Academic literature on the topic 'Genomic HLA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Genomic HLA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Genomic HLA"
Amar, A., G. T. Nepom, E. Mickelson, H. Erlich, and J. A. Hansen. "HLA-DP and HLA-DO genes in presumptive HLA-identical siblings: structural and functional identification of allelic variation." Journal of Immunology 138, no. 6 (March 15, 1987): 1947–53. http://dx.doi.org/10.4049/jimmunol.138.6.1947.
Full textMeyer, Diogo, Vitor R. C. Aguiar, Bárbara D. Bitarello, Débora Y. C. Brandt, and Kelly Nunes. "A genomic perspective on HLA evolution." Immunogenetics 70, no. 1 (July 7, 2017): 5–27. http://dx.doi.org/10.1007/s00251-017-1017-3.
Full textDrover, Sheila, and William H. Marshall. "Transfection of HLA genes using genomic DNA." Human Immunology 31, no. 4 (August 1991): 293–98. http://dx.doi.org/10.1016/0198-8859(91)90102-f.
Full textHansen, H. E., L. O. Vejerslev, and S. Olesen Larsen. "Hydatidiform mole and HLA. III. HLA-antigen expression related to genomic origin." Tissue Antigens 32, no. 3 (September 1988): 162–69. http://dx.doi.org/10.1111/j.1399-0039.1988.tb01653.x.
Full textPei, Ji, S. Yoon Choo, Thomas Spies, Jack L. Strominger, and John A. Hansen. "Association of four HLA class III region genomic markers with HLA haplotypes." Tissue Antigens 37, no. 5 (May 1991): 191–96. http://dx.doi.org/10.1111/j.1399-0039.1991.tb01871.x.
Full textBalas, A., D. Planelles, M. Rodríguez-Cebriá, N. Puig, and J. L. Vicario. "Genomic sequences of HLA-A*68:169, HLA-B*07:298 and HLA-B*39:129." International Journal of Immunogenetics 45, no. 3 (March 8, 2018): 140–42. http://dx.doi.org/10.1111/iji.12360.
Full textD'Amato, Mauro, Rosa Sorrentino, and Roberto Tosi. "Extremely simplified sample preparation for HLA genomic typing." Tissue Antigens 39, no. 1 (January 1992): 40–41. http://dx.doi.org/10.1111/j.1399-0039.1992.tb02156.x.
Full textYamashita, T., K. Tokunaga, K. Tadokoro, T. Juji, and Y. Taketanl. "Correction of the HLA-G*01012 genomic sequence." Tissue Antigens 49, no. 6 (June 1997): 673–74. http://dx.doi.org/10.1111/j.1399-0039.1997.tb02823.x.
Full textGeraphty, Daniel E., Marta Janer, and Thierry Guillaudeux. "Genomic sequencing of the HLA class I region." Human Immunology 47, no. 1-2 (April 1996): 66. http://dx.doi.org/10.1016/0198-8859(96)85045-2.
Full textShiina, Takashi. "Next generation sequencing based HLA genomic and polymorphism analyses." Major Histocompatibility Complex 22, no. 2 (2015): 84–94. http://dx.doi.org/10.12667/mhc.22.84.
Full textDissertations / Theses on the topic "Genomic HLA"
Aldener-Cannavá, Anna. "HLA polymorphism : genomic typing and impact on unrelated stem cell transplantation /." Stockholm, 2001. http://diss.kib.ki.se/2001/91-628-4593-4/.
Full textMandage, Rajendra 1984. "Understanding interactions between EBV and human genomic variation." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/586328.
Full textPimentel-Santos, Fernando Manuel. "Ankylosing spondylitis: genomic and functional characterization of candidate genes and their repercussion in clinical practice." Doctoral thesis, Faculdade de Ciências Médicas. Universidade Nova de Lisboa, 2012. http://hdl.handle.net/10362/7806.
Full textMendes, Fábio Henrique Kuriki. "Seleção natural em genes HLA e seu efeito sobre regiões adjacentes do genoma." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/41/41131/tde-02082013-161104/.
Full textThe MHC is a genomic region that contains genes with a central role in the adaptive immune response. Genes in the MHC region, in particular the HLA genes of humans, are involved in the differential susceptibility and resistance to infectious diseases, predisposition to autoimmune diseases and the rejection of transplanted organs. These findings have fueled a series of studies on patterns of genetic variation at HLA genes, which have conclusively demonstrated that their variation deviates from neutral expectations. Such strong evidence of natural selection, with few counterparts in the remainder of the human genome, raise a series of questions concerning the specific evolutionary forces acting on this region and their genomic implications for the evolution of the region as a whole. This work investigates how natural selection affects and is affected by the diversity of genes that are physically linked to those that are units of selection. Our expectation is that strong selection on HLA genes may interfere with the efficacy of selection in removing deleterious variants at closely linked loci. Specifically, by using functional annotations of genetic variants, we test whether sets of genes physically linked to the strongly selected HLA loci show a higher diversity than would be expected in the absence of balancing selection and genetic hitchhiking caused by it, and if this diversity is enriched for putatively deleterious variants. By analyzing the ratio of nonsynonymous to synonymous polymorphisms (and several related statistics) we were able to show that loci close to HLA genes are harboring an excess of nonsynonymous (and hence potentially deleterious) variation. The deleteriousness was confirmed by employing Polyphen 2 - a software that uses nucleotide sequence conservation and protein structure information to classify variants as deleterious or not - and computing statistics such as Pdel/Pn and Pdel/Ps. According to McDonald-Kreitman tests and the Neutrality Index, however, part of this putatively deleterious variation reaches fixation over long timespans, suggesting that selection at the HLA genes may be interfering with both the transient patterns of polymorphism and substitution processes
Landry, Jonathan [Verfasser], and Stefan [Akademischer Betreuer] Wölfl. "The genomic and transcriptomic landscape of HeLa cells / Jonathan Landry. Betreuer: Stefan Wölfl." Heidelberg : Universitätsbibliothek Heidelberg, 2012. http://d-nb.info/1061054462/34.
Full textXu, Huaigeng. "Targeted Disruption of HLA genes via CRISPR-Cas9 generates iPSCs with Enhanced Immune Compatibility." Kyoto University, 2019. http://hdl.handle.net/2433/242420.
Full textOhadi, Mina. "Genome mapping of a locus for familial haemophagocytic lymphohistiocytosis." Thesis, King's College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314048.
Full textBianchi, I. "LE BASI GENETICHE DELLA CIRROSI BILIARE PRIMITIVA: DAGLI STUDI DI ASSOCIAZIONE SU SINGOLO GENE AGLI STUDI SULL'INTERO GENOMA." Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/151770.
Full textFries, Jonna. "Hela Jaget : en analys av Anna Rydstedts Genom nålsögat." Thesis, Växjö University, School of Humanities, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1061.
Full textGregoracci, Gustavo Bueno. "Terapia experimental com bacteriófagos." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317028.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-19T03:47:25Z (GMT). No. of bitstreams: 1 Gregoracci_GustavoBueno_D.pdf: 6197096 bytes, checksum: 05eb5e18d8084e5c5f742c6ec5afd63d (MD5) Previous issue date: 2010
Resumo: Bacteriófagos são vírus que infectam bactérias e arqueias, representando as entidades biológicas mais abundantes do mundo e influenciando de maneira marcante populações naturais de seus hospedeiros. A terapia com bacteriófagos, que representa uma das primeiras formas modernas de combate a infecções bacterianas, foi recentemente redescoberta e vem sendo reavaliada seguindo metodologias atuais quanto à sua viabilidade terapêutica. Para completar a caracterização dos fagos de nossa coleção, sequenciamos completamente o genoma da maior parte destes, através da metodologia multiplex pair-ended utilizando a plataforma Illumina. Visando contribuir para verificação da viabilidade terapêutica de bacteriófagos testamos os efeitos protetor e terapêutico dos fagos Shfl1, Saen1v2 e Saen1v4, pertencentes à coleção de nosso laboratório, em modelos biológicos relevantes. O fago Shfl1, lítico contra Shigella flexneri, foi testado em ensaio de invasão em células HeLa. A redução de bactérias intracelulares foi mensurada independentemente através de plaqueamento e citometria de fluxo, além da observação direta por microscopia de fluorescência. O fago Saen1v2, lítico contra Salmonella Typhimurium, foi estudado quanto à biodistribuição e meia-vida em modelo murino, e uma variante viral com maior persistência in vivo foi selecionada. Essa variante, denominada Saen1v2p5, e o fago Saen1v4, lítico contra Salmonella Typhi, foram testados em modelo murino de infecção tifoide, contra seus respectivos hospedeiros. Encontramos similaridade genômica a fagos conhecidos, como T4, T7, T1 entre outros, em maior ou menor grau. Obtivemos um efeito protetor e terapêutico contra Shigella flexneri utilizando o fago Shfl1 em ensaio de invasão em cultura de células HeLa, verificado por todas as metodologias empregadas. Não verificamos efeito antimicrobiano in vivo do fago Saen1v2p5 em modelo murino de infecção por Salmonella Typhimurium. Por outro lado, observamos efeito terapêutico e protetor dose dependente utilizando o fago Saen1v4 em modelo murino de infecção por Salmonella Typhi. O sucesso obtido com baixas multiplicidades de infecção sugere um possível efeito indireto ou estimulação imune inespecífica
Abstract: Bacteriophages are viruses that infect Bacteria and Achaea, representing the most abundant biological entities in the world and markedly influencing natural host populations. Phage therapy, which represents one of the first modern ways to fight bacterial infections, was recently rediscovered and is being re-evaluated according to current methodologies regarding its therapeutic viability. In order to complete phage characterization in our collection, we sequenced completely the genomes of most of these, through the multiplex pair-ended methodology using the Illumina platform. Aiming to contribute to the therapeutic viability verification of bacteriophages we tested phage protective and therapeutic effects of Shfl1, Saen1v2 and Saen1v4, which belong to our collection, in biologically relevant models. Phage Shfl1, lytic against Shigella flexneri, was tested in a HeLa invasion assay. Intracellular bacteria reduction was measured independently through plating and flow cytometry, besides direct observation through fluorescent microscopy. Phage Saen1v2, lytic against Salmonella Typhimurium, was studied about its bio-distribution and half-life in murine model, and a viral variant with longer in vivo persistence was selected. This variant, denominated Saen1v2p5, and phage Saen1v4, lytic against Salmonella Typhi, were tested in murine typhoid model, against their respective hosts. Genomic similarity to known phages such as T4, T7, T1 among others, was found, in various degrees. We obtained both protective and therapeutic effect against Shigella flexneri using phage Shfl1 in the HeLa invasion assay, through all methodologies utilized. We could not verify in vivo antimicrobial effect of phage Saen1v2p5 in the murine model of Salmonella Typhimurium infection. On the other hand, we observed both therapeutic and protective dose dependent effect using phage Saen1v4 in Salmonella Typhi murine infection model. The success obtained with low multiplicities of infection may suggest a possible indirect effect or unspecific immune stimulation
Doutorado
Microbiologia
Doutor em Genetica e Biologia Molecular
Books on the topic "Genomic HLA"
Carrier, Carmelita Martins. Genomic variation of HLA-class II genes in multiplex juvenile type I diabetes. 1988.
Find full textSchulkin, Jay. Conservation of CRF in Brains and its Regulation by Adrenal Steroids. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198793694.003.0003.
Full textSiebert, Stefan, Sengupta Raj, and Alexander Tsoukas. The genetics of axial spondyloarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198755296.003.0004.
Full textBrown, Matthew A., and John Reveille. Genetics of spondyloarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198734444.003.0005.
Full textSiebert, Stefan, Sengupta Raj, and Alexander Tsoukas. A brief history of ankylosing spondylitis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198755296.003.0002.
Full textHinks, Anne, and Wendy Thomson. Genetics of juvenile rheumatic diseases. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199642489.003.0043_update_002.
Full textHinks, Anne, and Wendy Thomson. Genetics of juvenile rheumatic diseases. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199642489.003.0043_update_003.
Full textPatisaul, Heather B., and Scott M. Belcher. Receptor and Enzyme Mechanisms as Targets for Endocrine Disruptors. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199935734.003.0005.
Full textWalsh, Bruce, and Michael Lynch. Using Molecular Data to Detect Selection: Signatures from Multiple Historical Events. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198830870.003.0010.
Full textNordiska ministerrådets policy för integrering av hållbar utveckling, jämställdhet och ett barnrätts- och ungdomsperspektiv. Nordic Council of Ministers, 2020. http://dx.doi.org/10.6027/politiknord2020-717.
Full textBook chapters on the topic "Genomic HLA"
Dawkins, R. L., P. H. Kay, E. Martin, and F. T. Christiansen. "The Genomic Structure of Ancestral Haplotypes Revealed by Pulsed Field Gel Electrophoresis (PFGE)." In Immunobiology of HLA, 893–95. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3552-1_261.
Full textMonos, Dimitri S., Massimo Trucco, Richard S. Spielman, Susan F. Radka, Chester M. Zmijewski, and Malek Kamoun. "Biochemical and Genomic Characterization of HLA-DQ Gene Products Associated with DR3, DR4, and DR5 Haplotypes." In Immunobiology of HLA, 296–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-39946-0_107.
Full textKawaguchi, Shuji, and Fumihiko Matsuda. "High-Definition Genomic Analysis of HLA Genes Via Comprehensive HLA Allele Genotyping." In Methods in Molecular Biology, 31–38. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0389-5_3.
Full textPötsch, L., L. Penzes, M. Prager-Eberle, P. M. Schneider, and Ch Rittner. "Sex Determination by Genomic Dot Blot Hybridization and HLA DQα Typing by PCR from Fixed Tissues." In Advances in Forensic Haemogenetics, 96–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77324-2_27.
Full textJinam, Timothy A. "Human Leukocyte Antigen (HLA) Region in Human Population Studies." In Evolution of the Human Genome I, 173–79. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56603-8_9.
Full textBodmer, Julia. "World Distribution of HLA Alleles and Implications for Disease." In Ciba Foundation Symposium 197 - Variation in the Human Genome, 233–58. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514887.ch13.
Full textParo, Renato, Ueli Grossniklaus, Raffaella Santoro, and Anton Wutz. "Biology of Chromatin." In Introduction to Epigenetics, 1–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_1.
Full textMehra, Narinder K., and Gurvinder Kaur. ". Genomic Diversity of HLA in the Indian Subcontinent." In Genomics and Health in the Developing World, 908–15. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780195374759.003.0075.
Full textToni Hò, Gia-Gia, Wiebke Hiemisch, Andreas Pich, Michelle Matern, Lareen Sophi Gräser, Rainer Blasczyk, Christina Bade-Doeding, and Gwendolin Sabrina Simper. "Small Molecule/HLA Complexes Alter the Cellular Proteomic Content." In New Insights into the Future of Pharmacoepidemiology and Drug Safety. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97373.
Full textAntoine, Dan, Neil French, and Munir Pirmohamed. "Predictive Strategies for ADRs – Biomarkers and In Vitro Models." In Pharmacology for Chemists: Drug Discovery in Context, 343–78. The Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/bk9781782621423-00343.
Full textConference papers on the topic "Genomic HLA"
Zhao, Jian, Jie Hu, Xiuqin Zhang, Xuan Gao, Fan Tong, Xiaorui Fu, Yuting Yi, Yanfang Guan, Xuefeng Xia, and Jian'an Huang. "Abstract 1896: The genomic features of Chinese cancer patients harboring HLA LOH." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1896.
Full textGarcia-Marquez, MA, M. Thelen, E. Bauer, K. Wennhold, J. Lehmann, D. Keller, B. Gathof, et al. "10.02 Genomic HLA homozygosity is frequent in esophageal adenocarcinoma and related to low immunogenicity." In iTOC8 – the 8th Leading International Cancer Immunotherapy Conference in Europe, 8–9 October 2021, Virtual Conference. BMJ Publishing Group Ltd, 2021. http://dx.doi.org/10.1136/jitc-2021-itoc8.2.
Full textBeasley, Aaron, Anna Reid, Leslie Calapre, Michael Millward, Elin Gray, and Afaf Abed. "577 The variation of T-cell receptors (TCR) diversity and genomic human leukocyte antigen (HLA-I) among non-small cell lung cancer (NSCLC) patients expressing high PDL-1 (≥50%) versus those with low or no PDL1 (<50%)." In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0577.
Full text"Detection of the binding the stress HliA protein Synechocystis sp. with pigments." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-181.
Full textMalhotra, Raunaq, Alexandar Krasnitz, Anurag Sethi, Erik Lehnert, Elizabeth H. Williams, and Davis-Dusenbery N. Brandi. "Abstract 2348: Low-cost and accurate human leukocyte antigen (HLA) class I typing of The Cancer Genome Atlas on the Seven Bridges Cancer Genomics Cloud." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2348.
Full textHarjanto, Dewi, Jennifer G. Abelin, Matthew Malloy, Prerna Suri, Tyler Colson, Scott P. Goulding, Amanda L. Creech, et al. "Abstract B23: Enhanced HLA-II epitope prediction for immunotherapy with novel proteomics and genomics approaches." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-b23.
Full text"Alleles and haplotypes diversity of HLA-A, -B, -C, -DRB1, and -DQB1 genes in Russia." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-212.
Full text"The effect of "early"protein of papillomavirus HPV16 E2 made in plant expression system on the base of tomato fruit on tumor formation in mice infected with cancer HeLa cells." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-168.
Full textHan, Chunchun, Wei Wang, Jiwen Wang, and Liang Li. "Classfication and Evolution of HLH Family Members in Poultry Genome." In 2009 WRI World Congress on Computer Science and Information Engineering. IEEE, 2009. http://dx.doi.org/10.1109/csie.2009.33.
Full textCarneiro, Luis Felipe Ferreira, Osmar Júnior Da Silva Silva, Matteus Gomes De Oliveira, and Salomão Bruno Dos Santos Brasil. "TERAPIA GÊNICA NO TRATAMENTO DE ANEMIA FALCIFORME, UMA REVISÃO DE LITERATURA." In II Congresso Brasileiro de Hematologia Clínico-laboratorial On-line. Revista Multidisciplinar em Saúde, 2022. http://dx.doi.org/10.51161/hematoclil/133.
Full textReports on the topic "Genomic HLA"
Mevarech, Moshe, Jeremy Bruenn, and Yigal Koltin. Virus Encoded Toxin of the Corn Smut Ustilago Maydis - Isolation of Receptors and Mapping Functional Domains. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7613022.bard.
Full textGur, Amit, Edward Buckler, Joseph Burger, Yaakov Tadmor, and Iftach Klapp. Characterization of genetic variation and yield heterosis in Cucumis melo. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7600047.bard.
Full textNilsson, Hans, Magnus Appelberg, and Thomas Axenros. Provtagningsmetoder av akvatiska resurser med 3R i fokus. Institutionen för akvatiska resurser, Sveriges lantbruksuniversitet, 2023. http://dx.doi.org/10.54612/a.5o01b216ml.
Full textHaikola, Simon, and Jonas Anshelm. Staten, marknaden och industripolitikens återupprättelse: Visioner om transportsystemets klimatomställning, 2006-2022. Linköping University Electronic Press, April 2023. http://dx.doi.org/10.3384/9789180750790.
Full textHellström, Lisa, and Linda Beckman. "Det är lite mer så här mainstream att ha psykisk ohälsa" : Samtal om ungas behov och livsfärdigheter. Malmö universitet, 2021. http://dx.doi.org/10.24834/isbn.9789178771691.
Full textMontefusco, Maria. Ett nordiskt samarbete för alla – Funktionshindersintegrering i Nordiska ministerrådets verksamhet 2021. Nordens välfärdscenter, 2021. http://dx.doi.org/10.52746/zdjo7646.
Full textBarash, Itamar, J. Mina Bissell, Alexander Faerman, and Moshe Shani. Modification of Milk Composition via Transgenesis: The Role of the Extracellular Matrix in Regulating Transgene Expression. United States Department of Agriculture, July 1995. http://dx.doi.org/10.32747/1995.7570558.bard.
Full textBergström, Ulf, and Mårten Erlandsson. Spiggens påverkan på rekryteringsområden för abborre och gädda i Östersjön. Institutionen för akvatiska resurser, Sveriges lantbruksuniversitet, 2022. http://dx.doi.org/10.54612/a.4bb5blrfa9.
Full textFranzén, Fredrik, Emma Svahn, Anna Lingman, and Ingrid Bergman. Biologisk recipientkontroll vid Oskarshamns kärnkraftverk : årsrapport för 2022. Institutionen för akvatiska resurser, Sveriges lantbruksuniversitet, 2023. http://dx.doi.org/10.54612/a.4c0gq2dgmg.
Full textNeumann, Wiebke, Fredrik Stenbacka, Jonas Malmsten, Anders Johansson, and Göran Ericsson. Årsrapport GPS-märkta älgar och inventeringar i brandområdet 2021-2022 – Fördelning, rörelse, livsmiljö, bärris och spillning. Institutionen för vilt, fisk och miljö, Sveriges lantbruksuniversitet, 2022. http://dx.doi.org/10.54612/a.4bj3vproqo.
Full text