To see the other types of publications on this topic, follow the link: Genetic data.

Journal articles on the topic 'Genetic data'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Genetic data.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Volkova, T., E. Furta, O. Dmitrieva, and I. Shabalina. "Pattern Building Methods in Genetic Data Processing." Journal on Selected Topics in Nano Electronics and Computing 1, no. 2 (June 2014): 2–6. http://dx.doi.org/10.15393/j8.art.2014.3041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taylor, Mark J. "Data Protection, Shared (Genetic) Data and Genetic Discrimination." Medical Law International 8, no. 1 (December 2006): 51–77. http://dx.doi.org/10.1177/096853320600800103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ross-Ibarra, Jeffrey. "Genetic Data Analysis II. Methods for Discrete Population Genentic Data." Economic Botany 56, no. 2 (April 2002): 216. http://dx.doi.org/10.1663/0013-0001(2002)056[0216:gdaimf]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Slatkin, Montgomery, Wayne P. Maddison, and B. S. Weir. "Genetic Data Analysis: Methods for Discrete Population Genetic Data." Systematic Zoology 40, no. 2 (June 1991): 248. http://dx.doi.org/10.2307/2992265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chase, Gary A., and Bruce S. Weir. "Genetic Data Analysis: Methods for Discrete Population Genetic Data." Journal of the American Statistical Association 86, no. 413 (March 1991): 248. http://dx.doi.org/10.2307/2289745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feytmans, E., and B. S. Weir. "Genetic Data Analysis: Methods for Discrete Population Genetic Data." Biometrics 47, no. 3 (September 1991): 1205. http://dx.doi.org/10.2307/2532683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morton, N. E. "Genetic Data Analysis. Methods for Discrete Population Genetic Data." Journal of Medical Genetics 29, no. 3 (March 1, 1992): 216. http://dx.doi.org/10.1136/jmg.29.3.216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Slatkin, M., and W. P. Maddison. "Genetic Data Analysis: Methods for Discrete Population Genetic Data." Systematic Biology 40, no. 2 (June 1, 1991): 248–49. http://dx.doi.org/10.1093/sysbio/40.2.248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Butler, Amy W., Sarah Cohen-Woods, Anne Farmer, Peter McGuffin, and Cathryn M. Lewis. "Integrating Phenotypic Data For Depression." Journal of Integrative Bioinformatics 7, no. 3 (December 1, 2010): 290–99. http://dx.doi.org/10.1515/jib-2010-136.

Full text
Abstract:
Abstract The golden era of molecular genetic research brings about an explosion of phenotypic, genotypic and sequencing data. Building on the common aims to exploit understanding of human diseases, it also opens up an opportunity for scientific communities to share and combine research data. Genome-wide association studies (GWAS) have been widely used to locate genetic variants, which are susceptible for common diseases. In the field of medical genetics, many international collaborative consortiums have been established to conduct meta-analyses of GWAS results and to combine large genotypic data sets to perform mega genetic analyses. Having an integrated phenotype database is significant for exploiting the full potential of extensive genotypic data. In this paper, we aim to share our experience gained from integrating four heterogeneous sets of major depression phenotypic data onto the MySQL platform. These data sets constitute clinical data which had been gathered for various genetic studies for the past decade. We also highlight in this report some generic data handling techniques, the costs and benefits regarding the use of integrated phenotype database within our own institution and under the consortium framework.
APA, Harvard, Vancouver, ISO, and other styles
10

Uzych, Leo. "Genetic Testing Data." Journal of Occupational & Environmental Medicine 38, no. 1 (January 1996): 13–14. http://dx.doi.org/10.1097/00043764-199601000-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rischitelli, Gary. "Genetic Testing Data." Journal of Occupational & Environmental Medicine 38, no. 1 (January 1996): 14. http://dx.doi.org/10.1097/00043764-199601000-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ahluwalia, Maninder. "Protecting genetic data." New Scientist 247, no. 3295 (August 2020): 23. http://dx.doi.org/10.1016/s0262-4079(20)31409-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

The Lancet Oncology. "Consolidating genetic data." Lancet Oncology 6, no. 6 (June 2005): 351. http://dx.doi.org/10.1016/s1470-2045(05)70177-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rutledge, Louis C. "Genetic Data Analysis." Annals of the Entomological Society of America 84, no. 6 (November 1, 1991): 639. http://dx.doi.org/10.1093/aesa/84.6.639a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mick Richardson, P. "Genetic data analysis." Biochemical Systematics and Ecology 18, no. 5 (August 1990): 387. http://dx.doi.org/10.1016/0305-1978(90)90013-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lorey, Fred. "Human Genetics Data Applied to Genetic Screening Programs." Practicing Anthropology 20, no. 2 (April 1, 1998): 30–33. http://dx.doi.org/10.17730/praa.20.2.n84728r821185380.

Full text
Abstract:
The uses of human genetic data in genetic screening are multifaceted and dynamic, creating an ongoing stream of useful prevalence data, ethnicity data, and natural history information. Since the primary facility for generation of these data is a large public health genetic screening program, however, the results must be continually analyzed and evaluated in the context of testing parameters. For example, presumptive positive rates (initial screening test positives, only a portion of which will become diagnosed cases), false positive rates, detection rates, and analytical values must be constantly checked to ensure the screening program is running smoothly and effectively. Any departures from the expected must be investigated so that the cause(s) can be determined and corrected. On a longitudinal basis, outcomes must be evaluated to ensure that the intended purpose of preventing mortality and reducing morbidity through intervention is achieved.
APA, Harvard, Vancouver, ISO, and other styles
17

Weir, B. S. "Genetic Data Analysis II." Biometrics 53, no. 1 (March 1997): 392. http://dx.doi.org/10.2307/2533134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ott, Jurg. "Genetic data analysis II." Trends in Genetics 13, no. 9 (September 1997): 379. http://dx.doi.org/10.1016/s0168-9525(97)81169-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Coupland, Robin, Sophie Martin, and Maria-Teresa Dutli. "Protecting everybody's genetic data." Lancet 365, no. 9473 (May 2005): 1754–56. http://dx.doi.org/10.1016/s0140-6736(05)66563-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jorde, L. B. "Genetic Data Analysis: Methods for Discrete Population Genetic Data. Bruce S. Weir." Quarterly Review of Biology 66, no. 4 (December 1991): 488–89. http://dx.doi.org/10.1086/417362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Spector-Bagdady, Kayte, Amanda Fakih, Chris Krenz, Erica E. Marsh, and J. Scott Roberts. "Genetic data partnerships: academic publications with privately owned or generated genetic data." Genetics in Medicine 21, no. 12 (June 17, 2019): 2827–29. http://dx.doi.org/10.1038/s41436-019-0569-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chikhi, L. "Genetic markers: How accurate can genetic data be?" Heredity 101, no. 6 (October 1, 2008): 471–72. http://dx.doi.org/10.1038/hdy.2008.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Deckard, Jamalynne, Clement J. McDonald, and Daniel J. Vreeman. "Supporting interoperability of genetic data with LOINC." Journal of the American Medical Informatics Association 22, no. 3 (February 5, 2015): 621–27. http://dx.doi.org/10.1093/jamia/ocu012.

Full text
Abstract:
Abstract Electronic reporting of genetic testing results is increasing, but they are often represented in diverse formats and naming conventions. Logical Observation Identifiers Names and Codes (LOINC) is a vocabulary standard that provides universal identifiers for laboratory tests and clinical observations. In genetics, LOINC provides codes to improve interoperability in the midst of reporting style transition, including codes for cytogenetic or mutation analysis tests, specific chromosomal alteration or mutation testing, and fully structured discrete genetic test reporting. LOINC terms follow the recommendations and nomenclature of other standards such as the Human Genome Organization Gene Nomenclature Committee’s terminology for gene names. In addition to the narrative text they report now, we recommend that laboratories always report as discrete variables chromosome analysis results, genetic variation(s) found, and genetic variation(s) tested for. By adopting and implementing data standards like LOINC, information systems can help care providers and researchers unlock the potential of genetic information for delivering more personalized care.
APA, Harvard, Vancouver, ISO, and other styles
24

Suksut, Keerachart, Kittisak Kerdprasop, and Nittaya Kerdprasop. "Support Vector Machine with Restarting Genetic Algorithm for Classifying Imbalanced Data." International Journal of Future Computer and Communication 6, no. 3 (September 2017): 92–96. http://dx.doi.org/10.18178/ijfcc.2017.6.3.496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lyutov, N. L. "Genetic discrimination and protection of personal genetic data: Adapting legal standards to advances in genetics." Journal of Physics: Conference Series 2210, no. 1 (March 1, 2022): 012001. http://dx.doi.org/10.1088/1742-6596/2210/1/012001.

Full text
Abstract:
Abstract Genetics has advanced to the point where genetic data on an individual could mark them as predisposed to hereditary illness or unsuitable for certain kinds of jobs. There is widespread apprehension that workers with ‘problematic’ genetics will be singled out by employers and insurance companies for treatment as second-class citizens with restrictions placed on their rights. The article takes up the legal issues involved in defining the concept of genetic data, in regulating genetic information as a type of personal information, and in applying genetic antidiscrimination laws in various countries. Legal restraints on genetic information must be more extensive than on other personal information about a worker because genetic data has implications for their biological relatives. Protection against genetic discrimination must therefore begin with barring employers from collecting genetic information on workers unless it is necessary to prevent hazards to people’s lives or health.
APA, Harvard, Vancouver, ISO, and other styles
26

Atramentova, L., and H. Ehyakonandeh. "Molecular genetic data in terms of associative and population genetics." 36, no. 36 (August 25, 2021): 35–40. http://dx.doi.org/10.26565/2075-5457-2021-36-4.

Full text
Abstract:
In studies on associative genetics of various multifactorial diseases, it is most often found that the minor allele’s frequency in the group of patients is higher than in the group of healthy people. Due to reduced adaptation, the minor allele manifests itself as a disease. In the group of patients, the number of homozygotes by major allele is reduced, the number of heterozygous carriers of the provocative allele is increased, and the frequency of homozygotes by the provocative allele is significantly increased. The aim of this article was to analyze the unusual result for SNP 1298A/C of the MTHFR gene in multiple sclerosis, previously obtained by one of the authors. The allele frequencies in the control group and in the group of multiple sclerosis do not differ, but the distribution of genotypes in the patients does not correspond to the Hardy–Weinberg ratio in compare to healthy people. Among patients, the number of heterozygotes is increased and the number of each homozygote is decreased. The increase in the proportion of heterozygotes can be explained by the presence of one provocative allele, but the large shortage of homozygotes for the minor allele is unclear. To explain this fact, the composition of the group of patients was analysed. The patients are of different ages, this group is heterogeneous in sex and form of multiple sclerosis, but none of these indicators has not be taken into account in the analysis of the distribution of genotypes. The age of the disease is a diagnostic sign and may depend on the genotype. The manifestation of multifactorial diseases depends on gender as well. Clinical forms of the disease usually have a different genetic basis. Due to the neglect of these conditions, a genetically heterogeneous group is formed, and any result, difficult for explanation, can be obtained. The lack of СС genotypes may be due to increased mortality, which reduces the probability of patients to be investigated in the sample. These facts once again indicate the need to form homogeneous groups for research on associative genetics.
APA, Harvard, Vancouver, ISO, and other styles
27

Rajavarma, V. N., and S. P. Rajagopala. "Feature Selection in Data-Mining for Genetics Using Genetic Algorithm." Journal of Computer Science 3, no. 9 (September 1, 2007): 723–25. http://dx.doi.org/10.3844/jcssp.2007.723.725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Greytak, Ellen M., David H. Kaye, Bruce Budowle, CeCe Moore, and Steven L. Armentrout. "Privacy and genetic genealogy data." Science 361, no. 6405 (August 30, 2018): 857.1–857. http://dx.doi.org/10.1126/science.aav0330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Židanavičiutė, J. "LOGIT ANALYSIS OF GENETIC DATA." Mathematical Modelling and Analysis 13, no. 1 (March 31, 2008): 135–44. http://dx.doi.org/10.3846/1392-6292.2008.13.135-144.

Full text
Abstract:
A new framework of genetic sequence statistical analysis based on generalized logit model is introduced. Logit analysis is applied to assess the dependence structure (interactions) between DNA nucleotides and to test hypothesis about Markov order of these dependencies. The procedure proposed seeks the non‐coding subsequences which are homogeneous but yet non‐Markov. It has been shown, that even homogeneous DNA regions can not be treated as the first order Markov sequences.
APA, Harvard, Vancouver, ISO, and other styles
30

Check Hayden, Erika. "Data barriers limit genetic diagnosis." Nature 494, no. 7436 (February 2013): 156–57. http://dx.doi.org/10.1038/494156a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Elkan, C. "Access to genetic sequence data." Science 255, no. 5045 (February 7, 1992): 663. http://dx.doi.org/10.1126/science.1738833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lawson, Daniel John, and Daniel Falush. "Population Identification Using Genetic Data." Annual Review of Genomics and Human Genetics 13, no. 1 (September 22, 2012): 337–61. http://dx.doi.org/10.1146/annurev-genom-082410-101510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sariyar, Murat, Stephanie Suhr, and Irene Schlünder. "How Sensitive Is Genetic Data?" Biopreservation and Biobanking 15, no. 6 (December 1, 2017): 494–501. http://dx.doi.org/10.1089/bio.2017.0033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Drechsler, R., and N. Göckel. "Genetic algorithm for data sequencing." Electronics Letters 33, no. 10 (1997): 843. http://dx.doi.org/10.1049/el:19970600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Otlowski, Margaret F., Sandra D. Taylor, and Kristine K. Barlow-Stewart. "Genetic discrimination: Too few data." European Journal of Human Genetics 11, no. 1 (January 2003): 1–2. http://dx.doi.org/10.1038/sj.ejhg.5200910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bhasin, Harsh, and Neha Singla. "Cellular-genetic test data generation." ACM SIGSOFT Software Engineering Notes 38, no. 5 (August 26, 2013): 1–9. http://dx.doi.org/10.1145/2507288.2507303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sorani, Marco D., John K. Yue, Sourabh Sharma, Geoffrey T. Manley, Adam R. Ferguson, Shelly R. Cooper, Kristen Dams-O’Connor, et al. "Genetic Data Sharing and Privacy." Neuroinformatics 13, no. 1 (October 18, 2014): 1–6. http://dx.doi.org/10.1007/s12021-014-9248-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bowman, K. O., and M. A. Kastenbaum. "Overdispersion of aggregated genetic data." Mutation Research/Environmental Mutagenesis and Related Subjects 272, no. 2 (October 1992): 133–37. http://dx.doi.org/10.1016/0165-1161(92)90041-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Giles, Barbara E. "Genetic biodiversity: analysing the data." Trends in Ecology & Evolution 9, no. 9 (September 1994): 317–19. http://dx.doi.org/10.1016/0169-5347(94)90150-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

S. Waples, Robin. "Guidelines for genetic data analysis." J. Cetacean Res. Manage. 18, no. 1 (January 24, 2023): 33–80. http://dx.doi.org/10.47536/jcrm.v18i1.421.

Full text
Abstract:
The IWC Scientific Committee recently adopted guidelines for quality control of DNA data. Once data have been collected, the next step is to analyse the data and make inferences that are useful for addressing practical problems in conservation and management of cetaceans. This is a complex exercise, as numerous analyses are possible and users have a wide range of choices of software programs for implementing the analyses. This paper reviews the underlying issues, illustrates application of different types of genetic data analysis to two complex management problems (involving common minke whales and humpback whales), and concludes with a number of recommendations for best practices in the analysis of population genetic data. An extensive Appendix provides a detailed review and critique of most types of analyses that are used with population genetic data for cetaceans.
APA, Harvard, Vancouver, ISO, and other styles
41

Yandell, Brian S. "Graphical Data Presentation, with Emphasis on Genetic Data." HortScience 42, no. 5 (August 2007): 1047–51. http://dx.doi.org/10.21273/hortsci.42.5.1047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kuru, Taner, and Iñigo de Miguel Beriain. "Your genetic data is my genetic data: Unveiling another enforcement issue of the GDPR." Computer Law & Security Review 47 (November 2022): 105752. http://dx.doi.org/10.1016/j.clsr.2022.105752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Diaconescu, Ioana, and Sorin Hostiuc. "Pharmacogenomics: Ethical Issues in Data Management." Studia Universitatis Babeş-Bolyai Bioethica 66, Special Issue (September 9, 2021): 69. http://dx.doi.org/10.24193/subbbioethica.2021.spiss.40.

Full text
Abstract:
"Pharmacogenomics uses a DNA sequence in order to create a “genetic map” that determines which drugs are the most efficient for a specific disease, in a particular patient. The needed information for developing personalized therapies needs, besides genetic data, various non-genetic factors might interfere with some mechanisms of drug action, and they should also be considered. The assumption that the genetic data is more important than any other type of non-genetic medical information may severely alter the reliability of pharmacogenomics. In order to decrease the risk for non-genetic factors to significantly alter the pharmacogenomics-related therapies, patients need to provide detailed information about them. This, however, is often not specifically sought upon by neither the patient (who sees this information as trivial when the physician interacts directly with her/his genes), nor the physician (who is often a genetics/ pharmacogenetics expert, who tends to see the genetic information as supreme). One of the main targets in data management is privacy. A lot of effort is needed to keep the data anonymous and creating a detailed informed consent to determine the patient to acknowledge the risks and the benefits of pharmacogenomics. However, proper management of data also includes obtaining all the relevant information to maximize beneficence, this being especially important in frontier techniques, such as pharmacogenomics. The purpose of this study is to analyze the main ethical issues in data management in pharmacogenomics, with an emphasis on the way the physician-patient relationship should be developed to maximize relevant data extraction and optimize its management. "
APA, Harvard, Vancouver, ISO, and other styles
44

Z, Mouammine. "Big Data with Distributed Architecture Using Genetic Algorithm in Intelligent Transport Systems." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (July 25, 2020): 1405–15. http://dx.doi.org/10.5373/jardcs/v12sp7/20202243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Butil, John Carlo M., Ma Lei Frances Magsisi, John Hart Pua, Prince Kevin Se, and Ria Sagum. "The Application of Genetic Algorithm in Motion Detection for Data Storage Optimization." International Journal of Computer and Communication Engineering 3, no. 3 (2014): 199–202. http://dx.doi.org/10.7763/ijcce.2014.v3.319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hallinan, Dara, Michael Friedewald, and Paul De Hert. "Genetic Data and the Data Protection Regulation: Anonymity, multiple subjects, sensitivity and a prohibitionary logic regarding genetic data?" Computer Law & Security Review 29, no. 4 (August 2013): 317–29. http://dx.doi.org/10.1016/j.clsr.2013.05.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jiang, Rong, Simon Tavaré, and Paul Marjoram. "Population Genetic Inference From Resequencing Data." Genetics 181, no. 1 (November 3, 2008): 187–97. http://dx.doi.org/10.1534/genetics.107.080630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mech, L. David. "Non-Genetic Data Supporting Genetic Evidence for the Eastern Wolf." Northeastern Naturalist 18, no. 4 (December 2011): 521–26. http://dx.doi.org/10.1656/045.018.0409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Waller, Niels G., and Bengt O. Muth�n. "Genetic tobit factor analysis: Quantitative genetic modeling with censored data." Behavior Genetics 22, no. 3 (May 1992): 265–92. http://dx.doi.org/10.1007/bf01066662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ziegler, Andreas, Nora Bohossian, Vincent P. Diego, and Chen Yao. "Genetic Prediction in the Genetic Analysis Workshop 18 Sequencing Data." Genetic Epidemiology 38, S1 (August 11, 2014): S57—S62. http://dx.doi.org/10.1002/gepi.21826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography