Journal articles on the topic 'Genetic'

To see the other types of publications on this topic, follow the link: Genetic.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Genetic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sumida, Brian. "Genetics for genetic algorithms." ACM SIGBIO Newsletter 12, no. 2 (June 1992): 44–46. http://dx.doi.org/10.1145/130686.130694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Niendorf, Kristin Baker. "Genetic Library: Cancer Genetics." Journal of Genetic Counseling 11, no. 5 (October 2002): 429–34. http://dx.doi.org/10.1023/a:1016854001384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Comfort, Nathaniel. "Genetics: The genetic watchmaker." Nature 502, no. 7472 (October 2013): 436–37. http://dx.doi.org/10.1038/502436a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Clarke, Angus. "Genetic imprinting in clinical genetics." Development 108, Supplement (April 1, 1990): 131–39. http://dx.doi.org/10.1242/dev.108.supplement.131.

Full text
Abstract:
Genetic, and indeed genomic, imprinting does occur in humans. This is manifest at the level of the genome, the individual chromosome, subchromosomal region or fragile site, or the single locus. The best evidence at the single gene level comes from a consideration of familial tumour syndromes. Chromosomal imprinting effects are revealed when uniparental disomy occurs, as in the Prader-Willi syndrome and doubtless other sporadic, congenital anomaly syndromes. Genomic imprinting is manifest in the developmental defects of hydatidiform mole, teratoma and triploidy. Fragile (X) mental retardation shows an unusual pattern of inheritance, and imprinting can account for these effects. Future work in clinical genetics may identify congenital anomalies and growth disorders caused by imprinting: the identification of imprinting effects for specific chromosomal regions in mice will allow the examination of the homologous chromosomal region in humans.
APA, Harvard, Vancouver, ISO, and other styles
5

Kallab, Chadi, Samir Haddad, and Jinane Sayah. "Flexible Traceable Generic Genetic Algorithm." Open Journal of Applied Sciences 12, no. 06 (2022): 877–91. http://dx.doi.org/10.4236/ojapps.2022.126060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shanmugam, Ramalingam. "Biostatistical genetics and genetic epidemiology." Journal of Statistical Computation and Simulation 73, no. 7 (July 2003): 543–44. http://dx.doi.org/10.1080/0094965021000044411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Siegel, PB, and EA Dunnington. "Genetic selection strategies–population genetics." Poultry Science 76, no. 8 (August 1997): 1062–65. http://dx.doi.org/10.1093/ps/76.8.1062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Athanasiou, Y., M. Zavros, M. Arsali, L. Papazachariou, P. Demosthenous, I. Savva, K. Voskarides, et al. "GENETIC DISEASES AND MOLECULAR GENETICS." Nephrology Dialysis Transplantation 29, suppl 3 (May 1, 2014): iii339—iii350. http://dx.doi.org/10.1093/ndt/gfu162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ziegel, Eric R. "Biostatistical Genetics and Genetic Epidemiology." Technometrics 44, no. 4 (November 2002): 409. http://dx.doi.org/10.1198/tech.2002.s98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Neville, Melvin, and Anaika Sibley. "Developing a generic genetic algorithm." ACM SIGAda Ada Letters XXIII, no. 1 (March 2003): 45–52. http://dx.doi.org/10.1145/1066404.589462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Elias, Sherman, and George J. Annas. "Generic Consent for Genetic Screening." New England Journal of Medicine 330, no. 22 (June 2, 1994): 1611–13. http://dx.doi.org/10.1056/nejm199406023302213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Stekrova, J., J. Reiterova, V. Elisakova, M. Merta, M. Kohoutova, V. Tesar, S. Suvakov, et al. "Genetic diseases and molecular genetics." Clinical Kidney Journal 4, suppl 2 (June 1, 2011): 4.s2.28. http://dx.doi.org/10.1093/ndtplus/4.s2.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Caron, Paul R. "Genetic approach to chemical genetics ▾." Drug Discovery Today 7, no. 22 (November 2002): 1121. http://dx.doi.org/10.1016/s1359-6446(02)02506-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Legendre, C., D. Cohen, Y. Delmas, T. Feldkamp, D. Fouque, R. Furman, O. Gaber, et al. "Genetic diseases and molecular genetics." Nephrology Dialysis Transplantation 28, suppl 1 (May 1, 2013): i309—i321. http://dx.doi.org/10.1093/ndt/gft126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Smith, Douglas M. "Genetic testingAbout epilepsy and genetics." Neurology 92, no. 5 (January 28, 2019): e523-e526. http://dx.doi.org/10.1212/wnl.0000000000006863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shah, Ebrahim. "Biostatistical Genetics and Genetic Epidemiology." International Journal of Epidemiology 32, no. 3 (June 2003): 474. http://dx.doi.org/10.1093/ije/dyg171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Raol, Jitendra R., and Abhijit Jalisatgi. "From genetics to genetic algorithms." Resonance 1, no. 8 (August 1996): 43–54. http://dx.doi.org/10.1007/bf02837022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Morin-Chassé, Alexandre. "Behavioral Genetics, Population Genetics, and Genetic Essentialism." Science & Education 29, no. 6 (November 4, 2020): 1595–619. http://dx.doi.org/10.1007/s11191-020-00166-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lynch, Henry T., and Jane F. Lynch. "Breast cancer genetics: Family history, heterogeneity, molecular genetic diagnosis, and genetic counseling." Current Problems in Cancer 20, no. 6 (November 1996): 329–65. http://dx.doi.org/10.1016/s0147-0272(96)80010-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Brower, Vicki. "From Genetic Systems to Seattle Genetics." Nature Biotechnology 16, no. 6 (June 1998): 508. http://dx.doi.org/10.1038/nbt0698-508b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Burke, Donald S., Kenneth A. De Jong, John J. Grefenstette, Connie Loggia Ramsey, and Annie S. Wu. "Putting More Genetics into Genetic Algorithms." Evolutionary Computation 6, no. 4 (December 1998): 387–410. http://dx.doi.org/10.1162/evco.1998.6.4.387.

Full text
Abstract:
The majority of current genetic algorithms (GAs), while inspired by natural evolutionary systems, are seldom viewed as biologically plausible models. This is not a criticism of GAs, but rather a reflection of choices made regarding the level of abstraction at which biological mechanisms are modeled, and a reflection of the more engineering-oriented goals of the evolutionary computation community. Understanding better and reducing this gap between GAs and genetics has been a central issue in an interdisciplinary project whose goal is to build GA-based computational models of viral evolution. The result is a system called Virtual Virus (VIV). VIV incorporates a number of more biologically plausible mechanisms, including a more flexible genotype-to-phenotype mapping. In VIV the genes are independent of position, and genomes can vary in length and may contain noncoding regions, as well as duplicative or competing genes. Initial computational studies with VIV have already revealed several emergent phenomena of both biological and computational interest. In the absence of any penalty based on genome length, VIV develops individuals with long genomes and also performs more poorly (from a problem-solving viewpoint) than when a length penalty is used. With a fixed linear length penalty, genome length tends to increase dramatically in the early phases of evolution and then decrease to a level based on the mutation rate. The plateau genome length (i.e., the average length of individuals in the final population) generally increases in response to an increase in the base mutation rate. When VIV converges, there tend to be many copies of good alternative genes within the individuals. We observed many instances of switching between active and inactive genes during the entire evolutionary process. These observations support the conclusion that noncoding regions serve as scratch space in which VIV can explore alternative gene values. These results represent a positive step in understanding how GAs might exploit more of the power and flexibility of biological evolution while simultaneously providing better tools for understanding evolving biological systems.
APA, Harvard, Vancouver, ISO, and other styles
22

Megson, G. M., and I. M. Bland. "Generic systolic array for genetic algorithms." IEE Proceedings - Computers and Digital Techniques 144, no. 2 (1997): 107. http://dx.doi.org/10.1049/ip-cdt:19971126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lerner, Barbara, Carol Christianson, Lori Engler-Todd, Sara Goldman, Karen Greendale, Julianne M. O'Daniel, Myra I. Roche, and Kerry Silvey. "Genetic Library: Genetics and Public Health." Journal of Genetic Counseling 13, no. 3 (May 18, 2004): 259–66. http://dx.doi.org/10.1023/b:jogc.0000027960.06945.48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Miller, Matthew A., John H. Fingert, and Daniel I. Bettis. "Genetics and genetic testing for glaucoma." Current Opinion in Ophthalmology 28, no. 2 (March 2017): 133–38. http://dx.doi.org/10.1097/icu.0000000000000344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hamby, Lori, and Constance A. Griffin. "Genetic Library Video Reviews: Cancer Genetics." Journal of Genetic Counseling 12, no. 2 (April 2003): 185–92. http://dx.doi.org/10.1023/a:1022615408076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Harris, Rodney. "Genetic counselling and the new genetics." Trends in Genetics 4, no. 2 (February 1988): 52–56. http://dx.doi.org/10.1016/0168-9525(88)90067-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Philip, Adejumo A. "P3-456: Genetics and genetic testing." Alzheimer's & Dementia 4 (July 2008): T655. http://dx.doi.org/10.1016/j.jalz.2008.05.2027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lois, Carlos, and James O. Groves. "Genetics in non-genetic model systems." Current Opinion in Neurobiology 22, no. 1 (February 2012): 79–85. http://dx.doi.org/10.1016/j.conb.2011.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lunn, Mitchell R., and Brent R. Stockwell. "Chemical Genetics and Orphan Genetic Diseases." Chemistry & Biology 12, no. 10 (October 2005): 1063–73. http://dx.doi.org/10.1016/j.chembiol.2005.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sprenger, G. A., M. A. Typas, and C. Drainas. "Genetics and genetic engineering ofZymomonas mobilis." World Journal of Microbiology & Biotechnology 9, no. 1 (January 1993): 17–24. http://dx.doi.org/10.1007/bf00656509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yan, H. "GENETICS: Genetic Testing- Present and Future." Science 289, no. 5486 (September 15, 2000): 1890–92. http://dx.doi.org/10.1126/science.289.5486.1890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wierzbicki, Anthony S. "Genetics and molecular biology: Genetic epidemiology." Current Opinion in Lipidology 15, no. 6 (December 2004): 699–701. http://dx.doi.org/10.1097/00041433-200412000-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jamieson, Annie, and Gregory Radick. "Genetic Determinism in the Genetics Curriculum." Science & Education 26, no. 10 (July 6, 2017): 1261–90. http://dx.doi.org/10.1007/s11191-017-9900-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nakamura, Yusuke. "Approaching genetic diseases by “reverse genetics”." Japanese journal of human genetics 35, no. 1 (March 1990): 20–21. http://dx.doi.org/10.1007/bf01883169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bishop, Kathleen Kirk. "Psychosocial Aspects of Genetic Disorders: Implications for Practice." Families in Society: The Journal of Contemporary Social Services 74, no. 4 (April 1993): 207–12. http://dx.doi.org/10.1177/104438949307400402.

Full text
Abstract:
Generic disorders can potentially interfere with interpersonal relationships and normal social develop' ment as well as disrupt family life. As scientific and technological advances in medical genetics provide health professionals with a more comprehensive understanding of the origin, implications, and management of genetic disorders, professionals acquire expanded responsibilities. Social workers, who are often involved with individuals and families on a long-term basis, play an instrumental role in helping individuals and families make the necessary emotional and social adjustments following diagnosis of a genetic disease, understand the ramifications of the diagnosis, cope with the accompanying concerns, and find me appropriate services.
APA, Harvard, Vancouver, ISO, and other styles
36

Jensen, Pamela. "Genetic Privacy: The Potential for Genetic Discrimination in Insurance." Victoria University of Wellington Law Review 29, no. 2 (April 1, 1999): 347. http://dx.doi.org/10.26686/vuwlr.v29i2.6035.

Full text
Abstract:
The threat of modern genetics has been perceived as coming, rather dramatically, from genetic engineering, but the less flashy field of medical genetic testing poses significant and immediate issues. This article discusses the potential for breach of confidentiality or invasion of privacy through the acquisition of information, the disclosure of information, and the potential for prejudicial use of that information by third parties. The author concludes that New Zealand's ethical and legal aspects of human genetics needed a review at the time of writing, recommending an advisory group to be set up to monitor developments in human genetics, facilitate discussion with all relevant persons, groups and bodies, and report on issues arising from new developments in human genetics that can be expected to have wider ethical, social, economic, and legal consequences. However, the author does not find it necessary to enact genetic-specific legislation.
APA, Harvard, Vancouver, ISO, and other styles
37

Maryuningsih, Yuyun, Topik Hidayat, R. Riandi, and Nuryani Y. Rustaman. "Application of genetic problem base online discussion to improve genetic literacy of prospective teachers." JPBI (Jurnal Pendidikan Biologi Indonesia) 8, no. 1 (March 31, 2022): 65–76. http://dx.doi.org/10.22219/jpbi.v8i1.19035.

Full text
Abstract:
Genetics is a subject that is quite difficult according to students. Various strategies and methods are used to understand genetics in learning to have genetic literacy. One way of increasing genetic literacy in students is to apply genetic problems based on an online discussion in genetics lectures. The research was conducted to determine the effect of genetic problem-based online discussion on increasing students' genetic literacy. The research design used a pre-posttest control group design. It was carried out experimentally on three treatment groups: the genetic problem base of students, the genetic problem base of educators - students, and the genetic problem base of educators. According to the genetic literacy domain, genetic literacy is measured through multiple-choice tests, including genetic models, meiotic models, and molecular models. Manova analyzed the value of gene literacy, and a post-doc further test was performed to differentiate genetic literacy in the three treatment groups. The results showed that genetic literacy increased in all treatment groups, with the highest increase in the group that applied a genetic problem base focused on student problems.
APA, Harvard, Vancouver, ISO, and other styles
38

Kučera, L. "D.C. Rao & M.A. Province – Advances in Genetics,Vol. 42, Genetic Dissection of Complex Traits." Czech Journal of Genetics and Plant Breeding 38, No. 1 (July 30, 2012): 64. http://dx.doi.org/10.17221/6112-cjgpb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Siváková, Daniela, Marta Cvíčelová, Karol Hatiar, and Hubert Walter. "Genetic studies in a North Slovakian isolate: Chmel'nica. 4. Anthropometric, genetical and behavioural characters." Zeitschrift für Morphologie und Anthropologie 80, no. 3 (November 16, 1995): 361–70. http://dx.doi.org/10.1127/zma/80/1995/361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Paaby, Annalise, and Greg Gibson. "Cryptic Genetic Variation in Evolutionary Developmental Genetics." Biology 5, no. 2 (June 13, 2016): 28. http://dx.doi.org/10.3390/biology5020028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Curnow, R. N., A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir. "Plant Population Genetics, Breeding, and Genetic Resources." Biometrics 46, no. 4 (December 1990): 1241. http://dx.doi.org/10.2307/2532478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Guoliang, Ruirui Ji, Wenxin Zou, Daniel J. Penny, and Yuxin Fan. "Inherited Cardiomyopathies: Genetics and Clinical Genetic Testing." Cardiovascular Innovations and Applications 2, no. 2 (February 1, 2017): 297–308. http://dx.doi.org/10.15212/cvia.2017.0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kuchuk, N. V. "Cell genetic engineering: Transmission genetics of plants." Cytology and Genetics 51, no. 2 (March 2017): 103–7. http://dx.doi.org/10.3103/s0095452717020062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Aslamkhan, Muhammad. "Clinical Genetics and Genetic Counselling in Pakistan." Journal of Genes and Cells 1, no. 2 (April 2, 2015): 31. http://dx.doi.org/10.15562/gnc.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

FRANK, D. W., and T. C. ZAHRT. "Genetics and Genetic Manipulation in Francisella Tularensis." Annals of the New York Academy of Sciences 1105, no. 1 (March 29, 2007): 67–97. http://dx.doi.org/10.1196/annals.1409.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dawes, Ian W. "Yeast genetics: Genetic control mechanisms: transcriptional twisting." Nature 324, no. 6094 (November 1986): 214. http://dx.doi.org/10.1038/324214a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Moreno, Victor. "Book Review: Biostatistical genetics and genetic epidemiology." Statistical Methods in Medical Research 14, no. 1 (February 2005): 115–16. http://dx.doi.org/10.1177/096228020501400109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lacombe, Didier. "Teeth anomalies and genetics, including genetic syndromes." European Journal of Human Genetics 22, no. 11 (October 16, 2014): 1339. http://dx.doi.org/10.1038/ejhg.2014.98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lyons, Leslie A. "Feline Genetics: Clinical Applications and Genetic Testing." Topics in Companion Animal Medicine 25, no. 4 (November 2010): 203–12. http://dx.doi.org/10.1053/j.tcam.2010.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Fulton, J. E. "GENETICS: Poultry Genetic Resources--Operation Rescue Needed." Science 300, no. 5626 (June 13, 2003): 1667–68. http://dx.doi.org/10.1126/science.1085407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography