Journal articles on the topic 'Generative sequence models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Generative sequence models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Yongkang, Xuan Liu, Feng Huang, Zhankun Xiong, and Wen Zhang. "A Multi-Modal Contrastive Diffusion Model for Therapeutic Peptide Generation." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 1 (March 24, 2024): 3–11. http://dx.doi.org/10.1609/aaai.v38i1.27749.
Full textWu, Zachary, Kadina E. Johnston, Frances H. Arnold, and Kevin K. Yang. "Protein sequence design with deep generative models." Current Opinion in Chemical Biology 65 (December 2021): 18–27. http://dx.doi.org/10.1016/j.cbpa.2021.04.004.
Full textAkl, Hoda, Brooke Emison, Xiaochuan Zhao, Arup Mondal, Alberto Perez, and Purushottam D. Dixit. "GENERALIST: A latent space based generative model for protein sequence families." PLOS Computational Biology 19, no. 11 (November 27, 2023): e1011655. http://dx.doi.org/10.1371/journal.pcbi.1011655.
Full textFeinauer, Christoph, Barthelemy Meynard-Piganeau, and Carlo Lucibello. "Interpretable pairwise distillations for generative protein sequence models." PLOS Computational Biology 18, no. 6 (June 23, 2022): e1010219. http://dx.doi.org/10.1371/journal.pcbi.1010219.
Full textWon, K. J., C. Saunders, and A. Prügel-Bennett. "Evolving Fisher Kernels for Biological Sequence Classification." Evolutionary Computation 21, no. 1 (March 2013): 83–105. http://dx.doi.org/10.1162/evco_a_00065.
Full textLiu, Yitian, and Zhouhui Lian. "DeepCalliFont: Few-Shot Chinese Calligraphy Font Synthesis by Integrating Dual-Modality Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 4 (March 24, 2024): 3774–82. http://dx.doi.org/10.1609/aaai.v38i4.28168.
Full textSafranchik, Esteban, Shiying Luo, and Stephen Bach. "Weakly Supervised Sequence Tagging from Noisy Rules." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5570–78. http://dx.doi.org/10.1609/aaai.v34i04.6009.
Full textPolceanu, Mihai, Julie Porteous, Alan Lindsay, and Marc Cavazza. "Narrative Plan Generation with Self-Supervised Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 7 (May 18, 2021): 5984–92. http://dx.doi.org/10.1609/aaai.v35i7.16747.
Full textZhang, Zhiyuan, and Zhanshan Wang. "Multi-Objective Prediction of Integrated Energy System Using Generative Tractive Network." Mathematics 11, no. 20 (October 19, 2023): 4350. http://dx.doi.org/10.3390/math11204350.
Full textHawkins-Hooker, Alex, Florence Depardieu, Sebastien Baur, Guillaume Couairon, Arthur Chen, and David Bikard. "Generating functional protein variants with variational autoencoders." PLOS Computational Biology 17, no. 2 (February 26, 2021): e1008736. http://dx.doi.org/10.1371/journal.pcbi.1008736.
Full textTang, Fangfang, Mengyuan Ren, Xiaofan Li, Zhanglin Lin, and Xiaofeng Yang. "Generating Novel and Soluble Class II Fructose-1,6-Bisphosphate Aldolase with ProteinGAN." Catalysts 13, no. 12 (November 22, 2023): 1457. http://dx.doi.org/10.3390/catal13121457.
Full textLu, Zhengdong, Todd K. Leen, and Jeffrey Kaye. "Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals." Neural Computation 23, no. 9 (September 2011): 2390–420. http://dx.doi.org/10.1162/neco_a_00164.
Full textPhilip, Philemon, and Sidra Minhas. "A Brief Survey on Natural Language Processing Based Text Generation and Evaluation Techniques." VFAST Transactions on Software Engineering 10, no. 3 (September 27, 2022): 24–36. http://dx.doi.org/10.21015/vtse.v10i3.1104.
Full textBitard-Feildel, Tristan. "Navigating the amino acid sequence space between functional proteins using a deep learning framework." PeerJ Computer Science 7 (September 17, 2021): e684. http://dx.doi.org/10.7717/peerj-cs.684.
Full textRamakers, Julius, Christopher Frederik Blum, Sabrina König, Stefan Harmeling, and Markus Kollmann. "De novo prediction of RNA 3D structures with deep generative models." PLOS ONE 19, no. 2 (February 15, 2024): e0297105. http://dx.doi.org/10.1371/journal.pone.0297105.
Full textHazra, Debapriya, Mi-Ryung Kim, and Yung-Cheol Byun. "Generative Adversarial Networks for Creating Synthetic Nucleic Acid Sequences of Cat Genome." International Journal of Molecular Sciences 23, no. 7 (March 28, 2022): 3701. http://dx.doi.org/10.3390/ijms23073701.
Full textZhang, Zhaohui, Lijun Yang, Ligong Chen, Qiuwen Liu, Ying Meng, Pengwei Wang, and Maozhen Li. "A generative adversarial network–based method for generating negative financial samples." International Journal of Distributed Sensor Networks 16, no. 2 (February 2020): 155014772090705. http://dx.doi.org/10.1177/1550147720907053.
Full textShen, Xiaojuan, Tao Zeng, Nianhang Chen, Jiabo Li, and Ruibo Wu. "NIMO: A Natural Product-Inspired Molecular Generative Model Based on Conditional Transformer." Molecules 29, no. 8 (April 19, 2024): 1867. http://dx.doi.org/10.3390/molecules29081867.
Full textXuan, Bona, Jin Li, and Yafei Song. "SFCWGAN-BiTCN with Sequential Features for Malware Detection." Applied Sciences 13, no. 4 (February 5, 2023): 2079. http://dx.doi.org/10.3390/app13042079.
Full textTruong, Thanh-Dat, Chi Nhan Duong, Minh-Triet Tran, Ngan Le, and Khoa Luu. "Fast Flow Reconstruction via Robust Invertible n × n Convolution." Future Internet 13, no. 7 (July 8, 2021): 179. http://dx.doi.org/10.3390/fi13070179.
Full textYou, Yuyang, Xiaoyu Guo, Xuyang Zhong, and Zhihong Yang. "A Few-Shot Learning-Based EEG and Stage Transition Sequence Generator for Improving Sleep Staging Performance." Biomedicines 10, no. 12 (November 22, 2022): 3006. http://dx.doi.org/10.3390/biomedicines10123006.
Full textWang, Zhenyi, Ping Yu, Yang Zhao, Ruiyi Zhang, Yufan Zhou, Junsong Yuan, and Changyou Chen. "Learning Diverse Stochastic Human-Action Generators by Learning Smooth Latent Transitions." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (April 3, 2020): 12281–88. http://dx.doi.org/10.1609/aaai.v34i07.6911.
Full textKim, Ha Young, and Dongsup Kim. "Prediction of mutation effects using a deep temporal convolutional network." Bioinformatics 36, no. 7 (November 20, 2019): 2047–52. http://dx.doi.org/10.1093/bioinformatics/btz873.
Full textHärkönen, Erik, Miika Aittala, Tuomas Kynkäänniemi, Samuli Laine, Timo Aila, and Jaakko Lehtinen. "Disentangling random and cyclic effects in time-lapse sequences." ACM Transactions on Graphics 41, no. 4 (July 2022): 1–13. http://dx.doi.org/10.1145/3528223.3530170.
Full textWilburn, Grey W., and Sean R. Eddy. "Remote homology search with hidden Potts models." PLOS Computational Biology 16, no. 11 (November 30, 2020): e1008085. http://dx.doi.org/10.1371/journal.pcbi.1008085.
Full textHu, Yijia. "Performance exploration of Generative Pre-trained Transformer-2 for lyrics generation." Applied and Computational Engineering 48, no. 1 (March 19, 2024): 53–60. http://dx.doi.org/10.54254/2755-2721/48/20241154.
Full textNguyen, Viet, Giang Vu, Tung Nguyen Thanh, Khoat Than, and Toan Tran. "On Inference Stability for Diffusion Models." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 13 (March 24, 2024): 14449–56. http://dx.doi.org/10.1609/aaai.v38i13.29359.
Full textLi, Shuyu, and Yunsick Sung. "Transformer-Based Seq2Seq Model for Chord Progression Generation." Mathematics 11, no. 5 (February 23, 2023): 1111. http://dx.doi.org/10.3390/math11051111.
Full textZAKI, NAZAR M., SAFAAI DERIS, and ROSLI M. ILLIAS. "FEATURES EXTRACTION FOR PROTEIN HOMOLOGY DETECTION USING HIDDEN MARKOV MODELS COMBINING SCORES." International Journal of Computational Intelligence and Applications 04, no. 01 (March 2004): 1–12. http://dx.doi.org/10.1142/s1469026804001161.
Full textIsacchini, Giulio, Aleksandra M. Walczak, Thierry Mora, and Armita Nourmohammad. "Deep generative selection models of T and B cell receptor repertoires with soNNia." Proceedings of the National Academy of Sciences 118, no. 14 (April 1, 2021): e2023141118. http://dx.doi.org/10.1073/pnas.2023141118.
Full textWang, Chuantao, Xuexin Yang, and Linkai Ding. "Imbalanced sentiment classification based on sequence generative adversarial nets." Journal of Intelligent & Fuzzy Systems 39, no. 5 (November 19, 2020): 7909–19. http://dx.doi.org/10.3233/jifs-201370.
Full textStokes, James, and John Terilla. "Probabilistic Modeling with Matrix Product States." Entropy 21, no. 12 (December 17, 2019): 1236. http://dx.doi.org/10.3390/e21121236.
Full textWang, Xun, Changnan Gao, Peifu Han, Xue Li, Wenqi Chen, Alfonso Rodríguez Patón, Shuang Wang, and Pan Zheng. "PETrans: De Novo Drug Design with Protein-Specific Encoding Based on Transfer Learning." International Journal of Molecular Sciences 24, no. 2 (January 6, 2023): 1146. http://dx.doi.org/10.3390/ijms24021146.
Full textWu, Shaohan, Jingfeng Xue, Yong Wang, and Zixiao Kong. "Black-Box Evasion Attack Method Based on Confidence Score of Benign Samples." Electronics 12, no. 11 (May 23, 2023): 2346. http://dx.doi.org/10.3390/electronics12112346.
Full textRuss, William P., Matteo Figliuzzi, Christian Stocker, Pierre Barrat-Charlaix, Michael Socolich, Peter Kast, Donald Hilvert, et al. "An evolution-based model for designing chorismate mutase enzymes." Science 369, no. 6502 (July 23, 2020): 440–45. http://dx.doi.org/10.1126/science.aba3304.
Full textChen, Yunjie, Marius Staring, Olaf M. Neve, Stephan R. Romeijn, Erik F. Hensen, Berit M. Verbist, Jelmer M. Wolterink, and Qian Tao. "CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation." Machine Learning for Biomedical Imaging 2, Generative Models (February 9, 2024): 657–85. http://dx.doi.org/10.59275/j.melba.2024-d61g.
Full textQi, Jingyuan, Minqian Liu, Ying Shen, Zhiyang Xu, and Lifu Huang. "MULTISCRIPT: Multimodal Script Learning for Supporting Open Domain Everyday Tasks." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 17 (March 24, 2024): 18888–96. http://dx.doi.org/10.1609/aaai.v38i17.29854.
Full textLiu, Danyang, Juntao Li, Meng-Hsuan Yu, Ziming Huang, Gongshen Liu, Dongyan Zhao, and Rui Yan. "A Character-Centric Neural Model for Automated Story Generation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 02 (April 3, 2020): 1725–32. http://dx.doi.org/10.1609/aaai.v34i02.5536.
Full textTubiana, Jérôme, Lucia Adriana-Lifshits, Michael Nissan, Matan Gabay, Inbal Sher, Marina Sova, Haim J. Wolfson, and Maayan Gal. "Funneling modulatory peptide design with generative models: Discovery and characterization of disruptors of calcineurin protein-protein interactions." PLOS Computational Biology 19, no. 2 (February 2, 2023): e1010874. http://dx.doi.org/10.1371/journal.pcbi.1010874.
Full textShen, Kevin. "Multi-world Model in Continual Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 21 (March 24, 2024): 23757–59. http://dx.doi.org/10.1609/aaai.v38i21.30555.
Full textVaškevičius, Mantas, Jurgita Kapočiūtė-Dzikienė, and Liudas Šlepikas. "Generative LLMs in Organic Chemistry: Transforming Esterification Reactions into Natural Language Procedures." Applied Sciences 13, no. 24 (December 11, 2023): 13140. http://dx.doi.org/10.3390/app132413140.
Full textMarocco, Paolo, and Roberto Gigliucci. "An Investigation about Entailment and Narrative by AI Techniques (Generative Models)." Communication, Society and Media 3, no. 4 (November 16, 2020): p61. http://dx.doi.org/10.22158/csm.v3n4p61.
Full textLee, Sangho, Hayun Lee, and Dongkun Shin. "Proxyformer: Nyström-Based Linear Transformer with Trainable Proxy Tokens." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (March 24, 2024): 13418–26. http://dx.doi.org/10.1609/aaai.v38i12.29244.
Full textLEE, CHAN-SU, and DIMITRIS SAMARAS. "ANALYSIS AND CONTROL OF FACIAL EXPRESSIONS USING DECOMPOSABLE NONLINEAR GENERATIVE MODELS." International Journal of Pattern Recognition and Artificial Intelligence 28, no. 05 (July 31, 2014): 1456009. http://dx.doi.org/10.1142/s0218001414560096.
Full textLiu, Zuozhu, Thiparat Chotibut, Christopher Hillar, and Shaowei Lin. "Biologically Plausible Sequence Learning with Spiking Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 02 (April 3, 2020): 1316–23. http://dx.doi.org/10.1609/aaai.v34i02.5487.
Full textZhou, Kun, Wenyong Wang, Teng Hu, and Kai Deng. "Time Series Forecasting and Classification Models Based on Recurrent with Attention Mechanism and Generative Adversarial Networks." Sensors 20, no. 24 (December 16, 2020): 7211. http://dx.doi.org/10.3390/s20247211.
Full textWang, Yi. "Intelligent auxiliary system for music performance under edge computing and long short-term recurrent neural networks." PLOS ONE 18, no. 5 (May 8, 2023): e0285496. http://dx.doi.org/10.1371/journal.pone.0285496.
Full textLi, Longyuan, Jihai Zhang, Junchi Yan, Yaohui Jin, Yunhao Zhang, Yanjie Duan, and Guangjian Tian. "Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (May 18, 2021): 8420–28. http://dx.doi.org/10.1609/aaai.v35i10.17023.
Full textMurad, Taslim, Sarwan Ali, and Murray Patterson. "Exploring the Potential of GANs in Biological Sequence Analysis." Biology 12, no. 6 (June 14, 2023): 854. http://dx.doi.org/10.3390/biology12060854.
Full textTrinquier, Jeanne, Guido Uguzzoni, Andrea Pagnani, Francesco Zamponi, and Martin Weigt. "Efficient generative modeling of protein sequences using simple autoregressive models." Nature Communications 12, no. 1 (October 4, 2021). http://dx.doi.org/10.1038/s41467-021-25756-4.
Full text