Dissertations / Theses on the topic 'Genomic biomarker'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Genomic biomarker.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Liu, Yiding. "Technologies for Proteomic and Genomic Biomarker Analysis." Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1229461302.
Full textZANDA, VALERIA MARIA. "Development of new tools for genomic biomarker investigations." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19712.
Full textStagni, Camilla. "Genomic analysis in cutaneous melanoma: a tool for predictive biomarker identification and molecular classification." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3426683.
Full textProgetto 1: identificazione di signatures molecolari associate alla risposta al trattamento con inibitori del MAPK pathway. I melanomi portatori di una mutazione nel codone V600 del gene BRAF rispondono agli inibitori del MAPK pathway, ma l’efficacia a lungo termine di questa terapia è limitata dallo sviluppo di resistenza, talvolta immediata. In questo studio, abbiamo esaminato le alterazioni molecolari caratterizzanti la progressione del melanoma al fine di identificare fattori predittivi di risposta/resistenza ai MAPK-inibitori. Nello specifico, su una serie di campioni pretrattamento di pazienti affetti da melanoma, trattati con MAPK-inibitori, abbiamo valutato numero di copie del gene BRAF e percentuale di allele V600-mutato, delezione e mutazioni di PTEN, alterazioni del promotore di TERT, e ne abbiamo analizzato l’associazione con la risposta dei pazienti alla terapia. Inoltre, abbiamo determinato il copy number variation dell’intero genoma dei nostri campioni per individuare ulteriori aberrazioni non note potenzialmente associate con la risposta alla terapia. Abbiamo identificato un numero aumentato di copie (gain) del gene BRAF, spesso dovuto a polisomia del cromosoma 7, nel 65% dei pazienti; l’allele mutato è stato trovato in una percentuale compresa tra il 35% e il 65% nel 64% dei pazienti, inferiore al 35% nel 14% dei pazienti e superiore al 65% nel 23% dei pazienti. Dall’analisi di sopravvivenza, è risultato che i pazienti con BRAF diploide o una percentuale di allele mutato inferiore al 35% presentano un più alto rischio di progressione rispetto a coloro che presentano gain di BRAF (HR=2.86; 95% CI 1.29-6.35; p=0.01) o tra il 35% e il 65% di allele mutato (HR=4.54,CI 1.33-15.53; p=0.016), rispettivamente. L’analisi di PTEN ha rivelato la presenza di mutazioni nel 27% dei pazienti, localizzate a livello dei domini catalitico e C2 della proteina codificata; inoltre, il 42% dei casi valutati mostrava una delezione completa del gene, il 35% una delezione parziale, mentre nel 23% dei pazienti non è stata individuata alcuna aberrazione di PTEN. Da notare, delezioni di PTEN sono emerse sia nei casi di melanoma resistente alla terapia, che in quelli che avevano risposto a lungo. Il sequenziamento del promotore del gene TERT ha permesso l’identificazione di mutazioni nel 78% dei pazienti. Le mutazioni -124C>T e -146C>T mostravano la stessa frequenza (36%) nella nostra coorte, mentre la -138-139CC>TT è stata individuata solo nel 5% dei casi. Il 51% dei pazienti presentava inoltre lo SNP rs2853669, noto per contrastare l’effetto attivante delle mutazioni sull’espressione di TERT. Stratificando la coorte di pazienti mutati in base alla presenza/assenza del polimorfismo, i pazienti TERT mutati/SNP carriers mostravano un trend verso una migliore PFS (PFS mediana 11.5 mesi, 95% CI 3.12-19.88) rispetto ai TERT mutati/SNP non-carriers (PFS mediana 7 mesi, 95% CI 4.27-9.72). La mutazione -146C>T, inoltre, correlava con PFS più breve (PFS mediana 5.45 mesi, 95% CI 2.80-9.20) rispetto alla -124C>T (PFS mediana 15.2 mesi, 95% CI 5.57-). Dall’analisi del copy number variation (CNV) sull’intero genoma, le regioni chr3p24, chr3p21.2 e chr17p13.1 hanno mostrato pattern di alterazioni diverse in pazienti responsivi vs. non-responsivi alle terapie; risultano pertanto regioni di potenziale interesse per l’individuazione di nuovi geni coinvolti nella resistenza alla terapia. I nostri dati suggeriscono dunque che l’analisi quantitativa del gene BRAF e il sequenziamento del promotore di TERT costituiscono un utile strumento di selezione dei pazienti con maggiore probabilità di rispondere alla terapia con MAPK-inibitori, contrariamente alla valutazione dello status di PTEN. L’analisi genome-wide, invece, indica di approfondire lo studio dei cromosomi 3 e 17. Progetto 2: ricerca di marcatori biomolecolari per la classificazione del melanoma acrale. Il melanoma acrale lentigginoso è un raro sottotipo di melanoma cutaneo con specifiche caratteristiche morfologiche, epidemiologiche e genetiche. Poiché il genoma del melanoma acrale non è ancora stato pienamente caratterizzato, ne abbiamo analizzato il CNV per individuare quei caratteri genomici peculiari che lo differenziano dal melanoma non acrale. La nostra analisi genome-wide ha evidenziato una maggiore frequenza di delezioni della regione 16q24.2-16q24.3, gains meno frequenti nella regione 7q21.2-7q33, una più accentuata frammentazione genomica e numerosi isocromosomi come caratteri che distinguono il melanoma acrale dal non acrale. Abbiamo inoltre identificato amplificazioni focali nei geni TERT, CCND1, MDM2 e MITF, più rare nei non acrali, laddove interessavano altri geni, come BRAF e MITF. Delezioni focali sono state individuate soprattutto nei geni CDKN2A e PTEN in entrambi i sottotipi di melanoma, anche se più frequenti nei non acrali. I nostri dati, in accordo con il classificare il melanoma acrale come tipo distinto di melanoma, hanno consentito di delinearne alcune delle peculiarità genomiche, chiave per elucidarne anche la patogenesi.
ZILIOTTO, Nicole. "Genomic, vessel wall transcriptomic, and plasma proteomic approaches to investigate multiple sclerosis." Doctoral thesis, Università degli studi di Ferrara, 2019. http://hdl.handle.net/11392/2487975.
Full textQuesto studio è stato progettato per indagare attraverso diversi approcci sperimentali i geni e le proteine associate alla sclerosi multipla (SM), una malattia infiammatoria e demielinizzante del sistema nervoso centrale (SNC). L’obiettivo era individuare mediante indagini su pazienti, potenziali bersagli e biomarcatori per futuri studi meccanicistici. Mediante l'approccio genomico(cap.10), le famiglie selezionate sono state studiate attraverso WES per geni candidati da GWAS. Gli SNPs identificati a bassa frequenza sono stati ulteriormente studiati in pazienti indipendenti con SM. L’indagine ha rilevato varianti rare e nuove, tra cui le nulle della regione 3' di C6orf10 in combinazione con SNPs a bassa frequenza a livello intra ed extra locus, fornendo le basi per studi di espressione. L'approccio trascrittomico(cap.6) focalizzato sulla parete interna della vena giugulare, era supportato dall'interazione tra i meccanismi vascolari e quelli neurodegenerativi nella SM. Questa indagine ha prodotto una grande quantità di informazioni su diversi percorsi biologici e ha permesso l'analisi combinata trascrittoma-proteine. L'analisi a livello proteico è stata condotta nel plasma mediante saggi multiplex in relazione ai fenotipi clinici di SM e alle misure cerebrali MRI considerate come fenotipi quantitativi e "intermedi" della progressione della malattia. I livelli plasmatici più alti di CCL18 erano associati a caratteristiche neurodegenerative più gravi(cap.7). Il contributo delle molecole di adesione, suggerito dall'analisi trascrittomica, è stato esplorato in modo analogo(cap.8 e 9). La correlazione tra i livelli plasmatici di specifiche molecole di adesione nei pazienti ha evidenziato il processo di adesione dei leucociti nella malattia. L'aumento della permeabilità della barriera emato-encefalica, evento chiave nella fisiopatologia della SM, porta all’irruzione di fattori emostatici nel SNC, causando una risposta infiammatoria e l’attivazione immunitaria. I componenti dell'emostasi con le principali domande aperte in relazione alla SM sono stati investigati. Il FXII, la proteasi attivatrice della coagulazione da contatto trovata depositata nel cervello dei pazienti, potrebbe partecipare all'immunità adattativa durante la neuroinfiammazione. Nel plasma di pazienti(cap.4) i livelli di proteina del FXII erano superiori all'attività, causando un ridotto rapporto attività/antigene. I risultati corroborati dai saggi di generazione intrinseca di trombina, supporterebbero il contributo del FXII nella SM non attraverso la sua attività pro-coagulante. Lo studio di alcuni inibitori dell'emostasi (TFPI, ADAMTS13, HCII, TM) con proprietà antinfiammatorie, ha rivelato specifici schemi di correlazione(cap.5 e 11). L'associazione positiva di TFPI con TM, osservata nei pazienti e non in soggetti sani, implicherebbe che la perturbazione dell'endotelio agisca su più meccanismi di rilascio. Nei pazienti il PAI-1, l'inibitore chiave della fibrinolisi, era associato positivamente al FXII e negativamente all'HCII, suggerendo meccanismi patologici che influenzano la loro espressione in diversi tessuti con implicazioni nella generazione di fibrina e nella compromissione della fibrinolisi. Le correlazioni osservate tra i livelli plasmatici dei componenti dell'emostasi con le misure di MRI, non hanno superato la correzione per confronti multipli. La perdita extravascolare di sangue misurata come micro sanguinamenti cerebrali (MSC) attraverso MRI è stata studiata nei pazienti in relazione ai livelli plasmatici di componenti dell'emostasi. Livelli più bassi di ADAMTS13 sono stati rilevati nella coorte di SM ed in particolare nei pazienti con MSC(cap.5) che mostravano anche livelli più alti di VAP-1(cap.9). Queste nuove scoperte supportano l'analisi della proteasi ADAMTS13 e l’aminossidasi/proteina di adesione VAP-1 in relazione ai MSC. Questo studio fornisce nuovi biomarcatori della SM e potenziali bersagli farmacologici
Sanavia, Tiziana. "Biomarker lists stability in genomic studies: analysis and improvement by prior biological knowledge integration into the learning process." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422197.
Full textL’analisi di dati high-throughput basata sull’utilizzo di tecnologie di sequencing, microarray e spettrometria di massa si è dimostrata estremamente utile per l’identificazione di quei geni e proteine, chiamati biomarcatori, utili per rispondere a quesiti sia di tipo diagnostico/prognostico che funzionale. In tale contesto, la stabilità dei risultati è cruciale sia per capire i meccanismi biologici che caratterizzano le malattie sia per ottenere una sufficiente affidabilità per applicazioni in campo clinico/farmaceutico. Recentemente, diversi studi hanno dimostrato che le liste di biomarcatori identificati sono scarsamente riproducibili, rendendo la validazione di tali biomarcatori come indicatori stabili di una malattia un problema ancora aperto. Le ragioni di queste differenze sono imputabili sia alla dimensione dei dataset (pochi soggetti rispetto al numero di variabili) sia all’eterogeneità di malattie complesse, caratterizzate da alterazioni di più pathway di regolazione e delle interazioni tra diversi geni e l’ambiente. Tipicamente in un disegno sperimentale, i dati da analizzare provengono da diversi soggetti e diversi fenotipi (e.g. normali e patologici). Le metodologie maggiormente utilizzate per l’identificazione di geni legati ad una malattia si basano sull’analisi differenziale dell’espressione genica tra i diversi fenotipi usando test statistici univariati. Tale approccio fornisce le informazioni sull’effetto di specifici geni considerati come variabili indipendenti tra loro, mentre è ormai noto che l’interazione tra geni debolmente up/down regolati, sebbene non differenzialmente espressi, potrebbe rivelarsi estremamente importante per caratterizzare lo stato di una malattia. Gli algoritmi di machine learning sono, in linea di principio, capaci di identificare combinazioni non lineari delle variabili e hanno quindi la possibilità di selezionare un insieme più dettagliato di geni che sono sperimentalmente rilevanti. In tale contesto, i metodi di classificazione supervisionata vengono spesso utilizzati per selezionare i biomarcatori, e diversi approcci, quali discriminant analysis, random forests e support vector machines tra altri, sono stati utilizzati, soprattutto in studi oncologici. Sebbene con tali approcci di classificazione si ottenga un alto livello di accuratezza di predizione, la riproducibilità delle liste di biomarcatori rimane ancora una questione aperta, dato che esistono molteplici set di variabili biologiche (i.e. geni o proteine) che possono essere considerati ugualmente rilevanti in termini di predizione. Quindi in teoria è possibile avere un’insufficiente stabilità anche raggiungendo il massimo livello di accuratezza. Questa tesi rappresenta uno studio su diversi aspetti computazionali legati all’identificazione di biomarcatori in genomica: dalle strategie di classificazione e di feature selection adottate alla tipologia e affidabilità dell’informazione biologica utilizzata, proponendo nuovi approcci in grado di affrontare il problema della riproducibilità delle liste di biomarcatori. Tale studio ha evidenziato che sebbene un’accettabile e comparabile accuratezza nella predizione può essere ottenuta attraverso diversi metodi, ulteriori sviluppi sono necessari per raggiungere una robusta stabilità nelle liste di biomarcatori, a causa dell’alto numero di variabili e dell’alto livello di correlazione tra loro. In particolare, questa tesi propone due diversi approcci per migliorare la stabilità delle liste di biomarcatori usando l’informazione a priori legata alle interazioni biologiche e alla correlazione funzionale tra le features analizzate. Entrambi gli approcci sono stati in grado di migliorare la selezione di biomarcatori. Il primo approccio, usando l’informazione a priori per dividere l’applicazione del metodo in diversi sottoproblemi, migliora l’interpretabilità dei risultati e offre un modo alternativo per verificare la riproducibilità delle liste. Il secondo, integrando l’informazione a priori in una funzione kernel dell’algoritmo di learning, migliora la stabilità delle liste. Infine, l’interpretabilità dei risultati è fortemente influenzata dalla qualità dell’informazione biologica disponibile e l’analisi delle eterogeneità delle annotazioni effettuata sul database Gene Ontology rivela l’importanza di fornire nuovi metodi in grado di verificare l’attendibilità delle proprietà biologiche che vengono assegnate ad una specifica variabile, distinguendo la mancanza o la minore specificità di informazione da possibili inconsistenze tra le annotazioni. Questi aspetti verranno sempre più approfonditi in futuro, dato che le nuove tecnologie di sequencing monitoreranno un maggior numero di variabili e il numero di annotazioni funzionali derivanti dai database genomici crescer`a considerevolmente nei prossimi anni.
Zanjirband, Maryam. "The genomic and functional status of TP53 in ovarian cancer : biomarker for chemotherapy outcome and determinant of response to MDM2 inhibitors." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3831.
Full textPereira, Carolina Ruivo 1986. "Genomic profile of tumorgrafts identifies B2M as a novel tumor suppressor gene in lung cancer." Doctoral thesis, Universitat Pompeu Fabra, 2016. http://hdl.handle.net/10803/482055.
Full textLung cancer is the deadliest form of cancer worldwide. Recently, the large-scale genomic profiling of human tumors has fueled the development of efficient anticancer agents that target the activity of mutated genes. Given that directed therapies are still very scarce, the discovery of novel lung cancer-related genes with potential relevance within the clinical context is imperative. Thus, this project consisted on coupling high-throughput sequencing strategies (exomes and transcriptomes) with the use of lung tumorgrafts. The high tumor purity achieved through the engraftment was crucial, particularly to identify homozygous deletions and gene amplifications. The B2M gene (β2-microglobulin), found to be mutated in 5% of lung tumors, was characterized. Its genetic loss was correlated to lower cytotoxic T-cell intratumoral infiltration, probably impairing the immune-mediated tumor eradication. Moreover, β2-microglobulin was associated with survival in patients treated with anti-PD-1/PD-L1 agents, highlighting a potential role in predicting response to immunologically-based therapies in lung cancer.
Jiao, Yunlong. "Pronostic moléculaire basé sur l'ordre des gènes et découverte de biomarqueurs guidé par des réseaux pour le cancer du sein." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM027/document.
Full textBreast cancer is the second most common cancer worldwide and the leading cause of women's death from cancer. Improving cancer prognosis has been one of the problems of primary interest towards better clinical management and treatment decision making for cancer patients. With the rapid advancement of genomic profiling technologies in the past decades, easy availability of a substantial amount of genomic data for medical research has been motivating the currently popular trend of using computational tools, especially machine learning in the era of data science, to discover molecular biomarkers regarding prognosis improvement. This thesis is conceived following two lines of approaches intended to address two major challenges arising in genomic data analysis for breast cancer prognosis from a methodological standpoint of machine learning: rank-based approaches for improved molecular prognosis and network-guided approaches for enhanced biomarker discovery. Furthermore, the methodologies developed and investigated in this thesis, pertaining respectively to learning with rank data and learning on graphs, have a significant contribution to several branches of machine learning, concerning applications across but not limited to cancer biology and social choice theory
Moreira, Elisa Rennó Donnard. "Estudo de variações genômicas para a identificação de biomarcadores personalizados e novos alvos terapêuticos em tumores colorretais." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-20012015-101640/.
Full textColorectal cancer is one of the more frequent tumor types in the world. To select the appropriate treatment course, it is necessary to develop more precise diagnostic approaches. The current availability of high throughput genome sequencing methods allows for a comprehensive characterization of the structural and sequence alterations present in each tumor. The use of tumor genome sequencing in a personalized setting can result in tumor specific biomarkers that help evaluate response to treatment and the presence of residual disease, improving the clinical management of these patients, and also reveal sequence alterations in genes capable of serving as new therapeutic targets. In this study we developed an efficient bioinformatics pipeline to identify biomarkers based on the existing structural alterations in rectal tumor genomes, eliminating the need to sequence the matched normal genome and therefore reducing the cost for this approach. The biomarkers found for each of the six patients were used to evaluate the presence of residual disease after treatment through the detection of circulating tumor DNA in plasma samples collected at different points during the treatment. Sequencing tumor genomes with low coverage is therefore a viable and promising alternative to follow up rectal cancer patient\'s response to treatment. In the second part of this study, the analysis of colorectal cancer cell lines revealed a large quantity of point mutations (SNVs and InDels) in genes coding for proteins located in the cell surface (surfaceome). These alterations in the surfaceome indicate potential new drug targets and altered pathways in this type of tumor. Furthermore, these point mutations are also responsible for the generation of new epitopes with immunogenic potential and these new epitopes can be applied as personalized tumor vaccines and had previously been proposed as a therapeutic alternative. The presence of new epitopes, especially in the cell lines with elevated mutation rates (resulting from MSI and mutations in DNA mismatch-repair genes or POLE), suggests a potential use of immune checkpoint target drugs in patients with tumors that share these genetic characteristics. With a large-scale bioinformatics approach, we detected new tumor epitopes resulting from point mutations, present in most of the cell lines used. The analysis of gene expression data puts into perspective both the somatic mutations found and which targets are promising as well as the development of therapies based on vaccines derived from tumor epitopes. In conclusion, the study of genomic alterations in primary tumors and colorectal cancer cell lines allowed the detection of structural variations that were used as personalized biomarkers in patients with rectal tumors as well as the identification of genes containing point mutations in colorectal cancer cell lines, that reveal potential new therapeutic targets to be explored in the clinical setting.
Brown, Margaret M. "Application of genomic techniques to development of biomarkers for the aquatic environment." Thesis, Glasgow Caledonian University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443169.
Full textTcherveniakov, Peter Alexandrov. "Genomic biomarkers of recurrence in stage I non-small cell lung cancer." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/11903/.
Full textHuang, Jie. "Whole-genome sequencing-based association studies of cardiovascular biomarkers." Thesis, University of Cambridge, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708994.
Full textGuan, Xiaojing. "Genomic and biochemical analysis of oxidative stress in birds with diverse longevities." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27827.
Full textPh. D.
Dreder, Abdouladeem. "Machine learning based approaches for identifying sarcopenia-related genomic biomarkers in ageing males." Thesis, Northumbria University, 2017. http://nrl.northumbria.ac.uk/36184/.
Full textOwoka, Temitayo Olajumoke. "Investigating HLXB9 as a biomarker in cancer." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/14446.
Full textAlshammari, Nawal. "Genetic biomarkers in uveal melanoma : an exploration using high-resolution array comparative genomic hybridization." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/16803/.
Full textPrabhulkar, Shradha V. "Development of Micro Immunosensors to Study Genomic and Proteomic Biomarkers Related to Cancer and Alzheimer's Disease." FIU Digital Commons, 2011. http://digitalcommons.fiu.edu/etd/467.
Full textSohiya, Yotsukura. "Computational Framework for the Dissection of Cancer Genomic Architecture and its Association in Different Biomarkers." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217149.
Full textFindlay, John Mitchell. "Precision staging and management of Barrett's oesophagus and oesophageal cancer : genomic, imaging and pathological biomarkers." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/38037/.
Full textAlentorn, Agusti. "Caractérisation génomique et génétique des gliomes diffus de bas grade de l’adulte." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T011.
Full textMultildimensional molecular characterization of tumors and more specifically of gliomas is of pivotal importance to identify: (i) new biomarkers (i.e. diagnostic, prognostic, theranostic or predisposing), (ii) new therapeutic targets and (iii) to improve our understanding of molecular oncogenesis.Our work has confirmed and consolidated previous data published in the literature, for example that: (i) 1p/19q co-deletion is associated with better prognosis, (ii) IDH mutation is associated with better prognosis, (iii) TP53 mutations and 1p/19q codeletion are mutually exclusive and (iv) PDGFRA is rarely altered, at genomic level, in low-grade gliomas (LGG).More originally, we have identified several genomic groups, with clinical and biological relevances, in LGG and more specifically in LGG without 1p/19q co-deletion: (i) 19q-deleted, (ii) 11p-deleted, (iii) 7-gained, (iv) 19-gained and (v) unclassified. Interestingly, 19q deletion abrogates the positive prognostic value of IDH mutation in LGG without 1p/19q codeletion.We have also identified new recurrent somatic gene mutations in LGG (i.e. TEP1 and RNF40 mutations), supporting the critical role of telomeres and chromatin remodelling in LGG.Finally, we have characterized further 11p-deleted LGG that exhibit mostly astrocytic phenotype and poor prognosis. This subgroup includes LGG overexpressing genes of inflammatory/immune cells (GIM -Glioma infiltrating microglia-, M1 macrophages and M2 macrophages) and infiltrated by macrophagic/microglial cells. This peculiar microenvironment detected in 11p-deleted LGG might be used as a therapeutic target. In conclusion, our work participates to characterize clinico-biological portrait of LGG and to describe a singular genomic subgroup of LGG characterized by 11p loss
Hindocha, Sandip. "Identification of biomarkers and whole genome scanning in Dupuytren's Disease." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/identification-of-biomarkers-and-whole-genome-scanning-in-dupuytrens-disease(465cbe01-f3d6-4b1a-9e48-ff3c0c42f5c8).html.
Full textPrabakaran, Sudhakaran. "A systems-based functional genomics approach to understand schizophrenia and to identify disease biomarkers." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613268.
Full textAppari, Mahesh [Verfasser]. "Genome-wide screening of biomarkers in androgen insensitivity syndrome (AIS) / Mahesh Appari." Kiel : Universitätsbibliothek Kiel, 2009. http://d-nb.info/1019866764/34.
Full textDurda, Jon Peter. "The Cardiovascular Epidemiology and Genome-Wide Associations of Biomarkers of Innate and Adaptive Immunity: sCD163 and sIL2RA." ScholarWorks @ UVM, 2017. http://scholarworks.uvm.edu/graddis/788.
Full textStåhl, Patrik L. "Methods for Analyzing Genomes." Doctoral thesis, KTH, Genteknologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12407.
Full textLi, Yichao. "Algorithmic Methods for Multi-Omics Biomarker Discovery." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1541609328071533.
Full textAnsari, Morad. "Analysis of biomarkers for complex human diseases." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4505.
Full textSundaramurthy, Gopinath. "A Probabilistic Approach for Automated Discovery of Biomarkers using Expression Data from Microarray or RNA-Seq Datasets." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1459528594.
Full textKuntala, Prashant Kumar. "Optimizing Biomarkers From an Ensemble Learning Pipeline." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1503592057943043.
Full textRamli, Siti Roszilawati Binti Verfasser], Michael [Akademischer Betreuer] [Hust, and Michael [Akademischer Betreuer] Steinert. "Whole Genome Analysis and Biomarker Identification of Leptospira spp. / Siti Roszilawati Binti Ramli ; Michael Hust, Michael Steinert." Braunschweig : Technische Universität Braunschweig, 2019. http://d-nb.info/1183254989/34.
Full textNowak, Christoph. "Insulin Resistance : Causes, biomarkers and consequences." Doctoral thesis, Uppsala universitet, Molekylär epidemiologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316891.
Full textMurat, Katarzyna. "Bioinformatics analysis of epigenetic variants associated with melanoma." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/17220.
Full textFragkogianni, Stamatina. "Genome-wide expression profiling of human circulating monocytes and macrophages identifies diagnostic and prognostic signatures for cancer outcomes." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28836.
Full textSahadevan, Sudeep [Verfasser]. "Application of knowledge discovery and data mining methods in livestokc genomics for hypothesis generation and identification of biomarker candidates influencing meat quality traits in pigs / Sudeep Sahadevan." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1077268890/34.
Full textNikolayeva, Iryna. "Network and machine learning approaches to dengue omics data." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB032/document.
Full textThe last 20 years have seen the emergence of powerful measurement technologies, enabling omics analysis of diverse diseases. They often provide non-invasive means to study the etiology of newly emerging complex diseases, such as the mosquito-borne infectious dengue disease. My dissertation concentrates on adapting and applying network and machine learning approaches to genomic and transcriptomic data. The first part goes beyond a previously published genome-wide analysis of 4,026 individuals by applying network analysis to find groups of interacting genes in a gene functional interaction network that, taken together, are associated to severe dengue. In this part, I first recalculated association p-values of sequences polymorphisms, then worked on mapping polymorphisms to functionally related genes, and finally explored different pathway and gene interaction databases to find groups of genes together associated to severe dengue. The second part of my dissertation unveils a theoretical approach to study a size bias of active network search algorithms. My theoretical analysis suggests that the best score of subnetworks of a given size should be size-normalized, based on the hypothesis that it is a sample of an extreme value distribution, and not a sample of the normal distribution, as usually assumed in the literature. I then suggest a theoretical solution to this bias. The third part introduces a new subnetwork search tool that I co-designed. Its underlying model and the corresponding efficient algorithm avoid size bias found in existing methods, and generates easily comprehensible results. I present an application to transcriptomic dengue data. In the fourth and last part, I describe the identification of a biomarker that detects dengue severity outcome upon arrival at the hospital using a novel machine learning approach. This approach combines two-dimensional monotonic regression with feature selection. The underlying model goes beyond the commonly used linear approaches, while allowing controlling the number of transcripts in the biomarker. The small number of transcripts along with its visual representation maximize the understanding and the interpretability of the biomarker by biomedical professionals. I present an 18-gene biomarker that allows distinguishing severe dengue patients from non-severe ones upon arrival at the hospital with a unique biomarker of high and robust predictive performance. The predictive performance of the biomarker has been confirmed on two datasets that both used different transcriptomic technologies and different blood cell subtypes
Arloth, Janine [Verfasser], and John [Akademischer Betreuer] Parsch. "Expression quantitative trait loci as possible biomarkers on depression : candidate gene and genome-wide approaches / Janine Arloth. Betreuer: John Parsch." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014. http://d-nb.info/1075457041/34.
Full textChapman, M. H. "Whole genome RNA expression profiling for the identification of novel biomarkers in the diagnosis and prognosis of biliary tract cancer." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1310148/.
Full textGuillemette, Shawna S. "Investigating Tumor Suppressors in the DNA Damage Response: Caretakers of the Genome and Biomarkers to Predict Therapeutic Response: A Dissertation." eScholarship@UMMS, 2014. https://escholarship.umassmed.edu/gsbs_diss/712.
Full textGuillemette, Shawna S. "Investigating Tumor Suppressors in the DNA Damage Response: Caretakers of the Genome and Biomarkers to Predict Therapeutic Response: A Dissertation." eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/712.
Full textPettersson, Fredrik. "A multivariate approach to computational molecular biology." Doctoral thesis, Umeå : Univ, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-609.
Full textMaroilley, Tatiana. "Génétique et Génomique de la capacité immunitaire chez le porc : approches eQTL et étude de biomarqueurs sanguins." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV097/document.
Full textA better understanding of the mechanisms for resistance to pathogens along with the characterization of the immune capacity has become a priority for research in breeding. The overall objective of this PhD project was to use phenotyping, genetic and genomic information to study the genetic architecture of the immune capacity in the pig and to contribute to the identification of genetic markers and blood biomarkers that predict variations of immune parameter levels. The study was focused on three complementary axes and the results obtained were based on the use of data collected as part of the IMMOPIG and SUS_FLORA projects financed by the ANR, for which 450 and 560 piglet cohorts were sampled at 60 days of age, three weeks after vaccination against Mycoplasma hyopneumoniae.We analyzed the genetic determinism of gene expression in the blood using an eGWAS (60K SNP genotyping and blood transcriptome for 242 animals) confirmed in part by an allele specific expression (ASE) of transcripts (RNA-Seq on 38 animals). The eGWAS results showed multiple local (n=2839) and distant associations between the SNP polymorphisms and transcription variations, spread over all the chromosomes. The ASE analyses confirmed the cis genetic control of gene expression, with allele regulation being found for 763 genes. The biological functions associated were notably associated with RNA processing and immunity. The region of the major histocompatibility complex was found particularly rich in eQTL signals and genes with ASE in the blood.We studied the co-variations between immune parameters and blood transcriptomes for 243 individuals. The immune parameters included the blood count, cell subpopulation characterization by flow cytometry, serum assays (reactive C protein, haptoglobin, antibodies specific for Mycoplasma hyopneumoniae), immune response after in vitro stimulation of peripheral blood (phagocytosis, IL1b, IL2, IL6, IL8, IL10, TNFa, INFg cytokines). We confirmed the heritability of numerous immune parameters and identified covariations with gene profiles, providing hypotheses on biomarker candidates.We also led a functional analysis on four animals at 70 days-of-age in order to characterize and compare the transcriptome profiles of peripheral blood and three gut-associated lymphoid tissues (mesenteric lymph nodes, jejunal and ileal Payer’s patches). The RNA-Seq data showed differential expression between tissues; this number was more limited between the two types of Peyer’s patches. Interestingly, among the biological functions enriched by the differentially expressed genes between the Peyer’s patches, we identified the Th1 and Th2 lymphocyte differentiation pathways, which was in agreement with an over-abundance of B lymphocytes in the ileal Peyer’s patches.Together these results provide new information on the understanding of the genetic determinism of immune parameter variations in the pig, the search for causal polymorphisms of these variations and the identification of relevant blood biomarkers for phenotyping immune competence
Saman, Sadik [Verfasser], Jürgen [Akademischer Betreuer] Brockmöller, and Tim [Akademischer Betreuer] Beissbarth. "Identifizierung genetischer Biomarker für die Wirksamkeit von Oxaliplatin:Kandidatengen-bezogene und Genom-weite Analysen / Sadik Saman. Gutachter: Jürgen Brockmöller ; Tim Beissbarth. Betreuer: Jürgen Brockmöller." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://d-nb.info/1063776198/34.
Full textGay-Bellile, Mathilde. "Etude de l'instabilité génomique et du statut des télomères dans le cancer du sein." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAS001.
Full textIn breast cancer, discovering new biomarkers, that can predict therapeutic response and prognosis, is important to find the best therapeutic options and improve our understanding of physiopathology. Our particular interest is in breast cancer treated by neoadjuvant chemotherapy (NCT). In pre-NCT biopsies and post-NCT tumors, we studied both telomeric parameters and DNA damage repair (DDR), because when these are dysfunctional, both result in high genomic instability. We correlated these parameters to neoadjuvant chemotherapy response and patient outcomes. First, we demonstrated that short telomeres, high telomerase (TERT) expression and low expression of ERCC1 (a protein involved in a number of DNA repair mechanisms) are markers of poor prognosis. Telomere and DDR dysfunction can contribute synergistically to tumor progression and chemoresistance. We then studied a triple negative breast cancer population. We demonstrated that short telomeres were associated with tumor aggressiveness and chemoresistance. Chemoresistance was also associated with high genomic instability. We analyzed genomic alterations specific to BRCA1-like status and demonstrated that BRCA1-like profile correlated with chemoresistance and high genomic instability. Finally, we performed a comprehensive study of telomerase reactivation in breast cancer. We demonstrated that high TERT expression in breast cancer is not associated with somatic enhancer mutations but more probably to TERT locus gains. These gains were correlated to chemoresistance and increased risk of relapse. TERT gain, combined with high MYC expression, was able to isolate a subgroup with a very poor prognosis, and this could be used to evaluate risk of relapse. Telomeric parameters and genomic instability seem to be predictive biomarkers for neoadjuvant chemotherapy response in triple negative breast cancer. These parameters also have strong prognostic value in breast cancer and could be used clinically as biomarkers for tailoring treatment
Ustunkar, Gurkan. "An Integrative Approach To Structured Snp Prioritization And Representative Snp Selection For Genome-wide Association Studies." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12612871/index.pdf.
Full textD'AMICO, FRANCA. "Studio dell'espressione dei geni del metabolismo degli androgeni e caratterizzazione del profilo citogenetico per la ricerca di biomarcatori genomici in linee primarie di carcinoma della prostata." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/680.
Full textThe aims of this study where to investigate expression profiles of genes related to androgen signaling and to screen genomic alterations in primary epithelial cultures derived from tissue explanted from patients undergoing radical prostatectomy to better understanding the rule of androgen pathway and of genomic copy number changes in the development and progression of prostate cancer. Moreover, we investigated expression profiles of selected genes (NQO1, PKC-beta, BCL2 e ERBB2) in circulating blood cells of prostate cancer patients to discover new biomarkers for diagnostic purposes. To carry out these aims we developed a low density home made oligonucleotide-array composed of 205 genes selected on the basis of their proved or potential role in prostate cancerogenesis related to androgen signalling (“AndroChip”), and we carried out array-based comparative genomic hibridization (aCGH) on primary epithelial cultures derived from tissue explanted from patients undergoing radical prostatectomy. After microarray experiments, considering only genes resulted significant in all primary cancer cell lines and whose differential expression had a threeshold>±1,5, we identified a total of 15 genes. In summary, we observed differential expression of genes (BCL2, CALR e VIM) able to confer androgen- independent growth and down regulation of PKC-beta gene that may be down-regulated at an early stage in the pathogenesis of prostate cancer. Moreover, we found over expression of NQO1 gene. High levels of NQO1 gene expression have been observed in many cancers as compared to normal tissues of the same origin. NQO1 bioactivates an anti-cancer agent, Beta-lapachone and so this gene could be exploitable target for the treatment of cancer cells that overexpress this enzyme. After aCGH experiment, we did not reveal genomic imbalances in 9 of the 10 samples examined. In one semple we detected the loss of the Y chromosome. These results demonstrate that no specific genomic biomarkers are detectable for early stage prostatic cancer. Moreover, we studied NQO1, PKC-beta, BCL2 e ERBB2 expression by RT-PCR real-time in peripheral blood mononuclear cell fraction samples of 7 patients with prostate cancer. All thogether, our results showed an differential expression profiles of examinated genes. In particular, we found down regulation of PCK-beta and up regulation of ERBB2. In conclusion, this study allowed to identify prognosis biomarkers in primary cell lines and confirmed that ERBB2 gene can be use as prognosis marker in blood.
UDALI, SILVIA. "Genome-wide DNA methylation profiles by high-throughput techniques in alcohol-related hepatocellular carcinoma: identification of epigenetic signatures in liver tissue and peripheral blood cells DNA as potentially useful biomarkers of disease." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41782.
Full textHassan, Aamir Ul. "Integration of Genome Scale Data for Identifying New Biomarkers in Colon Cancer: Integrated Analysis of Transcriptomics and Epigenomics Data from High Throughput Technologies in Order to Identifying New Biomarkers Genes for Personalised Targeted Therapies for Patients Suffering from Colon Cancer." Thesis, University of Bradford, 2017. http://hdl.handle.net/10454/17419.
Full textJeschke, Jana [Verfasser], and Andreas [Akademischer Betreuer] Winterpacht. "Utilization of Genome-wide DNA Methylation Changes in Breast Cancer for Identification of Biomarkers for Prognosis and Mechanisms of Tumorigenesis / Jana Jeschke. Betreuer: Andreas Winterpacht." Erlangen : Universitätsbibliothek der Universität Erlangen-Nürnberg, 2013. http://d-nb.info/1033029882/34.
Full textMartínez, Enguita David. "Identification of personalized multi-omic disease modules in asthma." Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-15987.
Full textFung, P. L. "The GENVABO study : genetic variants as biomarkers of jaw osteonecrosis associated with bisphosphonates : a large, multicentre genome-wide association study and detailed analyses of clinical phenotype." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1472795/.
Full text