. As a result of the capabilities of the new PI, we have also been characterizing the transcriptome of the plant roots as affected by the TWW irrigation and comparing the function of the plants to that of the microbiome. *This original objective was not achieved in the course of this study due to technical issues, especially the need to replace the American PIs during the project. However, the fact we were able to analyze more than one plant system as a result of the abilities of the new American PI strengthened the power of the conclusions derived from studies for the 1ˢᵗ and 2ⁿᵈ objectives. Background: As the world population grows, more urban waste is discharged to the environment, and fresh water sources are being polluted. Developing and industrial countries are increasing the use of wastewater and treated wastewater (TWW) for agriculture practice, thus turning the waste product into a valuable resource. Wastewater supplies a year- round reliable source of nutrient-rich water. Despite continuing enhancements in TWW quality, TWW irrigation can still result in unexplained and undesirable effects on crops. In part, these undesirable effects may be attributed to, among other factors, to the effects of TWW on the plant microbiome. Previous studies, including our own, have presented the TWW effect on soil microbial activity and community composition. To the best of our knowledge, however, no comprehensive study yet has been conducted on the microbial population associated BARD Report - Project 4662 Page 2 of 16 BARD Report - Project 4662 Page 3 of 16 with plant roots irrigated with TWW – a critical information gap. In this work, we characterize the effect of TWW irrigation on root-associated microbial community structure and function by using the most innovative tools available in analyzing bacterial community- a combination of microbial marker gene amplicon sequencing, microbial shotunmetagenomics (DNA-based total community and gene content characterization), microbial metatranscriptomics (RNA-based total community and gene content characterization), and plant host transcriptome response. At the core of this research, a mesocosm experiment was conducted to study and characterize the effect of TWW irrigation on tomato and lettuce plants. A focus of this study was on the plant roots, their associated microbial communities, and on the functional activities of plant root-associated microbial communities. We have found that TWW irrigation changes both the soil and root microbial community composition, and that the shift in the plant root microbiome associated with different irrigation was as significant as the changes caused by the plant host or soil type. The change in microbial community structure was accompanied by changes in the microbial community-wide functional potential (i.e., gene content of the entire microbial community, as determined through shotgun metagenome sequencing). The relative abundance of many genes was significantly different in TWW irrigated root microbiome relative to FW-irrigated root microbial communities. For example, the relative abundance of genes encoding for transporters increased in TWW-irrigated roots increased relative to FW-irrigated roots. Similarly, the relative abundance of genes linked to potassium efflux, respiratory systems and nitrogen metabolism were elevated in TWW irrigated roots when compared to FW-irrigated roots. The increased relative abundance of denitrifying genes in TWW systems relative FW systems, suggests that TWW-irrigated roots are more anaerobic compare to FW irrigated root. These gene functional data are consistent with geochemical measurements made from these systems. Specifically, the TWW irrigated soils had higher pH, total organic compound (TOC), sodium, potassium and electric conductivity values in comparison to FW soils. Thus, the root microbiome genetic functional potential can be correlated with pH, TOC and EC values and these factors must take part in the shaping the root microbiome. The expressed functions, as found by the metatranscriptome analysis, revealed many genes that increase in TWW-irrigated plant root microbial population relative to those in the FW-irrigated plants. The most substantial (and significant) were sodium-proton antiporters and Na(+)-translocatingNADH-quinoneoxidoreductase (NQR). The latter protein uses the cell respiratory machinery to harness redox force and convert the energy for efflux of sodium. As the roots and their microbiomes are exposed to the same environmental conditions, it was previously hypothesized that understanding the soil and rhizospheremicrobiome response will shed light on natural processes in these niches. This study demonstrate how newly available tools can better define complex processes and their downstream consequences, such as irrigation with water from different qualities, and to identify primary cues sensed by the plant host irrigated with TWW. From an agricultural perspective, many common practices are complicated processes with many ‘moving parts’, and are hard to characterize and predict. Multiple edaphic and microbial factors are involved, and these can react to many environmental cues. These complex systems are in turn affected by plant growth and exudation, and associated features such as irrigation, fertilization and use of pesticides. However, the combination of shotgun metagenomics, microbial shotgun metatranscriptomics, plant transcriptomics, and physical measurement of soil characteristics provides a mechanism for integrating data from highly complex agricultural systems to eventually provide for plant physiological response prediction and monitoring. BARD Report
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography