Academic literature on the topic 'Generalized Metric Spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generalized Metric Spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generalized Metric Spaces"
BEG, ISMAT, MUJAHID ABBAS, and TALAT NAZIR. "GENERALIZED CONE METRIC SPACES." Journal of Nonlinear Sciences and Applications 03, no. 01 (February 13, 2010): 21–31. http://dx.doi.org/10.22436/jnsa.003.01.03.
Full textAli, Basit, Hammad Ali, Talat Nazir, and Zakaria Ali. "Existence of Fixed Points of Suzuki-Type Contractions of Quasi-Metric Spaces." Mathematics 11, no. 21 (October 26, 2023): 4445. http://dx.doi.org/10.3390/math11214445.
Full textD, Ramesh Kumar. "Generalized Rational Inequalities in Complex Valued Metric Spaces." Journal of Computational Mathematica 1, no. 2 (December 30, 2017): 121–32. http://dx.doi.org/10.26524/cm21.
Full textAdewale, O. K., J. O. Olaleru, H. Olaoluwa, and H. Akewe. "Fixed Point Theorems on Generalized Rectangular Metric Spaces." Journal of Mathematical Sciences: Advances and Applications 65, no. 1 (April 10, 2021): 59–84. http://dx.doi.org/10.18642/jmsaa_7100122185.
Full textLa Rosa, Vincenzo, and Pasquale Vetro. "Common fixed points for α-ψ-φ-contractions in generalized metric spaces." Nonlinear Analysis: Modelling and Control 19, no. 1 (January 20, 2014): 43–54. http://dx.doi.org/10.15388/na.2014.1.3.
Full textYang, Hui. "Meir–Keeler Fixed-Point Theorems in Tripled Fuzzy Metric Spaces." Mathematics 11, no. 24 (December 14, 2023): 4962. http://dx.doi.org/10.3390/math11244962.
Full textKarapınar, Erdal. "Discussion onα-ψContractions on Generalized Metric Spaces." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/962784.
Full textZhang, Wei, and Chenxi Ouyang. "GENERALIZED CONE METRIC SPACES AND ORDERED SPACES." Far East Journal of Applied Mathematics 101, no. 2 (March 15, 2019): 101–12. http://dx.doi.org/10.17654/am101020101.
Full textBrock, Paul. "Probabilistic convergence spaces and generalized metric spaces." International Journal of Mathematics and Mathematical Sciences 21, no. 3 (1998): 439–52. http://dx.doi.org/10.1155/s0161171298000611.
Full textLiftaj, Silvana, Eriola Sila, and Zamir Selko. "Generalized almost Contractions on Extended Quasi-Cone B-Metric Spaces." WSEAS TRANSACTIONS ON MATHEMATICS 22 (November 29, 2023): 894–903. http://dx.doi.org/10.37394/23206.2023.22.98.
Full textDissertations / Theses on the topic "Generalized Metric Spaces"
Sarkis, Ralph. "Lifting Algebraic Reasoning to Generalized Metric Spaces." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0025.
Full textAlgebraic reasoning is ubiquitous in mathematics and computer science, and it has been generalized to many different settings. In 2016, Mardare, Panangaden, and Plotkin introduced quantitative algebras, that is, metric spaces equipped with operations that are nonexpansive relative to the metric. They proved counterparts to important results in universal algebra, and in particular they provided a sound and complete deduction system generalizing Birkhoff's equational logic by replacing equality with equality up to \varepsilon. This allowed them to give algebraic axiomatizations for several important metrics like the Hausdorff and Kantorovich distances.In this thesis, we make two modifications to Mardare et al.'s framework. First, we replace metrics with a more general notion that captures pseudometrics, partial orders, probabilistic metrics, and more. Second, we do not require the operations in a quantitative algebra to be nonexpansive. We provide a sound and complete deduction system, we construct free quantitative algebras, and we demonstrate the value of our generalization by proving that any monad on generalized metric spaces that lifts a monad on sets can be presented with a quantitative algebraic theory. We apply this last result to obtain an axiomatization for the \L ukaszyk--Karmowski distance
Miravet, Fortuño David. "GENERALIZED FUZZY METRIC SPACES DEFINED BY MEANS OF T-NORMS." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/124816.
Full text[CAT] En 1965, L. Zadeh va introduir el concepte de conjunt fuzzy, establint una nova línia d'investigació, coneguda com matemàtica fuzzy. Des d'aquell moment, molts autors han investigat la construcció d'una definició consistent d'espai mètric fuzzy. En 1994, George i Veeramani van introduir i estudiar una noció d'espai mètric fuzzy, realitzant una modificació adequada del concepte donat per Kramosil i Michalek. Aquests conceptes han estat estudiats i desenvolupats en diversos sentits durant els últims 25 anys. Amb la intenció de contribuir a aquest desenvolupament de la teoria fuzzy, en aquesta tesi hem introduït i estudiat els següents continguts: 1. Hem introduït el concepte d'espai mètric extés M0, que és una extensió adequada d'una GV -mètrica fuzzy M on el paràmetre t pot prendre el valor 0. A més, hem estudiat conceptes relacionats amb la convergència i les successions de Cauchy en aquest context, així com teoremes sobre contractivitat i punt fixe. 2. Hem provat l'existència de successions contractives en el sentit de D. Mihet en un GV -espai mètric fuzzy que no són Cauchy. Conseqüentment, hem aportat i estudiat un concepte apropiat de successió estrictament contractiva i hem corregit el Lema 3.2 de [V. Gregori and J.J. Miñana, On fuzzy psi-contractive sequences and fixed point theorems, Fuzzy Sets and Systems 300 (2016), 93-101]. 3. Hem introduït i estudiat una noció de (GV -)espai mètric parcial fuzzy (X,P,*) sense cap tipus de condició addicional sobre la t-norma contínua *. A continuació, hem definit una topologia T_P sobre X deduïda de P i hem demostrat que (X, T_P) es un espai T0. 4. Hem relacionat el ja mencionat concepte de GV -espai mètric parcial fuzzy amb la noció de GV -espai quasi-mètric fuzzy definit per Gregori i Romaguera en [V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Applied General Topology 5 (2004), 129-136]. S'ha estudiat una dualitat entre ambdós espais, imitant les tècniques utilitzades per Matthews en [S.G.Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728 (1994), 183-197].
[EN] In 1965, L. Zadeh introduced the concept of fuzzy set, and thus established a new topic of research, known as fuzzy mathematics. Since then, several authors have been investigating the approach of a consistent fuzzy metric space theory. In 1994, George and Veeramani introduced and studied a concept of fuzzy metric space which was a proper modification of the concept given by Kramosil and Michalek. These notions have been studied and developed in several ways during the last 25 years. With the purpose of contributing to the development of the study of the fuzzy theory, in this thesis we have introduced and studied the following items: 1. We have introduced the concept of extended fuzzy metric M0 which is an appropriate extension of a GV -fuzzy metric M where the parameter t can take the value 0. Furthermore, we have studied convergence and Cauchyness concepts in this context, as well as contractivity and fixed point theorems. 2. We have proved the existence of contractive sequences in the sense of D. Mihet in a GV -fuzzy metric space which are not Cauchy. Then we have given and studied an appropriate concept of strictly contractive sequence and we have corrected Lemma 3.2 of [V. Gregori and J.J. Miñana, On fuzzy psi-contractive sequences and fixed point theorems, Fuzzy Sets and Systems 300 (2016), 93-101]. 3. We have introduced and studied a concept of (GV -)fuzzy partial metric space (X,P,*) without any extra conditions on the continuous t-norm *. Then we have defined a topology T_P on X deduced from P and we have proved that (X, T_P) is a T0 space. 4. We have related the aforementioned notion of GV -fuzzy partial metric space with the concept of GV -fuzzy quasi-metric space given by Gregori and Romaguera in [V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Applied General Topology 5 (2004), 129-136]. A duality is studied by mimicking the techniques used in [S.G.Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728 (1994), 183-197] by Matthews.
Miravet Fortuño, D. (2019). GENERALIZED FUZZY METRIC SPACES DEFINED BY MEANS OF T-NORMS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124816
TESIS
Tran, Anh Tuyet. "1p spaces." CSUSB ScholarWorks, 2002. https://scholarworks.lib.csusb.edu/etd-project/2238.
Full textStares, Ian S. "Extension of functions and generalised metric spaces." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386678.
Full textBabus, Octavian Vladut. "Generalised distributivity and the logic of metric spaces." Thesis, University of Leicester, 2016. http://hdl.handle.net/2381/37701.
Full textShi, Xiaohui. "Graev Metrics and Isometry Groups of Polish Ultrametric Spaces." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc271898/.
Full textIvana, Štajner-Papuga. "Uopštena konvolucija." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2001. https://www.cris.uns.ac.rs/record.jsf?recordId=5987&source=NDLTD&language=en.
Full textIn this thesis the generalized convolution have been defined. This operation with functions has applications in different mathematical theo ries, for example in Probabilistic Metric Spaces, PDE, System and Control Theory, Fuzzy numbers. Some basic properties of this operation has been proved, as well as connection between generalized convolutions based on different classes of semirings. (5, U)-convolution has been defined, as well as convolution based on generalized pseudo-operations.
Jelena, Stojanov. "Anisotropic frameworks for dynamical systems and image processing." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2015. https://www.cris.uns.ac.rs/record.jsf?recordId=93698&source=NDLTD&language=en.
Full textPredmet istraživanja doktorske disertacije je uporedna analiza klasičnih i specifičnih geometrijskih radnih okruženja i njihovih anizotropnih proširenja; konstrukcija tri Finslerova radna okruženja različitog tipa koja su pogodna za analizu dinamičkog sistema populacije kanceroznih ćelija; razvoj teorije anizotropnog Beltramijevog radnog okruženja i formiranje jednačina evolutivnog toka za različite klase anizotropnih metrika, kao i mogućnost primene dobijenih teorijskih rezultata u digitalnoj obradi slika.
Popa-Fischer, Anca. "Generalized Kähler metrics on complex spaces and a supplement to a Theorem of Fornæss and Narasimhan." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960695028.
Full textAbbas, Mujahid. "Soft Set Theory: Generalizations, Fixed Point Theorems, and Applications." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/48470.
Full textAbbas, M. (2014). Soft Set Theory: Generalizations, Fixed Point Theorems, and Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48470
TESIS
Books on the topic "Generalized Metric Spaces"
Lin, Shou, and Ziqiu Yun. Generalized Metric Spaces and Mappings. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-216-8.
Full textKarapinar, Erdal, and Ravi P. Agarwal. Fixed Point Theory in Generalized Metric Spaces. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14969-6.
Full textAbate, Marco. Finsler metrics-- a global approach: With applications to geometric function theory. Berlin: Springer-Verlag, 1994.
Find full textLin, Shou, and Ziqiu Yun. Generalized Metric Spaces and Mappings. Atlantis Press (Zeger Karssen), 2016.
Find full textKarapinar, Erdal, and Ravi P. Agarwal. Fixed Point Theory in Generalized Metric Spaces. Springer International Publishing AG, 2022.
Find full textFixed Point Theory in Generalized Metric Spaces. Springer International Publishing AG, 2023.
Find full textFundamentals of Signal Processing in Generalized Metric Spaces. CRC Press LLC, 2022.
Find full textBusemann, Herbert. Metric Methods of Finsler Spaces and in the Foundations of Geometry. (AM-8). Princeton University Press, 2016.
Find full textPopoff, Andrey. Fundamentals of Signal Processing in Generalized Metric Spaces: Algorithms and Applications. Taylor & Francis Group, 2022.
Find full textPopoff, Andrey. Fundamentals of Signal Processing in Generalized Metric Spaces: Algorithms and Applications. Taylor & Francis Group, 2022.
Find full textBook chapters on the topic "Generalized Metric Spaces"
Kirk, William, and Naseer Shahzad. "Generalized Metric Spaces." In Fixed Point Theory in Distance Spaces, 133–39. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10927-5_13.
Full textLin, Shou, and Ziqiu Yun. "Generalized Metric Spaces." In Atlantis Studies in Mathematics, 147–258. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-216-8_3.
Full textLin, Shou, and Ziqiu Yun. "The Origin of Generalized Metric Spaces." In Atlantis Studies in Mathematics, 1–51. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-216-8_1.
Full textManav, N. "Fixed-Point Theorems in Generalized Modular Metric Spaces." In Metric Fixed Point Theory, 89–111. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4896-0_5.
Full textLaal Shateri, Tayebe, and Ozgur Ege. "Modular Spaces and Fixed Points of Generalized Contractions." In Metric Fixed Point Theory, 71–87. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4896-0_4.
Full textPaunović, Marija V., Samira Hadi Bonab, and Vahid Parvaneh. "Weak-Wardowski Contractions in Generalized Triple-Controlled Modular Metric Spaces and Generalized Triple-Controlled Fuzzy Metric Spaces." In Soft Computing, 45–66. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003312017-4.
Full textMoltó, Aníbal, José Orihuela, Stanimir Troyanski, and Manuel Valdivia. "Generalized Metric Spaces and Locally Uniformly Rotund Renormings." In A Nonlinear Transfer Technique for Renorming, 49–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85031-1_3.
Full textAydi, Hassen, and Stefan Czerwik. "Fixed Point Theorems in Generalized b-Metric Spaces." In Springer Optimization and Its Applications, 1–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74325-7_1.
Full textKonwar, Nabanita. "Results on Generalized Tripled Fuzzy b-Metric Spaces." In Forum for Interdisciplinary Mathematics, 137–50. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0668-8_8.
Full textPopoff, Andrey. "Signal Filtering Algorithms in Spaces with L-group Properties." In Fundamentals of Signal Processing in Generalized Metric Spaces, 93–132. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003275855-3.
Full textConference papers on the topic "Generalized Metric Spaces"
Goleţ, Ioan, Ciprian Hedrea, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "On Generalized Contractions in Probabilistic Metric Spaces." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636943.
Full textTang, Yongye, and Yongfu Su. "New Generalized Contractions in Complete Cone Metric Spaces." In 2011 International Symposium on Computer Science and Society (ISCCS). IEEE, 2011. http://dx.doi.org/10.1109/isccs.2011.83.
Full textLi, Xiaofan, Yachao Zhang, Shiran Bian, Yanyun Qu, Yuan Xie, Zhongchao Shi, and Jianping Fan. "VS-Boost: Boosting Visual-Semantic Association for Generalized Zero-Shot Learning." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/123.
Full textŁenski, Włodzimierz, and Bogdan Szal. "On the approximation of functions by matrix means in the generalized Hölder metric." In Function Spaces VIII. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc79-0-9.
Full textPistone, Paolo. "On Generalized Metric Spaces for the Simply Typed Lambda-Calculus." In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2021. http://dx.doi.org/10.1109/lics52264.2021.9470696.
Full textDahiya, Anita, Asha Rani, and Manoj Kumar. "Fixed points for cyclic µ-expansions in generalized metric spaces." In RECENT ADVANCES IN FUNDAMENTAL AND APPLIED SCIENCES: RAFAS2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4990341.
Full textFadail, Zaid Mohammed, and Abd Ghafur Bin Ahmad. "Fixed point results of T-Kannan contraction on generalized distance in cone metric spaces." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882558.
Full textKosal, Isil Arda, and Mahpeyker Ozturk. "Best proximity points for elliptic generalized geraghty contraction mappings in elliptic valued metric spaces." In 7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5078470.
Full textRamadana, Yusuf, and Hendra Gunawan. "Boundedness of sublinear operator generated by Calderón-Zygmund operator on generalized weighted Morrey spaces over quasi-metric measure spaces." In INTERNATIONAL CONFERENCE ON MATHEMATICAL ANALYSIS AND ITS APPLICATIONS 2022 (IConMAA 2022): Analysis, Uncertainty, and Optimization. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0191768.
Full textTummala, Kusuma, A. Sree Rama Murthy, V. Ravindranath, P. Harikrishna, and N. V. V. S. Suryanarayana. "Common fixed points of generalized (α, η)-geraghty rational type contraction in b-metric spaces." In CONTEMPORARY INNOVATIONS IN ENGINEERING AND MANAGEMENT. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0158562.
Full textReports on the topic "Generalized Metric Spaces"
Lynch, James F. A Higgs Universe and the flow of time. Woods Hole Oceanographic Institution, April 2024. http://dx.doi.org/10.1575/1912/69338.
Full text