Academic literature on the topic 'Generic peptide drug'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generic peptide drug.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generic peptide drug"
Pang, Eric, William Chong, and Markham C. Luke. "Scientific and Regulatory Considerations for the Approval of the First Generic Glucagon." Journal of the Endocrine Society 5, Supplement_1 (May 1, 2021): A324—A325. http://dx.doi.org/10.1210/jendso/bvab048.662.
Full textBenet, Alexander, Troy Halseth, Jukyung Kang, April Kim, Rose Ackermann, Santhanakrishnan Srinivasan, Steven Schwendeman, and Anna Schwendeman. "The Effects of pH and Excipients on Exenatide Stability in Solution." Pharmaceutics 13, no. 8 (August 16, 2021): 1263. http://dx.doi.org/10.3390/pharmaceutics13081263.
Full textKumar, K. Y. Kiran, Venugopala Rao Dama, Ch Suchitra, and Thirumala Chary Maringanti. "A simple, sensitive, high-resolution, customized, reverse phase ultra-high performance liquid chromatographic method for related substances of a therapeutic peptide (bivalirudin trifluoroacetate) using the quality by design approach." Analytical Methods 12, no. 3 (2020): 304–16. http://dx.doi.org/10.1039/c9ay01998g.
Full textZhou, Wei, Kaylah Bias, Dylan Lenczewski-Jowers, Jiliah Henderson, Victor Cupp, Anthony Ananga, Joel Winyo Ochieng, and Violeta Tsolova. "Analysis of Protein Sequence Identity, Binding Sites, and 3D Structures Identifies Eight Pollen Species and Ten Fruit Species with High Risk of Cross-Reactive Allergies." Genes 13, no. 8 (August 17, 2022): 1464. http://dx.doi.org/10.3390/genes13081464.
Full textKolstoe, Simon E., and Steve P. Wood. "Drug targets for amyloidosis." Biochemical Society Transactions 38, no. 2 (March 22, 2010): 466–70. http://dx.doi.org/10.1042/bst0380466.
Full textSolodovnikov, A. G., E. Yu Sorokina, and E. I. Morkovin. "Thrombopoietin Receptor Agonists: Clinical Use and Evaluation of Treatment Efficacy." Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products 10, no. 4 (December 11, 2020): 236–43. http://dx.doi.org/10.30895/1991-2919-2020-10-4-236-243.
Full textWang, Deyun, You Zhuo, Mike Karfunkle, Sharadrao M. Patil, Cameron J. Smith, David A. Keire, and Kang Chen. "NMR Spectroscopy for Protein Higher Order Structure Similarity Assessment in Formulated Drug Products." Molecules 26, no. 14 (July 13, 2021): 4251. http://dx.doi.org/10.3390/molecules26144251.
Full textKlink, Tony A., Matt Staeben, Kim Twesten, Andrew L. Kopp, Meera Kumar, Rebecca Schall Dunn, Cori A. Pinchard, Karen M. Kleman-Leyer, Martin Klumpp, and Robert G. Lowery. "Development and Validation of a Generic Fluorescent Methyltransferase Activity Assay Based on the Transcreener AMP/GMP Assay." Journal of Biomolecular Screening 17, no. 1 (September 28, 2011): 59–70. http://dx.doi.org/10.1177/1087057111421624.
Full textMallari, Rommel, Elissa Swearingen, Wei Liu, Arnold Ow, Stephen W. Young, and Shu-Gui Huang. "A Generic High-Throughput Screening Assay for Kinases: Protein Kinase A as an Example." Journal of Biomolecular Screening 8, no. 2 (April 2003): 198–204. http://dx.doi.org/10.1177/1087057103252306.
Full textUmmiti, Kumarswamy, and J. V. Shanmukha Kumar. "Determination of Amino Acid Composition of Ganirelix Acetate in an Injectable Formulation by Pre-column Derivatization with 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate." Journal of Chromatographic Science 58, no. 8 (July 17, 2020): 687–94. http://dx.doi.org/10.1093/chromsci/bmaa030.
Full textDissertations / Theses on the topic "Generic peptide drug"
Johansen-Leete, Jason Paul. "Discovery of Bioactive macrocyclic peptides using mRNA display with genetic reprogramming." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29467.
Full textSen, Gulseren Petek. "Fabrication Of Poly (dl-lactic-co-glycolic Acid) Nanoparticles And Synthetic Peptide Drug Conjugate For Anti-cancer Drug Delivery." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611405/index.pdf.
Full textCai, Minying. "Exploring the stereostructural requirements of peptide ligands for the melanocortin receptors and molecular mechanism study of GPCR based drugs." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280591.
Full textAhlin, Gustav. "In vitro and in silico prediction of drug-drug interactions with transport proteins." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107492.
Full textCalmann, Melissa A. "The Roles of DNA Mismatch Repair and Recombination in Drug Resistance: A Dissertation." eScholarship@UMMS, 2004. https://escholarship.umassmed.edu/gsbs_diss/109.
Full textSchroeder, Frederick Albert. "A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation." eScholarship@UMMS, 2007. https://escholarship.umassmed.edu/gsbs_diss/370.
Full textStennett, Bethany Ann. "Novel Therapy for Nicotine Addiction in Alcohol Dependent Rats." UNF Digital Commons, 2013. http://digitalcommons.unf.edu/etd/465.
Full textD'Ercole, Annunziata. "Development and scale-up of synthetic strategies for exotic macrocyclisation to increase druggability of peptides as active pharmaceutical ingredients of industrial interest." Doctoral thesis, 2022. http://hdl.handle.net/2158/1264636.
Full textMukkamala, Venkata C. S. Dushyant. "NMR, crystallographic and computational investigations of peptides, proteins and bisphosphonates : new paradigms for rational drug design /." 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337869.
Full textSource: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6637. Adviser: Eric Oldfield. Includes bibliographical references. Available on microfilm from Pro Quest Information and Learning.
Lima, Adriana Filipa Soares. "Genetic modification of a bacteriophage to create a multifunctional drug delivery particle." Master's thesis, 2016. http://hdl.handle.net/1822/47560.
Full textBreast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females worldwide, with an estimated 1.7 million new cases and 521,900 deaths in 2012. Conventional treatments, such as chemotherapy and radiotherapy, continue to be the base of cancer therapy. These types of treatments non-specifically target any dividing cells, which in the case of chemotherapy, results in an indiscriminate drug distribution and severe toxicity for patients associated to a poor distribution and penetration of the drugs. To solve this problem and improve patient’s lifestyle, it is of utmost importance the development of new targeted therapies that eventually eliminate only cancer cells. This work aimed to develop a phage-based nanoparticle that will be used as a carrier for cytotoxic drugs in order to decrease drugs concentration in situ. To achieve this goal, the M13 filamentous bacteriophage was genetically modified to display, on its surface, HIV-Tat cell-penetrating peptides, which allows the internalization of the phage particles towards breast cancer cells. Genetically modified phages were then conjugated with the doxorubicin anti-carcinogenic drug, which was expected to result in a lower, controlled and in situ cytotoxic payload. Despite M13 phage has been genetically modified with success and proved to penetrate the cells, it appears to have no enhanced cytotoxic activity when compared to the free drug effect. In the future the phages obtainded in this work should be genetically modified with a sequencence encoding for a recognition peptide to discriminate between cancerous and healthy cells, thereby creating a targeted cytotoxic particle.
O cancro da mama é o cancro mais frequentemente diagnosticado e a principal causa de morte por cancro entre as mulheres em todo o mundo, tendo sido estimados cerca de 1,7 milhões de novos casos e 521,900 mortes em 2012. Os tratamentos convencionais, como a quimioterapia e a radioterapia, continuam a ser a base terapêutica deste tipo de doença. Contudo, estes tipos de tratamentos não são específicos tendo como alvo todas as células em divisão, sendo que, no caso da quimioterapia, há uma distribuição e penetração indiscriminada de drogas altamente citotóxicas, resultando na deteriorazação física dos pacientes. Para resolver este problema e melhorar o estilo de vida do paciente, têm vindo a desenvolver-se novas terapias direcionadas, com o objectivo de eliminar apenas as células cancerosas. Este trabalho tem como objectivo desenvolver uma nanopartícula, à base de bacteriofagos, de forma a transportar drogas citotóxicas e diminuir a sua concentração in situ. Para atingir este objetivo, o bacteriofago filamentoso M13 foi geneticamente modificado, com o propósito deste exibir o péptido de internalização celular HIV-Tat à sua superfície, através da técnica de phage display. De seguida os fagos genéticamente modificados foram químicamente conjugados com um fármaco anticancerígeno, a doxorrubicina, sendo assim esperado um payload citotóxico mais baixo e controlado, no local do tumor. Apesar do fago ter sido genéticamente modificado com sucesso e ter mostrado internalizar nas células tumorais de cancro de mama, este parece não ter qualquer actividade citotóxica quando comparado com o efeito da droga livre. No futuro o fago construido neste trabalho deverá ser geneticamente modificado com a sequencia de um peptido de reconhecimento de forma a discriminar entre celulas cancerígenas e saudáveis, criando assim uma particula citotóxica direcionada.
Books on the topic "Generic peptide drug"
NATO Advanced Research Workshop on Advanced Drug Delivery Systems for Peptides and Proteins (1986 Copenhagen, Denmark). Delivery systems for peptide drugs. New York: Plenum Press, 1986.
Find full textProteins, enzymes, genes: The interplay of chemistry and biology. New Haven, CT: Yale University Press, 1999.
Find full textJun-Lin, Guan, ed. Signaling through cell adhesion molecules. Boca Raton, Fla: CRC Press, 1999.
Find full textDavis, S. S. Delivery Systems for Peptide Drugs. Springer, 2013.
Find full textTomlinson, E., Lisbeth Illum, and S. S. Davis. Delivery Systems for Peptide Drugs. Springer London, Limited, 2013.
Find full textDelivery Systems for Peptide Drugs (Nato Asi Series a, Life Sciences, Vol 125) (Nato Science Series: A:). Springer, 1987.
Find full textDhagat, Swasti, Jujjvarapu Satya Eswari, and Manisha Yadav. Computer-Aided Design of Antimicrobial Lipopeptides As Prospective Drug Candidates. Taylor & Francis Group, 2019.
Find full textDhagat, Swasti, Jujjvarapu Satya Eswari, and Manisha Yadav. Computer-Aided Design of Antimicrobial Lipopeptides As Prospective Drug Candidates. Taylor & Francis Group, 2019.
Find full textDhagat, Swasti, Jujjvarapu Satya Eswari, and Manisha Yadav. Computer-Aided Design of Antimicrobial Lipopeptides As Prospective Drug Candidates. Taylor & Francis Group, 2019.
Find full textJujjavarapu, Satya Eswari, Swasti Dhagat, and Manisha Yadav. Computer-Aided Design of Antimicrobial Lipopeptides As Prospective Drug Candidates. Taylor & Francis Group, 2021.
Find full textBook chapters on the topic "Generic peptide drug"
Furlong, Michael T. "Generic Peptide Strategies for LC-MS/MS Bioanalysis of Human Monoclonal Antibody Drugs and Drug Candidates." In Protein Analysis using Mass Spectrometry, 161–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119371779.ch13.
Full textBelda, Ignasi, Xavier Llorà, Marc Martinell, Teresa Tarragó, and Ernest Giralt. "Computer-Aided Peptide Evolution for Virtual Drug Design." In Genetic and Evolutionary Computation – GECCO 2004, 321–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24854-5_34.
Full textScocchi, Marco, Maura Mattiuzzo, Monica Benincasa, Nikolinka Antcheva, Alessandro Tossi, and Renato Gennaro. "Investigating the Mode of Action of Proline-Rich Antimicrobial Peptides Using a Genetic Approach: A Tool to Identify New Bacterial Targets Amenable to the Design of Novel Antibiotics." In Peptide-Based Drug Design, 161–76. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-419-3_9.
Full textKubiak, T. M., R. A. Martin, R. M. Hillman, J. F. Caputo, G. R. Alaniz, W. H. Claflin, D. L. Cleary, and W. M. Moseley. "N-terminally extended analogs of bgrf with a general formula [X -1,Y 0, Leu 27]bGRF(1–29)NH2 as pro-drugs and potential targets for processing by plasma dipeptidylpeptidase IV (DPP-IV)." In Peptides, 859–61. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0683-2_288.
Full textSharma, Mani, Jyoti Joshi, Neeraj Kumar Chouhan, Mamta N. Talati, Sandeep Vaidya, and Abhiram Kumar. "Liposome-A Comprehensive Approach for Researchers." In Molecular Pharmacology. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93256.
Full textLi, Jie Jack. "Reflections." In Laughing Gas, Viagra, and Lipitor. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195300994.003.0014.
Full textMohan, C. Gopi, and Shikhar Gupta. "QSAR Models towards Cholinesterase Inhibitors for the Treatment of Alzheimer's Disease." In Oncology, 591–636. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0549-5.ch022.
Full textMohan, C. Gopi, and Shikhar Gupta. "QSAR Models towards Cholinesterase Inhibitors for the Treatment of Alzheimer's Disease." In Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, 354–99. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8136-1.ch010.
Full textP. Okoh, Michael, and Lukman A. Alli. "Recent Progress in Drug Repurposing Using Protein Variants and Amino Acids in Disease Phenotypes/Disorders." In Drug Repurposing - Molecular Aspects and Therapeutic Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102571.
Full textRachamalla, Harikrishnareddy, Anubhab Mukherjee, and Manash K. Paul. "Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture." In Cell Culture [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99146.
Full text