Journal articles on the topic 'Generative classifiers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Generative classifiers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Varga, Michal, Ján Jadlovský, and Slávka Jadlovská. "Generative Enhancement of 3D Image Classifiers." Applied Sciences 10, no. 21 (October 22, 2020): 7433. http://dx.doi.org/10.3390/app10217433.
Full textShakhuro, V. I., and A. S. Konushin. "IMAGE SYNTHESIS WITH NEURAL NETWORKS FOR TRAFFIC SIGN CLASSIFICATION." Computer Optics 42, no. 1 (March 30, 2018): 105–12. http://dx.doi.org/10.18287/2412-6179-2018-42-1-105-112.
Full textSensoy, Murat, Lance Kaplan, Federico Cerutti, and Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Full textYakura, Hiromu, Youhei Akimoto, and Jun Sakuma. "Generate (Non-Software) Bugs to Fool Classifiers." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 01 (April 3, 2020): 1070–78. http://dx.doi.org/10.1609/aaai.v34i01.5457.
Full textHassan, Anthony Rotimi, Rasaki Olawale Olanrewaju, Queensley C. Chukwudum, Sodiq Adejare Olanrewaju, and S. E. Fadugba. "Comparison Study of Generative and Discriminative Models for Classification of Classifiers." International Journal of Mathematics and Computers in Simulation 16 (June 28, 2022): 76–87. http://dx.doi.org/10.46300/9102.2022.16.12.
Full textChen, Wei, Xinmiao Chen, and Xiao Sun. "Emotional dialog generation via multiple classifiers based on a generative adversarial network." Virtual Reality & Intelligent Hardware 3, no. 1 (February 2021): 18–32. http://dx.doi.org/10.1016/j.vrih.2020.12.001.
Full textLu, Zhengdong, Todd K. Leen, and Jeffrey Kaye. "Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals." Neural Computation 23, no. 9 (September 2011): 2390–420. http://dx.doi.org/10.1162/neco_a_00164.
Full textAmiryousefi, Ali, Ville Kinnula, and Jing Tang. "Bayes in Wonderland! Predictive Supervised Classification Inference Hits Unpredictability." Mathematics 10, no. 5 (March 5, 2022): 828. http://dx.doi.org/10.3390/math10050828.
Full textElzobi, Moftah, and Ayoub Al-Hamadi. "Generative vs. Discriminative Recognition Models for Off-Line Arabic Handwriting." Sensors 18, no. 9 (August 24, 2018): 2786. http://dx.doi.org/10.3390/s18092786.
Full textKaraliutė, Marta, and Kęstutis Dučinskas. "Performance of the supervised generative classifiers of spatio-temporal areal data using various spatial autocorrelation indexes." Nonlinear Analysis: Modelling and Control 28 (February 22, 2023): 1–14. http://dx.doi.org/10.15388/namc.2023.28.31434.
Full textKumar Bhowmik, Tapan. "Naive Bayes vs Logistic Regression: Theory, Implementation and Experimental Validation." Inteligencia Artificial 18, no. 56 (December 18, 2015): 14. http://dx.doi.org/10.4114/intartif.vol18iss56pp14-30.
Full textPerina, Alessandro, Marco Cristani, Umberto Castellani, Vittorio Murino, and Nebojsa Jojic. "Free Energy Score Spaces: Using Generative Information in Discriminative Classifiers." IEEE Transactions on Pattern Analysis and Machine Intelligence 34, no. 7 (July 2012): 1249–62. http://dx.doi.org/10.1109/tpami.2011.241.
Full textFisch, Dominik, Edgar Kalkowski, and Bernhard Sick. "Knowledge Fusion for Probabilistic Generative Classifiers with Data Mining Applications." IEEE Transactions on Knowledge and Data Engineering 26, no. 3 (March 2014): 652–66. http://dx.doi.org/10.1109/tkde.2013.20.
Full textSimon, Judy. "Image Augmentation based on GAN deep learning approach with Textual Content Descriptors." September 2021 3, no. 3 (November 1, 2021): 210–25. http://dx.doi.org/10.36548/jitdw.2021.3.005.
Full textEpshteyn, A., and G. DeJong. "Generative Prior Knowledge for Discriminative Classification." Journal of Artificial Intelligence Research 27 (September 25, 2006): 25–53. http://dx.doi.org/10.1613/jair.1934.
Full textWang, Liwei, Xiong Li, Zhuowen Tu, and Jiaya Jia. "Discriminative Clustering via Generative Feature Mapping." Proceedings of the AAAI Conference on Artificial Intelligence 26, no. 1 (September 20, 2021): 1162–68. http://dx.doi.org/10.1609/aaai.v26i1.8305.
Full textMontero, Alberto, Elisenda Bonet-Carne, and Xavier Paolo Burgos-Artizzu. "Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification." Sensors 21, no. 23 (November 29, 2021): 7975. http://dx.doi.org/10.3390/s21237975.
Full textAbedi, Masoud, Lars Hempel, Sina Sadeghi, and Toralf Kirsten. "GAN-Based Approaches for Generating Structured Data in the Medical Domain." Applied Sciences 12, no. 14 (July 13, 2022): 7075. http://dx.doi.org/10.3390/app12147075.
Full textFisch, Dominik, Christian Gruhl, Edgar Kalkowski, Bernhard Sick, and Seppo J. Ovaska. "Towards automation of knowledge understanding: An approach for probabilistic generative classifiers." Information Sciences 370-371 (November 2016): 476–96. http://dx.doi.org/10.1016/j.ins.2016.08.016.
Full textLi, Yuanzhang, Yaxiao Wang, Ye Wang, Lishan Ke, and Yu-an Tan. "A feature-vector generative adversarial network for evading PDF malware classifiers." Information Sciences 523 (June 2020): 38–48. http://dx.doi.org/10.1016/j.ins.2020.02.075.
Full textWang, Tianshi, Li Liu, Huaxiang Zhang, Long Zhang, and Xiuxiu Chen. "Joint Character-Level Convolutional and Generative Adversarial Networks for Text Classification." Complexity 2020 (April 30, 2020): 1–11. http://dx.doi.org/10.1155/2020/8516216.
Full textSandouka, Soha B., Yakoub Bazi, Haikel Alhichri, and Naif Alajlan. "Unified Generative Adversarial Networks for Multidomain Fingerprint Presentation Attack Detection." Entropy 23, no. 8 (August 21, 2021): 1089. http://dx.doi.org/10.3390/e23081089.
Full textSubedi, Bharat, V. E. Sathishkumar, V. Maheshwari, M. Sandeep Kumar, Prabhu Jayagopal, and Shaikh Muhammad Allayear. "Feature Learning-Based Generative Adversarial Network Data Augmentation for Class-Based Few-Shot Learning." Mathematical Problems in Engineering 2022 (July 21, 2022): 1–20. http://dx.doi.org/10.1155/2022/9710667.
Full textLiakos, Konstantinos G., Georgios K. Georgakilas, Fotis C. Plessas, and Paris Kitsos. "GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS." Electronics 11, no. 2 (January 13, 2022): 245. http://dx.doi.org/10.3390/electronics11020245.
Full textLevine, AB, J. Peng, SJM Jones, A. Bashashati, and S. Yip. "Synthesis of glioma histopathology images using generative adversarial networks." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 48, s1 (May 2021): S3. http://dx.doi.org/10.1017/cjn.2021.91.
Full textGraña, Manuel, Leire Ozaeta, and Darya Chyzhyk. "Resting State Effective Connectivity Allows Auditory Hallucination Discrimination." International Journal of Neural Systems 27, no. 05 (May 3, 2017): 1750019. http://dx.doi.org/10.1142/s0129065717500198.
Full textNan, Zhixiong, Yang Liu, Nanning Zheng, and Song-Chun Zhu. "Recognizing Unseen Attribute-Object Pair with Generative Model." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 8811–18. http://dx.doi.org/10.1609/aaai.v33i01.33018811.
Full textChen, Zhijun, Jingming Zhang, Yishi Zhang, and Zihao Huang. "Traffic Accident Data Generation Based on Improved Generative Adversarial Networks." Sensors 21, no. 17 (August 27, 2021): 5767. http://dx.doi.org/10.3390/s21175767.
Full textXu, Tingting, Ye Zhao, and Xueliang Liu. "Dual Generative Network with Discriminative Information for Generalized Zero-Shot Learning." Complexity 2021 (February 28, 2021): 1–11. http://dx.doi.org/10.1155/2021/6656797.
Full textPeppes, Nikolaos, Theodoros Alexakis, Evgenia Adamopoulou, and Konstantinos Demestichas. "The Effectiveness of Zero-Day Attacks Data Samples Generated via GANs on Deep Learning Classifiers." Sensors 23, no. 2 (January 12, 2023): 900. http://dx.doi.org/10.3390/s23020900.
Full textAvdoshin, S. M., D. V. Pantiukhin, I. M. Voronkov, A. N. Nazarov, V. I. Muhamadiev, M. K. Gordenko, Nhich Van Dam, and Ngoc Diep Nguyen. "Analysis of Neural Network Intrusion Detection Methods and Datasets for their Training." Informacionnye Tehnologii 28, no. 12 (December 14, 2022): 644–53. http://dx.doi.org/10.17587/it.28.644-653.
Full textZhen, Hao, Yucheng Shi, Jidong J. Yang, and Javad Mohammadpour Vehni. "Co-supervised learning paradigm with conditional generative adversarial networks for sample-efficient classification." Applied Computing and Intelligence 3, no. 1 (2022): 13–26. http://dx.doi.org/10.3934/aci.2023002.
Full textLee, Jeongmin, Younkyoung Yoon, and Junseok Kwon. "Generative Adversarial Network for Class-Conditional Data Augmentation." Applied Sciences 10, no. 23 (November 26, 2020): 8415. http://dx.doi.org/10.3390/app10238415.
Full textFaysal, Atik, Wai Keng Ngui, Meng Hee Lim, and Mohd Salman Leong. "Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis." Sensors 21, no. 23 (December 4, 2021): 8114. http://dx.doi.org/10.3390/s21238114.
Full textLa Salvia, Marco, Emanuele Torti, Raquel Leon, Himar Fabelo, Samuel Ortega, Beatriz Martinez-Vega, Gustavo M. Callico, and Francesco Leporati. "Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application." Sensors 22, no. 16 (August 17, 2022): 6145. http://dx.doi.org/10.3390/s22166145.
Full textBhuvaneswari, M. "Gaussian mixture model: An application to parameter estimation and medical image classification." Journal of Scientific and Innovative Research 5, no. 3 (June 25, 2016): 100–105. http://dx.doi.org/10.31254/jsir.2016.5308.
Full textShroff, Jugal, Rahee Walambe, Sunil Kumar Singh, and Ketan Kotecha. "Enhanced Security Against Volumetric DDoS Attacks Using Adversarial Machine Learning." Wireless Communications and Mobile Computing 2022 (March 11, 2022): 1–10. http://dx.doi.org/10.1155/2022/5757164.
Full textOstovan, Mahdi, Sadegh Samadi, and Alireza Kazemi. "Generation of Human Micro-Doppler Signature Based on Layer-Reduced Deep Convolutional Generative Adversarial Network." Computational Intelligence and Neuroscience 2022 (April 12, 2022): 1–8. http://dx.doi.org/10.1155/2022/7365544.
Full textAl-Qaderi, Mohammad, Elfituri Lahamer, and Ahmad Rad. "A Two-Level Speaker Identification System via Fusion of Heterogeneous Classifiers and Complementary Feature Cooperation." Sensors 21, no. 15 (July 28, 2021): 5097. http://dx.doi.org/10.3390/s21155097.
Full textAndrade, Daniel, Akihiro Tamura, and Masaaki Tsuchida. "Analysis of the Use of Background Distribution for Naive Bayes Classifiers." Journal of Intelligent Systems 28, no. 2 (April 24, 2019): 259–73. http://dx.doi.org/10.1515/jisys-2017-0016.
Full textGangal, Varun, Abhinav Arora, Arash Einolghozati, and Sonal Gupta. "Likelihood Ratios and Generative Classifiers for Unsupervised Out-of-Domain Detection in Task Oriented Dialog." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (April 3, 2020): 7764–71. http://dx.doi.org/10.1609/aaai.v34i05.6280.
Full textXue, Jing-Hao, and D. Michael Titterington. "Comment on “On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes”." Neural Processing Letters 28, no. 3 (October 26, 2008): 169–87. http://dx.doi.org/10.1007/s11063-008-9088-7.
Full textWang, Guangxing, and Peng Ren. "Hyperspectral Image Classification with Feature-Oriented Adversarial Active Learning." Remote Sensing 12, no. 23 (November 26, 2020): 3879. http://dx.doi.org/10.3390/rs12233879.
Full textKaiser, Christian, Matthias Schaufelberger, Reinald Peter Kühle, Andreas Wachter, Frederic Weichel, Niclas Hagen, Friedemann Ringwald, et al. "Generative-Adversarial-Network-Based Data Augmentation for the Classification of Craniosynostosis." Current Directions in Biomedical Engineering 8, no. 2 (August 1, 2022): 17–20. http://dx.doi.org/10.1515/cdbme-2022-1005.
Full textForster, Dennis, Abdul-Saboor Sheikh, and Jörg Lücke. "Neural Simpletrons: Learning in the Limit of Few Labels with Directed Generative Networks." Neural Computation 30, no. 8 (August 2018): 2113–74. http://dx.doi.org/10.1162/neco_a_01100.
Full textCutellic, Pierre. "Towards encoding shape features with visual event-related potential based brain–computer interface for generative design." International Journal of Architectural Computing 17, no. 1 (March 2019): 88–102. http://dx.doi.org/10.1177/1478077119832465.
Full textHe, Junpeng, Lei Luo, Kun Xiao, Xiyu Fang, and Yun Li. "Generate qualified adversarial attacks and foster enhanced models based on generative adversarial networks." Intelligent Data Analysis 26, no. 5 (September 5, 2022): 1359–77. http://dx.doi.org/10.3233/ida-216134.
Full textWang, Chenyue, Linlin Zhang, Kai Zhao, Xuhui Ding, and Xusheng Wang. "AdvAndMal: Adversarial Training for Android Malware Detection and Family Classification." Symmetry 13, no. 6 (June 17, 2021): 1081. http://dx.doi.org/10.3390/sym13061081.
Full textHeesch, Mateusz, Michał Dziendzikowski, Krzysztof Mendrok, and Ziemowit Dworakowski. "Diagnostic-Quality Guided Wave Signals Synthesized Using Generative Adversarial Neural Networks." Sensors 22, no. 10 (May 19, 2022): 3848. http://dx.doi.org/10.3390/s22103848.
Full textLi, Jie, Boyu Zhao, Kai Wu, Zhicheng Dong, Xuerui Zhang, and Zhihao Zheng. "A Representation Generation Approach of Transmission Gear Based on Conditional Generative Adversarial Network." Actuators 10, no. 5 (April 23, 2021): 86. http://dx.doi.org/10.3390/act10050086.
Full text