Dissertations / Theses on the topic 'Genetic Programming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Genetic Programming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lones, Michael Adam. "Enzyme genetic programming : modelling biological evolvability in genetic programming." Thesis, University of York, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399653.
Full textKOSHIYAMA, ADRIANO SOARES. "GPFIS: A GENERIC GENETIC-FUZZY SYSTEM BASED ON GENETIC PROGRAMMING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26560@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Sistemas Fuzzy-Genéticos compreendem uma área que une Sistemas de Inferência Fuzzy e Meta-Heurísticas prevalentes nos conceitos de seleção natural e recombinação genética. Esta é de grande interesse para a comunidade científica, pois propicia a descoberta de conhecimento em áreas onde a compreensão do fenômeno em estudo é exíguo, além de servir de apoio à decisão para gestores público-privados. O objetivo desta dissertação é desenvolver um novo Sistema Fuzzy-Genético Genérico, denominado Genetic Programming Fuzzy Inference System (GPFIS). O principal aspecto do modelo GPFIS são as componentes do seu processo de Inferência Fuzzy. Esta estrutura é composta em sua base pela Programação Genética Multigênica e pretende: (i ) possibilitar o uso de operadores de agregação, negação e modificadores linguísticos de forma simplificada; (ii ) empregar heurísticas de definição do consequente mais apropriado para uma parte antecedente; e (iii ) usar um procedimento de defuzzificação, que induzido pela forma de fuzzificação e sobre determinadas condições, pode proporcionar uma estimativa mais acurada. Todas estas são contribuições que podem ser estendidas a outros Sistemas Fuzzy-Genéticos. Para demonstrar o aspecto genérico, o desempenho e a importância de cada componente para o modelo proposto, são formuladas uma série de investigações empíricas. Cada investigação compreende um tipo de problema: Classificação, Previsão, Regressão e Controle. Para cada problema, a melhor configuração obtida durante as investigações é usada no modelo GPFIS e os resultados são comparados com os de outros Sistemas Fuzzy-Genéticos e modelos presentes na literatura. Por fim, para cada problema é apresentada uma aplicação detalhada do modelo GPFIS em um caso real.
Genetic Fuzzy Systems constitute an area that brings together Fuzzy Inference Systems and Meta-Heuristics that are often related to natural selection and genetic recombination. This area attracts great interest from the scientific community, due to the knowledge discovery capability in situations where the comprehension of the phenomenon under analysis is lacking. It can also provides support to decision makers. This dissertation aims at developing a new Generic Genetic Fuzzy System, called Genetic Programming Fuzzy Inference System (GPFIS). The main aspects of GPFIS model are the components which are part of its Fuzzy Inference procedure. This structure is basically composed of Multi-Gene Genetic Programming and intends to: (i ) apply aggregation operators, negation and linguistic hedges in a simple manner; (ii ) make use of heuristics to define the consequent term most appropriate to the antecedent part; (iii ) employ a defuzzification procedure that, driven by the fuzzification step and under some assumptions, can provide a most accurate estimate. All these features are contributions that can be extended to other Genetic Fuzzy Systems. In order to demonstrate the general aspect of GPFIS, its performance and the relevance of each of its components, several investigations have been performed. They deal with Classification, Forecasting, Regression and Control problems. By using the best configuration obtained for each of the four problems, results are compared to other Genetic Fuzzy Systems and models in the literature. Finally, applications of GPFIS actual cases in each category is reported.
Martin, Peter N. "Genetic programming in hardware." Thesis, University of Essex, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272585.
Full textCavill, Rachel. "Multi-chromosomal genetic programming." Thesis, University of York, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437617.
Full textSuleman, Hussein. "Genetic Programming in Mathematica." Thesis, University of Durban-Westville, 1997. http://hdl.handle.net/10919/71533.
Full textSteinhoff, Robert J. "A Performance Comparison of Tree-Based Genetic Programming versus Stack-Based Genetic Programming versus Stack-Based Genetic Programming Using the Java Virtual Machine." NSUWorks, 2000. http://nsuworks.nova.edu/gscis_etd/859.
Full textSmith, Steven Lee Al-Mahmood Mohammed Abdul latif. "Knowledge discovery using genetic programming /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA276224.
Full textThesis advisor(s): B. Ramesh ; William R. Gates. "December 1993." Includes bibliographical references. Also available online.
Johansson, Magnus. "Financial application of genetic programming." Thesis, Linköping University, Department of Computer and Information Science, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17091.
Full textNorin, Martin. "Automatic Modularization in Genetic Programming." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-150822.
Full textSmith, Steven Lee, and Mohammed Abdul latif Al-Mahmood. "Knowledge discovery using genetic programming." Thesis, Monterey, California. Naval Postgraduate School, 1993. http://hdl.handle.net/10945/26608.
Full textHinchliffe, Mark. "Dynamic modelling using genetic programming." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391407.
Full textSearson, Dominic Patrick. "Nonlinear PLS using genetic programming." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246644.
Full textZheng, QiZhi. "Genetic programming based structure optimisation." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417724.
Full textDimopoulos, Christos. "Genetic programming for manufacturing optimisation." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327668.
Full textDeakin, Anthony Grayham. "Evolving strategies with genetic programming." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272651.
Full textKuscu, Ibrahim. "Evolutionary generalisation and genetic programming." Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285062.
Full textDIAS, DOUGLAS MOTA. "QUANTUM-INSPIRED LINEAR GENETIC PROGRAMMING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=17544@1.
Full textA superioridade de desempenho dos algoritmos quânticos, em alguns problemas específicos, reside no uso direto de fenômenos da mecânica quântica para realizar operações com dados em computadores quânticos. Esta característica fez surgir uma nova abordagem, denominada Computação com Inspiração Quântica, cujo objetivo é criar algoritmos clássicos (executados em computadores clássicos) que tirem proveito de princípios da mecânica quântica para melhorar seu desempenho. Neste sentido, alguns algoritmos evolutivos com inspiração quântica tem sido propostos e aplicados com sucesso em problemas de otimização combinatória e numérica, apresentando desempenho superior àquele dos algoritmos evolutivos convencionais, quanto à melhoria da qualidade das soluções e à redução do número de avaliações necessárias para alcançá-las. Até o presente momento, no entanto, este novo paradigma de inspiração quântica ainda não havia sido aplicado à Programação Genética (PG), uma classe de algoritmos evolutivos que visa à síntese automática de programas de computador. Esta tese propõe, desenvolve e testa um novo modelo de algoritmo evolutivo com inspiração quântica, denominado Programação Genética Linear com Inspiração Quântica (PGLIQ), para a evolução de programas em código de máquina. A Programação Genética Linear é assim denominada porque cada um dos seus indivíduos é representado por uma lista de instruções (estruturas lineares), as quais são executadas sequencialmente. As contribuições deste trabalho são o estudo e a formulação inédita do uso do paradigma da inspiração quântica na síntese evolutiva de programas de computador. Uma das motivações para a opção pela evolução de programas em código de máquina é que esta é a abordagem de PG que, por oferecer a maior velocidade de execução, viabiliza experimentos em larga escala. O modelo proposto é inspirado em sistemas quânticos multiníveis e utiliza o qudit como unidade básica de informação quântica, o qual representa a superposição dos estados de um sistema deste tipo. O funcionamento do modelo se baseia em indivíduos quânticos, que representam a superposição de todos os programas do espaço de busca, cuja observação gera indivíduos clássicos e os programas (soluções). Nos testes são utilizados problemas de regressão simbólica e de classificação binária para se avaliar o desempenho da PGLIQ e compará-lo com o do modelo AIMGP (Automatic Induction of Machine Code by Genetic Programming), considerado atualmente o modelo de PG mais eficiente na evolução de código de máquina, conforme citado em inúmeras referências bibliográficas na área. Os resultados mostram que a Programação Genética Linear com Inspiração Quântica (PGLIQ) apresenta desempenho geral superior nestas classes de problemas, ao encontrar melhores soluções (menores erros) a partir de um número menor de avaliações, com a vantagem adicional de utilizar um número menor de parâmetros e operadores que o modelo de referência. Nos testes comparativos, o modelo mostra desempenho médio superior ao do modelo de referência para todos os estudos de caso, obtendo erros de 3 a 31% menores nos problemas de regressão simbólica, e de 36 a 39% nos problemas de classificação binária. Esta pesquisa conclui que o paradigma da inspiração quântica pode ser uma abordagem competitiva para se evoluir programas eficientemente, encorajando o aprimoramento e a extensão do modelo aqui apresentado, assim como a criação de outros modelos de programação genética com inspiração quântica.
The superior performance of quantum algorithms in some specific problems lies in the direct use of quantum mechanics phenomena to perform operations with data on quantum computers. This feature has originated a new approach, named Quantum-Inspired Computing, whose goal is to create classic algorithms (running on classical computers) that take advantage of quantum mechanics principles to improve their performance. In this sense, some quantum-inspired evolutionary algorithms have been proposed and successfully applied in combinatorial and numerical optimization problems, presenting a superior performance to that of conventional evolutionary algorithms, by improving the quality of solutions and reducing the number of evaluations needed to achieve them. To date, however, this new paradigm of quantum inspiration had not yet been applied to Genetic Programming (GP), a class of evolutionary algorithms that aims the automatic synthesis of computer programs. This thesis proposes, develops and tests a novel model of quantum-inspired evolutionary algorithm named Quantum-Inspired Linear Genetic Programming (QILGP) for the evolution of machine code programs. Linear Genetic Programming is so named because each of its individuals is represented by a list of instructions (linear structures), which are sequentially executed. The contributions of this work are the study and formulation of the novel use of quantum inspiration paradigm on evolutionary synthesis of computer programs. One of the motivations for choosing by the evolution of machine code programs is because this is the GP approach that, by offering the highest speed of execution, makes feasible large-scale experiments. The proposed model is inspired on multi-level quantum systems and uses the qudit as the basic unit of quantum information, which represents the superposition of states of such a system. The model’s operation is based on quantum individuals, which represent a superposition of all programs of the search space, whose observation leads to classical individuals and programs (solutions). The tests use symbolic regression and binary classification problems to evaluate the performance of QILGP and compare it with the AIMGP model (Automatic Induction of Machine Code by Genetic Programming), which is currently considered the most efficient GP model to evolve machine code, as cited in numerous references in this field. The results show that Quantum-Inspired Linear Genetic Programming (QILGP) presents superior overall performance in these classes of problems, by achieving better solutions (smallest error) from a smaller number of evaluations, with the additional advantage of using a smaller number of parameters and operators that the reference model. In comparative tests, the model shows average performance higher than that of the reference model for all case studies, achieving errors 3-31% lower in the problems of symbolic regression, and 36-39% in the binary classification problems. This research concludes that the quantum inspiration paradigm can be a competitive approach to efficiently evolve programs, encouraging the improvement and extension of the model presented here, as well as the creation of other models of quantum-inspired genetic programming.
Fine, Steven B. "Extensions to behavioral genetic programming." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112846.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (page 55).
In this work I introduce genetic programming [5] as a general technique to produce programs with arbitrary behavior. I discuss genetic programming and its application the task of symbolic regression. I introduce behavioral genetic programming [6] as an extension to genetic programming and explore various extensions to it. The codebase that I build is made sufficiently flexible to easily accommodate future adaptions to the behavioral genetic programming methodology. I test the performance of the implementation of behavioral genetic programming along with several extensions.
by Steven B. Fine.
M. Eng.
O'Reilly, Una-May Carleton University Dissertation Computer Science. "An analysis of genetic programming." Ottawa, 1995.
Find full textCaroli, Alberto. "Genetic Programming applications in Robotics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5860/.
Full textPreo, Alice <1990>. "Option Pricing with Genetic Programming." Master's Degree Thesis, Università Ca' Foscari Venezia, 2015. http://hdl.handle.net/10579/5981.
Full textInnes, Andrew, and andrew innes@defence gov au. "Genetic Programming for Cephalometric Landmark Detection." RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080221.123310.
Full textOumanski, Alexandre. "Object-oriented approach to genetic programming." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ39116.pdf.
Full textBrameier, Markus [Verfasser]. "On linear genetic programming / Markus Brameier." Dortmund : Universitätsbibliothek Technische Universität Dortmund, 2005. http://d-nb.info/1011533146/34.
Full textRodriguez, Adelein. "A NEAT Approach to Genetic Programming." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2379.
Full textM.S.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Engineering MSCpE
Char, Kalyani Govinda. "Constructivist artificial intelligence with genetic programming." Thesis, University of Glasgow, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265641.
Full textHiden, Hugo George. "Data-based modelling using genetic programming." Thesis, University of Newcastle Upon Tyne, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246137.
Full textAhluwalia, Manu. "Co-evolving functions in genetic programming." Thesis, University of the West of England, Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322427.
Full textSILVA, CLEOMAR PEREIRA DA. "MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24129@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
A Programação Genética permite que computadores resolvam problemas automaticamente, sem que eles tenham sido programados para tal. Utilizando a inspiração no princípio da seleção natural de Darwin, uma população de programas, ou indivíduos, é mantida, modificada baseada em variação genética, e avaliada de acordo com uma função de aptidão (fitness). A programação genética tem sido usada com sucesso por uma série de aplicações como projeto automático, reconhecimento de padrões, controle robótico, mineração de dados e análise de imagens. Porém, a avaliação da gigantesca quantidade de indivíduos gerados requer excessiva quantidade de computação, levando a um tempo de execução inviável para problemas grandes. Este trabalho explora o alto poder computacional de unidades de processamento gráfico, ou GPUs, para acelerar a programação genética e permitir a geração automática de programas para grandes problemas. Propomos duas novas metodologias para se explorar a GPU em programação genética: compilação em linguagem intermediária e a criação de indivíduos em código de máquina. Estas metodologias apresentam vantagens em relação às metodologias tradicionais usadas na literatura. A utilização de linguagem intermediária reduz etapas de compilação e trabalha com instruções que estão bem documentadas. A criação de indivíduos em código de máquina não possui nenhuma etapa de compilação, mas requer engenharia reversa das instruções que não estão documentadas neste nível. Nossas metodologias são baseadas em programação genética linear e inspiradas em computação quântica. O uso de computação quântica permite uma convergência rápida, capacidade de busca global e inclusão da história passada dos indivíduos. As metodologias propostas foram comparadas com as metodologias existentes e apresentaram ganhos consideráveis de desempenho. Foi observado um desempenho máximo de até 2,74 trilhões de GPops (operações de programação genética por segundo) para o benchmark Multiplexador de 20 bits e foi possível estender a programação genética para problemas que apresentam bases de dados de até 7 milhões de amostras.
Genetic Programming enables computers to solve problems automatically, without being programmed to it. Using the inspiration in the Darwin s Principle of natural selection, a population of programs or individuals is maintained, modified based on genetic variation, and evaluated according to a fitness function. Genetic programming has been successfully applied to many different applications such as automatic design, pattern recognition, robotic control, data mining and image analysis. However, the evaluation of the huge amount of individuals requires excessive computational demands, leading to extremely long computational times for large size problems. This work exploits the high computational power of graphics processing units, or GPUs, to accelerate genetic programming and to enable the automatic generation of programs for large problems. We propose two new methodologies to exploit the power of the GPU in genetic programming: intermediate language compilation and individuals creation in machine language. These methodologies have advantages over traditional methods used in the literature. The use of an intermediate language reduces the compilation steps, and works with instructions that are well-documented. The individuals creation in machine language has no compilation step, but requires reverse engineering of the instructions that are not documented at this level. Our methodologies are based on linear genetic programming and are inspired by quantum computing. The use of quantum computing allows rapid convergence, global search capability and inclusion of individuals past history. The proposed methodologies were compared against existing methodologies and they showed considerable performance gains. It was observed a maximum performance of 2,74 trillion GPops (genetic programming operations per second) for the 20-bit Multiplexer benchmark, and it was possible to extend genetic programming for problems that have databases with up to 7 million samples.
PRAXEDES, ERIC DA SILVA. "QUANTITATIVE SEISMIC INTERPRETATION USING GENETIC PROGRAMMING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24789@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Uma das tarefas mais importantes na indústria de exploração e produção de petróleo é a discriminação litológica. Uma das principais fontes de informação para subsidiar a discriminação e caracterização litológica é a perfilagem que é corrida no poço. Porém, na grande maioria dos trabalhos os perfis utilizados na discriminação litológica são apenas aqueles disponíveis no domínio dos poços. Para que modelos de discriminação litológica possam ser extrapolados para além do domínio dos poços, faz-se necessário a utilização de características que estejam presentes tanto nos poços como fora deles. As características mais utilizadas para realizar esta integração rocha-perfil-sísmica são os atributos elásticos. Dentre os atributos elásticos o que mais se destaca é a impedância. O objetivo desta dissertação foi a utilização da programação genética como modelo classificador de atributos elásticos para a discriminação litológica. A proposta se justifica pela característica da programação genética de seleção e construção automática dos atributos ou características utilizadas. Além disso, a programação genética permite a interpretação do classificador, uma vez que é possível customizar o formalismo de representação. Esta classificação foi empregada como parte integrante do fluxo de trabalho estatístico e de física de rochas, metodologia híbrida que integra os conceitos da física de rochas com técnicas de classificação. Os resultados alcançados demonstram que a programação genética atingiu taxas de acertos comparáveis e em alguns casos superiores a outros métodos tradicionais de classificação. Estes resultados foram melhorados com a utilização da técnica de substituição de fluídos de Gassmann da física de rochas.
One of the most important tasks in the oil exploration and production industry is the lithological discrimination. A major source of information to support discrimination and lithological characterization is the logging raced into the well. However, in most studies the logs used in the lithological discrimination are only those available in the wells. For extrapolating the lithology discrimination models beyond the wells, it is necessary to use features that are present both inside and outside wells. One of the features used to conduct this rock-log-seismic integration are the elastic attributes. The impedance is the elastic attribute that most stands out. The objective of this work was the utilization of genetic programming as a classifier model of elastic attributes for lithological discrimination. The proposal is justified by the characteristic of genetic programming for automatic selection and construction of features. Furthermore, genetic programming allows the interpretation of the classifier once it is possible to customize the representation formalism. This classification was used as part of the statistical rock physics workflow, a hybrid methodology that integrates rock physics concepts with classification techniques. The results achieved demonstrate that genetic programming reached comparable hit rate and in some cases superior to other traditional methods of classification. These results have been improved with the use of Gassmann fluid substitution technique from rock physics.
Yu, Chris 1981. "Characterizing function inlining with genetic programming." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/33392.
Full textIncludes bibliographical references (leaves 74-75).
Function inlining is a compiler optimization where the function call is replaced by the code from the function itself. Using a form of machine learning called genetic programming, this thesis examines which factors are important in determining which function calls to inline to maximize performance. A number of different heuristics are generated for inlining decisions in the Trimaran compiler, which improve on performance from the current default inlining heuristic. Also, trends in function inlining are examined over the thousands of compilation runs that are completed.
by Chris Yu.
M.Eng.
König, Rikard. "Enhancing genetic programming for predictive modeling." Doctoral thesis, Högskolan i Borås, Institutionen Handels- och IT-högskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3689.
Full textAvhandling för teknologie doktorsexamen i datavetenskap, som kommer att försvaras offentligt tisdagen den 11 mars 2014 kl. 13.15, M404, Högskolan i Borås. Opponent: docent Niklas Lavesson, Blekinge Tekniska Högskola, Karlskrona.
Bearpark, Keith. "Learning and memory in genetic programming." Thesis, University of Southampton, 2000. https://eprints.soton.ac.uk/45930/.
Full textPaterson, Norman R. "Genetic programming with context-sensitive grammars." Thesis, University of St Andrews, 2003. http://hdl.handle.net/10023/14984.
Full textWhite, David Robert. "Genetic programming for low-resource systems." Thesis, University of York, 2009. http://etheses.whiterose.ac.uk/757/.
Full textDe, Lorenzo Andrea. "Genetic Programming Techniques in Engineering Applications." Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/9991.
Full textMachine learning is a suite of techniques that allow developing algorithms for performing tasks by generalizing from examples. Machine learning systems, thus, may automatically synthesize programs from data. This approach is often feasible and cost-effective where manual programming or manual algorithm design is not. In the last decade techniques based on machine learning have spread in a broad range of application domains. In this thesis, we will present several novel applications of a specific machine Learning technique, called Genetic Programming, to a wide set of engineering applications grounded in real world problems. The problems treated in this work range from the automatic synthesis of regular expressions, to the generation of electricity price forecast, to the synthesis of a model for the tracheal pressure in mechanical ventilation. The results demonstrate that Genetic Programming is indeed a suitable tool for solving complex problems of practical interest. Furthermore, several results constitute a significant improvement over the existing state-of-the-art. The main contribution of this thesis is the design and implementation of a framework for the automatic inference of regular expressions from examples based on Genetic Programming. First, we will show the ability of such a framework to cope with the generation of regular expressions for solving text-extraction tasks from examples. We will experimentally assess our proposal comparing our results with previous proposals on a collection of real-world datasets. The results demonstrate a clear superiority of our approach. We have implemented the approach in a web application that has gained considerable interest and has reached peaks of more 10000 daily accesses. Then, we will apply the framework to a popular "regex golf" challenge, a competition for human players that are required to generate the shortest regular expression solving a given set of problems. Our results rank in the top 10 list of human players worldwide and outperform those generated by the only existing algorithm specialized to this purpose. Hence, we will perform an extensive experimental evaluation in order to compare our proposal to the state-of-the-art proposal in a very close and long-established research field: the generation of a Deterministic Finite Automata (DFA) from a labelled set of examples. Our results demonstrate that the existing state-of-the-art in DFA learning is not suitable for text extraction tasks. We will also show a variant of our framework designed for solving text processing tasks of the search-and-replace form. A common way to automate search-and-replace is to describe the region to be modified and the desired changes through a regular expression and a replacement expression. We will propose a solution to automatically produce both those expressions based only on examples provided by user. We will experimentally assess our proposal on real-word search-and-replace tasks. The results indicate that our proposal is indeed feasible. Finally, we will study the applicability of our framework to the generation of schema based on a sample of the eXtensible Markup Language documents. The eXtensible Markup Language documents are largely used in machine-to-machine interactions and such interactions often require that some constraints are applied to the contents of the documents. These constraints are usually specified in a separate document which is often unavailable or missing. In order to generate a missing schema, we will apply and will evaluate experimentally our framework to solve this problem. In the final part of this thesis we will describe two significant applications from different domains. We will describe a forecasting system for producing estimates of the next day electricity price. The system is based on a combination of a predictor based on Genetic Programming and a classifier based on Neural Networks. Key feature of this system is the ability of handling outliers-i.e., values rarely seen during the learning phase. We will compare our results with a challenging baseline representative of the state-of-the-art. We will show that our proposal exhibits smaller prediction error than the baseline. Finally, we will move to a biomedical problem: estimating tracheal pressure in a patient treated with high-frequency percussive ventilation. High-frequency percussive ventilation is a new and promising non-conventional mechanical ventilatory strategy. In order to avoid barotrauma and volutrauma in patience, the pressure of air insufflated must be monitored carefully. Since measuring the tracheal pressure is difficult, a model for accurately estimating the tracheal pressure is required. We will propose a synthesis of such model by means of Genetic Programming and we will compare our results with the state-of-the-art.
XXVI Ciclo
1984
Kishore, Krishna J. "Genetic Programming Based Multicategory Pattern Classification." Thesis, Indian Institute of Science, 2001. https://etd.iisc.ac.in/handle/2005/75.
Full textKishore, Krishna J. "Genetic Programming Based Multicategory Pattern Classification." Thesis, Indian Institute of Science, 2001. http://hdl.handle.net/2005/75.
Full textAbrahamsen, Christian Topp. "A genetic approach to prenatal glucocorticoid programming." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/24708.
Full textAugust, Riley. "Applying genetic programming to scripted mobile robotics." Thesis, University of Ottawa (Canada), 2009. http://hdl.handle.net/10393/28474.
Full textLi, Xiang, and xiali@cs rmit edu au. "Utilising Restricted For-Loops in Genetic Programming." RMIT University. Computer Science and Information Technology, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080110.122751.
Full textLotz, Marco. "Modelling of process systems with Genetic Programming /." Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/570.
Full textPreen, Richard John. "Dynamical genetic programming in learning classifier systems." Thesis, University of the West of England, Bristol, 2011. http://eprints.uwe.ac.uk/25852/.
Full textGustafson, Steven Matt. "An analysis of diversity in genetic programming." Thesis, University of Nottingham, 2004. http://eprints.nottingham.ac.uk/10057/.
Full textEsparcia, Alcázar Anna Isabel. "Genetic programming for adaptive digital signal processing." Thesis, University of Glasgow, 1998. http://theses.gla.ac.uk/4780/.
Full textGUILLEN, JEFF MAYNARD. "STUDIES ON RESERVOIR CHARACTERIZATION VIA GENETIC PROGRAMMING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25771@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
Na área de exploração e produção de petróleo são alocados grandes investimentos para conseguir diminuir os riscos associados à baixos níveis de produção, que podem ser minimizados mediante a acertada caracterização do reservatório de petróleo. Uma valiosa fonte de informação pode ser extraída de dados sísmicos 3D, obtidos do campo em estudo. O custo econômico de aquisição de esta base de dados para o reservatório completo é relativamente baixo, se comparado com uma amostragem direta por meio de perfurações de poços. Embora, a relação entre os dados sísmicos e as propriedades de reservatório seja considerada ambígua, esta deve ser integrada com informação confiável, como aquela obtida mediante perfilagem de poços. Fazendo uso dos abundantes dados sísmicos e das escassas, mas, precisas medições em perfurações existentes, foi desenvolvido neste trabalho um sistema baseado no algoritmo de Programação Genética (PG) para caracterizar geologicamente um reservatório de petróleo. PG é uma técnica de computação evolucionária capaz de estimar relações não lineares entre um conjunto de entrada e de saída, mediante uma expressão simbólica explícita. Para extrair informação adicional nos registros sísmicos são calculados atributos sísmicos, que facilitam a identificação de características estratigráficas ou estruturais do subsolo representadas indiretamente pela sísmica. Adicionalmente, é utilizado o método de inversão sísmica para o cálculo da impedância acústica, que é uma variável auxiliar derivada de sísmica calibrada com perfis de poço. Os atributos sísmicos junto com a impedância acústica servirão para a estimação de propriedades geológicas. Esta metodologia de trabalho foi testada em um reservatório real de grande complexidade geológica. Por meio de PG, foi representada satisfatoriamente a relação entre dados derivados da sísmica e a porosidade do campo, demostrando assim que PG é uma alternativa viável para a caracterização geológica de reservatórios. Posteriormente, foi realizada uma clusterização do campo baseada em características geofísicas que permitiram a construção de estimadores por PG especializados para cada zona.
In the field of oil exploration and production a great deal of investment is allocated in reducing the risks associated to low production levels that can be minimized through an accurate oil reservoir characterization. A valuable source of information can be extracted from 3D seismic data, obtained from the studied reservoir. The economic cost of the acquisition of this data base for the whole reservoir is relatively low, if compared to the direct sampling method of well drilling. Being that the relationship between seismic data and reservoir properties is considered ambiguous, it must be integrated with reliable information, such as that obtained by well logging. Making use of abundant seismic data and scarce, yet accurate, measurements from the existing drillings, it was developed in this study a system based in the algorithm of Genetic Programming (GP), to geologically characterize an oil reservoir. GP is an evolutionary computational technique capable of estimating the non-linear relationships between input and output parameter, through an explicit symbolic expression. In order to extract additional information from seismic records, seismic attributes are calculated, which facilitate tasks of identifying stratigraphic and structural characteristics of the subsurface, represented indirectly by seismic data. Moreover, a seismic inversion method is used to estimate the acoustic impedance, an auxiliary variable derived from seismic data calibrated by well logs. The seismic attributes along with the acoustic impedance will be used to estimate geological properties. This workflow was tested on a real reservoir, thus presenting geological complexity. Through GP, the relationship between seismic derived data and the field porosity was represented satisfactorily, demonstrating that GP is a viable alternative for geologic reservoir characterization. Afterwards, the reservoir was divided in clusters according to geophysical properties, this allowed the construction of GP based estimators for each zone.
Al-Madi, Naila Shikri. "Improved Genetic Programming Techniques For Data Classification." Diss., North Dakota State University, 2014. https://hdl.handle.net/10365/27097.
Full textChitty, Darren M. "Improving the computational speed of genetic programming." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686812.
Full textBeadle, Lawrence. "Semantic and structural analysis of genetic programming." Thesis, University of Kent, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509628.
Full textCASTELLI, MAURO. "Measures and methods for robust genetic programming." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28571.
Full text