Academic literature on the topic 'Genetic risk of disease'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Genetic risk of disease.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Genetic risk of disease"
McDonald, B. A., and C. Linde. "Disease resistance and pathogen population genetic." Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (January 1, 2002): 245–48. http://dx.doi.org/10.17221/10375-pps.
Full textRoberts, Robert. "Molecular genetics: Cardiac disease and risk-related genes-Genetic risk factors." Clinical Cardiology 18, S4 (September 1995): IV13—IV19. http://dx.doi.org/10.1002/clc.4960181604.
Full textAlonso, Lorena, Ignasi Morán, Cecilia Salvoro, and David Torrents. "In Search of Complex Disease Risk through Genome Wide Association Studies." Mathematics 9, no. 23 (November 30, 2021): 3083. http://dx.doi.org/10.3390/math9233083.
Full textBloch, Michael J. "Genetic risk scores and coronary heart disease risk." Journal of the American Society of Hypertension 9, no. 8 (August 2015): 580–81. http://dx.doi.org/10.1016/j.jash.2015.06.010.
Full textSkrzypa, Marzena, Natalia Potocka, Halina Bartosik-Psujek, and Izabela Zawlik. "Genetic risk factors of Alzheimer’s disease." European Journal of Clinical and Experimental Medicine 17, no. 1 (2019): 57–66. http://dx.doi.org/10.15584/ejcem.2019.1.10.
Full textJostins, Luke, and Jeffrey C. Barrett. "Genetic risk prediction in complex disease." Human Molecular Genetics 20, R2 (August 25, 2011): R182—R188. http://dx.doi.org/10.1093/hmg/ddr378.
Full textSecko, D. "Alzheimer's disease: genetic variables and risk." Canadian Medical Association Journal 172, no. 5 (March 1, 2005): 627. http://dx.doi.org/10.1503/cmaj.050111.
Full textBillingsley, K. J., S. Bandres-Ciga, S. Saez-Atienzar, and A. B. Singleton. "Genetic risk factors in Parkinson’s disease." Cell and Tissue Research 373, no. 1 (March 13, 2018): 9–20. http://dx.doi.org/10.1007/s00441-018-2817-y.
Full textAlliey, Ney. "Genetic Variants And Risk Of Disease." European Neuropsychopharmacology 29 (2019): S715—S716. http://dx.doi.org/10.1016/j.euroneuro.2017.06.025.
Full textBradshaw, Elizabeth. "CD33 GENETIC RISK IN ALZHEIMER'S DISEASE." Alzheimer's & Dementia 13, no. 7 (July 2017): P1448. http://dx.doi.org/10.1016/j.jalz.2017.07.488.
Full textDissertations / Theses on the topic "Genetic risk of disease"
Tilley, Louise. "Genetic risk factors in sporadic Alzheimer's disease." Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311748.
Full textSalfati, Elias Levy Itshak. "Genetic determinants of cardiovascular disease : heritability and genetic risk score." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05S014/document.
Full textComplex diseases such as cardiovascular disease (CVD) are influenced by both genetic and environmental factors. Estimation of an individual’s cardiovascular risk usually involves measurement of risk factors correlated with risk of CVD (e.g. age, sex, smoking, blood pressure, and total cholesterol). Lately, several biomarkers have been evaluated for their ability to improve prediction of cardiovascular disease beyond traditional risk factors. The interest in novel loci is propelled notably by emerging discoveries from the advent of genome-Wide association studies (GWAS) of genetic variants associated with risk for common diseases. GWAS has greatly enhanced our knowledge of the genetic architecture of cardiovascular disease, yielding over 50 variants confirmed to be associated with CVD to date, as well as over 200 associated with traditional cardiovascular risk factors (e.g. lipids, blood pressure, body mass index, and type 2 diabetes mellitus). This recent and continuing success in discovering increasing numbers of robustly associated genetic markers has led to reassessment of whether genetic data can provide clinically useful information by refining risk prediction and moderating disease risk through a more efficient application of prevention strategies. In this thesis, we first address novel approach to survey the genetic architecture of hypertension (i.e. major risk factor for premature CVD), then construct risk prediction models for coronary artery disease (CAD; i.e. most common type of CVD) and finally establish a common genetic basis of the strongest predictor of clinical complications of CAD, subclinical atherosclerosis, to add incremental prognostic value above traditional risk scores across a range of ages. We show that, for first visit measurements, the heritability is ~25%/~45% and ~30%/~37% for systolic (SBP) and diastolic blood pressure (DBP) in European (N=8,901) and African (N=2,860) ancestry individuals from the Atherosclerosis Risk in Communities (ARIC) cohort, respectively, in accord with prior studies. Then we present a means to combine a polygenic risk score - genetic effects among an ensemble of markers - with an independent assessment of clinical risk using a log-Link function. We apply the method to the prediction of coronary heart disease (CHD) in the ARIC cohort. The addition of a genetic risk score (GRS) to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC and subsequently reveal how this genetic information influences risk assessment and thus potentially clinical management. Finally, Among 1561 cases and 5068 controls, from several clinical and genetic datasets available through the NCBI's database of Genotypes and Phenotypes (dbGAP), we found a one SD increase in the genetic risk score of 49 CAD SNPs was associated with a 28% increased risk of having advanced subclinical coronary atherosclerosis (p = 1.43 x 10-16). This increase in risk was significant in every 15-Year age stratum (.01 > p > 9.4 x 10-7) and was remarkably similar across all age strata (p test of heterogeneity = 0.98). We obtained near identical results and levels of significance when we restricted the genetic risk score to 32 SNPs not associated with traditional risk factors. Accordingly, common variation largely recapitulates the known heritability of blood pressure traits. The vast majority of this heritability varies by chromosome, depending on its length, and is largely concentrated in intronic and intergenic regions of the genome but widely distributed across the common allele frequency spectrum. Respectively, our proposed method to combine genetic information at established susceptibility loci with a nongenetic risk prediction tool facilitates the standardized incorporation of a GRS in risk assessment. (...)
Hughes, Katherine Carlson. "Dietary and Genetic Risk Factors for Parkinson's Disease." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:27201728.
Full textDuan, Qingling. "Pharmacogenomics and genetic risk factors of coronary artery disease." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115665.
Full textWe also conducted a genetic investigation of depression among CAD patients to identify common susceptibility loci which might explain the correlation between these diseases. Our candidate gene association study identified a polymorphism (rs216873) in the von Willebrand factor gene that was significantly associated (P = 7.4 x 10-5) with elevated depressive symptoms in our CAD cohort. These results suggest that risk factors for atherosclerosis also underlie susceptibility to depression among CAD patients.
This dissertation contributes to the field of genetics and pharmacogenomics of CAD. A better understanding of the toxic effects of CAD drugs will assist in the development of safer and more effective treatments. In addition, our results may facilitate clinical assays to identify individuals who are susceptible to angioedema prior to ACEi or estrogen therapy. Finally, our genetic investigation of depression in CAD patients reveals a novel drug target (VWF) for treatment of depression in cardiac cases.
Ossei-Gerning, Nicholas. "Genetic polymorphisms and the risk of coronary artery disease." Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391615.
Full textHayashi, Satomi. "HYPERHOMOCYSTEINEMIA: GENETIC POLYMORPHISMS AND RISK OF CORONARY ARTERY DISEASE." Thesis, The University of Arizona, 2003. http://hdl.handle.net/10150/610473.
Full textRomagnoli, Martina <1987>. "Genetic, immune and environmental risk factors in Alzheimer's disease." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amsdottorato.unibo.it/7930/1/Romagnoli_Martina_tesi.pdf.
Full textYlönen, S. (Susanna). "Genetic risk factors for movement disorders in Finland." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526223988.
Full textTiivistelmä Parkinsonin tauti ja Huntingtonin tauti ovat hermostoa rappeuttavia eteneviä liikehäiriösairauksia, jotka tyypillisesti ilmenevät aikuisiällä. Tässä tutkimuksessa selvitettiin näiden kahden liikehäiriösairauden geneettisiä riskitekijöitä suomalaisilla potilailla. Tutkimme potilaita, joilla oli varhain alkava Parkinsonin tauti tai myöhään alkava Parkinsonin tauti sekä väestökontrolleja. GBA-geenin p.L444P mutaation havaittiin lisäävän Parkinsonin taudin riskiä. Kaksi Parkinsonin tautia sairastavaa potilasta oli yhdistelmäheterotsygootteja haitallisten POLG1-geenin varianttien suhteen ja harvinaiset POLG1 CAG toistojaksovariantit assosioituivat Parkinsonin tautiin. Tutkittuja variantteja SMPD1-, LRRK2- ja CHCHD10-geeneissä ei löydetty tästä aineistosta lainkaan, mikä viittaa siihen, että ne puuttuvat suomalaisesta väestöstä tai ovat harvinaisia. Huntingtonin tautia sairastavilta potilailta tutkittiin HTT-geenin haploryhmiä ja niiden vaikutusta Huntingtonin tautia aiheuttavan pidentyneen toistojakson epästabiiliuteen. Haploryhmä A oli suomalaisessa väestössä harvinainen verrattuna eurooppalaiseen väestöön ja se oli huomattavasti yleisempi Huntingtonin tautipotilailla kuin väestössä. Toistojakson epästabiiliuteen vaikuttivat tietyt HTT-geenin haplotyypit samoin kuin sen vanhemman sukupuoli, jolta pidentynyt toistojakso periytyy. POLG1 yhdistelmäheterotsygoottien katsottiin aiheuttavat Parkinsonin tautia ja harvinaisten POLG1 CAG toistojaksovarianttien todettiin assosioituvan Parkinsonin tautiin Suomessa. GBA p.L444P mutaatio merkittävästi yleisempi Parkinsonin tautipotilailla kuin kontrolleilla, mikä viittaa siihen, että se on Parkinsonin taudin riskitekijä. Huntingtonin tautiin assosioituvan haploryhmä A:n matala frekvenssi selittää taudin vähäistä esiintyvyyttä Suomessa. Paternaalinen periytyminen ja haplotyyppi A1 lisäsivät HTT-geenin toistojakson pidentymisen riskiä. Liikehäiriösairauksilla todettiin Suomessa osittain samanlaisia riskitekijöitä kuin muualla Euroopassa, mutta kaikkia tutkittuja variantteja emme havainneet
Chen, Lu-hua, and 陈璐华. "Genetic risk factors for late-onset Alzheimer's disease in Chinese." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49617588.
Full textpublished_or_final_version
Biochemistry
Doctoral
Doctor of Philosophy
Sarwar, Nadeem. "Emerging molecular and genetic risk factors for coronary heart disease." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611549.
Full textBooks on the topic "Genetic risk of disease"
Petrakis, Peter L. Alcoholism, and inherited disease. Rockville, Md: U.S. Dept. of Health and Human Services, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute on Alcohol Abuse and Alcoholism, 1985.
Find full textJ, Alberts Mark, ed. Genetics of cerebrovascular disease. Armonk, NY: Futura Pub. Co., 1999.
Find full textUri, Goldbourt, De Faire Ulf, and Berg Kåre, eds. Genetic factors in coronary heart disease. Dordrecht: Kluwer Academic, 1994.
Find full textKåre, Berg, ed. Genetic approaches of coronary heart disease and hypertension. Berlin: Springer-Verlag, 1991.
Find full textGormley, Myra Vanderpool. Family diseases: Are you at risk? Baltimore, MD: Genealogical Pub. Co., 1989.
Find full textUeland, Per Magne, and Rima Rozen. MTHFR polymorphisms and disease. Georgetown, Tex: Landes Bioscience, 2005.
Find full textMagne, Ueland Per, and Rozen Rima, eds. MTHFR polymorphisms and disease. Georgetown, Tex: Landes Bioscience/ Eurekah.com, 2005.
Find full textMapping fate: A memoir of family, risk, and genetic research. New York: Times Books, 1995.
Find full textWexler, Alice. Mapping fate: A memoir of family, risk, and genetic research. Berkeley: University of California Press, 1995.
Find full textGenetic susceptibility to cancer. Boston: Kluwer Academic, 1998.
Find full textBook chapters on the topic "Genetic risk of disease"
Böger, Carsten A., and Peter R. Mertens. "Genetic Risk Factors for Diabetic Nephropathy." In Diabetes and Kidney Disease, 29–44. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118494073.ch3.
Full textMarigorta, Urko M. "Genetic Risk Prediction in IBD." In Molecular Genetics of Inflammatory Bowel Disease, 141–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28703-0_7.
Full textCombarros, Onofre. "Genetic Risk Factors for Alzheimer’s Disease." In Neurodegenerative Diseases, 49–64. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6380-0_4.
Full textBerg, K. "Genetic Risk Factors for Atherosclerotic Disease." In Human Genetics, 326–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71635-5_40.
Full textTsang, Kin-Lun, Zhe-Hui Feng, Hong Jiang, Shu-Leong Ho, and David B. Ramsden. "Genetic Risk Factors in Parkinson’s Disease." In Mapping the Progress of Alzheimer’s and Parkinson’s Disease, 251–57. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-0-306-47593-1_42.
Full textKhan, Mosin S., Iqra Farooq, Sunia Faiz, Suhail S. Lone, Sabhiya Majid, and Waseem Qureshi. "Cytokine Polymorphisms and Their Role in Modulating Cancer Risk." In Genetic Polymorphism and Disease, 459–75. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003246244-21.
Full textHollingworth, Paul, and Julie Williams. "Genetic Risk Factors for Dementia." In The Handbook of Alzheimer's Disease and Other Dementias, 195–234. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444344110.ch6.
Full textDallongeville, Jean. "Apolipoprotein E Polymorphism and Atherosclerosis Risk." In Genetic factors in coronary heart disease, 289–97. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1130-0_19.
Full textSong, Yiqing, Cuilin Zhang, Lu Wang, Qi Dai, and Simin Liu. "Magnesium Intake, Genetic Variants, and Diabetes Risk." In Magnesium in Human Health and Disease, 103–18. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-044-1_6.
Full textWorkman, Heather. "Overview of Cerebrovascular Disease and Stroke Risk Factors." In Genetic Counseling for Adult Neurogenetic Disease, 133–41. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7482-2_10.
Full textConference papers on the topic "Genetic risk of disease"
Hunter, David J. "Prediction of disease risk using common genetic variants." In AACR International Conference: Molecular Diagnostics in Cancer Therapeutic Development– Sep 27-30, 2010; Denver, CO. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/diag-10-pl5-2.
Full textMishra, Sushruta, Brojo Kishore Mishra, and Hrudaya Kumar Tripathy. "A neuro-genetic model to predict hepatitis disease risk." In 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2015. http://dx.doi.org/10.1109/iccic.2015.7435719.
Full textKurtović-Kozarić, Amina. "GENETICS OF CARDIOMYOPATHY." In International Scientific Symposium “Diagnostics in Cardiology and Grown-Up Congenital Heart Disease (GUCH)”. Academy of Sciences and Arts of Bosnia and Herzegovina, 2021. http://dx.doi.org/10.5644/pi2021.199.01.
Full textFrancis-Lyon, Patricia, Shashank Belvadi, and Fu-Yuan Cheng. "Detection and characterization of interactions of genetic risk factors in disease." In Python in Science Conference. SciPy, 2013. http://dx.doi.org/10.25080/majora-8b375195-007.
Full textSnyder, J., A. Weston, and E. Demchuk. "332. Molecular Basis of Genetic Risk Assessment in Chronic Beryllium Disease." In AIHce 2004. AIHA, 2004. http://dx.doi.org/10.3320/1.2758364.
Full textXu, Yu, Chonghao Wang, Zeming Li, Yunpeng Cai, Ouzhou Young, Aiping Lyu, and Lu Zhang. "A machine learning model for disease risk prediction by integrating genetic and non-genetic factors." In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9994925.
Full textDijkstra, Akkelies, Marike Boezen, Joanna Smolonska, Pieter Zanen, Ciska Wijmenga, Harry Groen, Jorgen Vestbo, and Dirkje Postma. "Genetic Risk Factors For Chronic Mucus Hypersecretion In Chronic Obstructive Pulmonary Disease." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a5865.
Full textBidstrup Leffers, Henrik Christian, David Westergaard, Karina Banasik, and Søren Jacobsen. "P90 Genetic risk, smoking and the development of systemic autoimmune rheumatic disease." In 12th European Lupus Meeting. Lupus Foundation of America, 2020. http://dx.doi.org/10.1136/lupus-2020-eurolupus.134.
Full textRezende, Rubens Barbosa, and Larissa Teodoro. "Presence of genetic polymorphisms may impact on predisposition to Parkinson’s disease." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.004.
Full textEvans, Jacquelyn M., Heidi G. Parker, Jocelyn Plassais, Gerard R. Rutteman, and Elaine A. Ostrander. "Abstract 829: Genetic risk factors for histiocytic sarcoma in a canine disease model." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-829.
Full textReports on the topic "Genetic risk of disease"
Krauss, Ronald. CRADA Final Report: Genetic Testing for Evaluation of Heart Disease Risk. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/1157021.
Full textWang, Ying yuan, Zechang Chen, Luxin Zhang, Shuangyi Chen, Zhuomiao Ye, Tingting Xu, and Yingying Zhang c. A systematic review and network meta-analysis: Role of SNPs in predicting breast carcinoma risk. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2022. http://dx.doi.org/10.37766/inplasy2022.2.0092.
Full textCao, Xianling, Xuanyou Zhou, Naixin Xu, Songchang Chang, and Chenming Xu. Association of IL-4 and IL-10 Polymorphisms with Preterm Birth Susceptibility: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0044.
Full textZhao, Bingyu, Saul Burdman, Ronald Walcott, and Gregory E. Welbaum. Control of Bacterial Fruit Blotch of Cucurbits Using the Maize Non-Host Disease Resistance Gene Rxo1. United States Department of Agriculture, September 2013. http://dx.doi.org/10.32747/2013.7699843.bard.
Full textReecy, James M., and Matt Schneider. Heritability of Genetic Resistance to Bovine Respiratory Disease. Ames: Iowa State University, Digital Repository, 2006. http://dx.doi.org/10.31274/farmprogressreports-180814-757.
Full textMengak, Michael T. Wildlife Translocation. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, July 2018. http://dx.doi.org/10.32747/2018.7210105.ws.
Full textGelmann, Edward P. Genetic Risk Factor for Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada434784.
Full textGelmann, Edward P. Genetic Risk Factor for Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada414867.
Full textGardner, Murray B. Genetic Immunization for Lentiviral Immunodeficiency Virus Infection and Disease. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada361721.
Full textSonia Vallabh & Eric Minikel, Sonia Vallabh &. Eric Minikel. Can anle138b delay the onset of genetic prion disease? Experiment, May 2013. http://dx.doi.org/10.18258/0558.
Full text