Dissertations / Theses on the topic 'Generalized linear mixed model (GLMM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Generalized linear mixed model (GLMM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nuthmann, Antje, Wolfgang Einhäuser, and Immo Schütz. "How Well Can Saliency Models Predict Fixation Selection in Scenes Beyond Central Bias? A New Approach to Model Evaluation Using Generalized Linear Mixed Models." Universitätsbibliothek Chemnitz, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-232614.
Full textCarvalho, Rafael Augusto Pincante de. "Fatores determinantes da intensidade de uso dos abrigos pela geneta (Genetta genetta L. 1758) numa região mediterrânica." Master's thesis, Universidade de Évora, 2012. http://hdl.handle.net/10174/15506.
Full textGory, Jeffrey J. "Marginally Interpretable Generalized Linear Mixed Models." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1497966698387606.
Full textTang, On-yee, and 鄧安怡. "Estimation for generalized linear mixed model via multipleimputations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B30687652.
Full textSepato, Sandra Moepeng. "Generalized linear mixed model and generalized estimating equation for binary longitudinal data." Diss., University of Pretoria, 2014. http://hdl.handle.net/2263/43143.
Full textDissertation (MSc)--University of Pretoria, 2014.
lk2014
Statistics
MSc
Unrestricted
Tang, On-yee. "Estimation for generalized linear mixed model via multiple imputations." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B30687652.
Full textChen, Jinsong. "Semiparametric Methods for the Generalized Linear Model." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/28012.
Full textPh. D.
Yam, Ho-kwan, and 任浩君. "On a topic of generalized linear mixed models and stochastic volatility model." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B29913342.
Full textSima, Adam. "Accounting for Model Uncertainty in Linear Mixed-Effects Models." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/2950.
Full textZhan, Tingting. "The Generalized Linear Mixed Model for Finite Normal Mixtures with Application to Tendon Fibrilogenesis Data." Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/171613.
Full textPh.D.
We propose the generalized linear mixed model for finite normal mixtures (GLMFM), as well as the estimation procedures for the GLMFM model, which are widely applicable to the hierarchical dataset with small number of individual units and multi-modal distributions at the lowest level of clustering. The modeling task is two-fold: (a). to model the lowest level cluster as a finite mixtures of the normal distribution; and (b). to model the properly transformed mixture proportions, means and standard deviations of the lowest-level cluster as a linear hierarchical structure. We propose the robust generalized weighted likelihood estimators and the new cubic-inverse weight for the estimation of the finite mixture model (Zhan et al., 2011). We propose two robust methods for estimating the GLMFM model, which accommodate the contaminations on all clustering levels, the standard-two-stage approach (Chervoneva et al., 2011, co-authored) and a robust joint estimation. Our research was motivated by the data obtained from the tendon fibril experiment reported in Zhang et al. (2006). Our statistical methodology is quite general and has potential application in a variety of relatively complex statistical modeling situations.
Temple University--Theses
Chen, Yin. "Quasi-Monte Carlo methods in generalized linear mixed model with correlated and non-normal random effects." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516829.
Full textCodd, Casey. "A Review and Comparison of Models and Estimation Methods for Multivariate Longitudinal Data of Mixed Scale Type." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1398686513.
Full textCho, Jang Ik. "Partial EM Procedure for Big-Data Linear Mixed Effects Model, and Generalized PPE for High-Dimensional Data in Julia." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case152845439167999.
Full textWang, Yu. "A study on the type I error rate and power for generalized linear mixed model containing one random effect." Kansas State University, 2017. http://hdl.handle.net/2097/35301.
Full textDepartment of Statistics
Christopher Vahl
In animal health research, it is quite common for a clinical trial to be designed to demonstrate the efficacy of a new drug where a binary response variable is measured on an individual experimental animal (i.e., the observational unit). However, the investigational treatments are applied to groups of animals instead of an individual animal. This means the experimental unit is the group of animals and the response variable could be modeled with the binomial distribution. Also, the responses of animals within the same experimental unit may then be statistically dependent on each other. The usual logit model for a binary response assumes that all observations are independent. In this report, a logit model with a random error term representing the group of animals is considered. This is model belongs to a class of models referred to as generalized linear mixed models and is commonly fit using the SAS System procedure PROC GLIMMIX. Furthermore, practitioners often adjust the denominator degrees of freedom of the test statistic produced by PROC GLIMMIX using one of several different methods. In this report, a simulation study was performed over a variety of different parameter settings to compare the effects on the type I error rate and power of two methods for adjusting the denominator degrees of freedom, namely “DDFM = KENWARDROGER” and “DDFM = NONE”. Despite its reputation for fine performance in linear mixed models with normally distributed errors, the “DDFM = KENWARDROGER” option tended to perform poorly more often than the “DDFM = NONE” option in the logistic regression model with one random effect.
Barbosa, Luciano [UNESP]. "Metodologias estatísticas na análise de germinação de sementes de mamona." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/101848.
Full textÉ bastante comum na área agrícola, experimentos cujas variáveis respostas são contagens ou proporções. Para esse tipo de dados, utiliza-se a metodologia de modelos lineares generalizados quando as respostas são independentes. Por outro lado, quando as respostas são dependentes, há uma correlação entre as observações e isso tem que ser levado em consideração na análise, para evitar inferências incorretas sobre os coeficientes de regressão. Na literatura há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. No presente trabalho, utiliza-se a metodologia de equação de estimação generalizada, que inclui no modelo uma matriz de correlação para a obtenção de um melhor ajuste. Outra alternativa, também abordada neste trabalho, é a utilização de um modelo linear generalizado misto, no qual o uso de efeitos aleatórios também introduz uma correlação entre observações que tenham algum efeito em comum. Essas duas metodologias são aplicadas a um conjunto de dados obtidos de um experimento para avaliar certas condições na germinação de sementes de mamona da cultivar AL Guarany 2002, com o objetivo de se verificar qual o melhor modelo de estimação para esses dados
Experiments whose response variables are counts or proportions are very common in agriculture. For this type of data, if the observational units are independent, the methodology of generalized linear models can be appropriate. On the other hand, when responses are dependent or clustered, there is a correlation between the observations and that has to be taken into consideration in the analysis to avoid incorrect inferences about the regression coefficients. In the literature there are techniques available for modeling and analyzing such type data, the models being extensions of generalized linear models. The present study explores the use of: 1) generalized estimation equations, that includes a correlation matrix to obtain a better fit; 2) generalized linear mixed models, that introduce a correlation between clustered observations though the addition of random effects in the model. These two methodologies are applied to a data set obtained from an experiment to evaluate certain conditions on the germination of seeds of castor bean cultivar AL Guarany 2002 with the objective of determining the best estimation model for such data
Barbosa, Luciano 1971. "Metodologias estatísticas na análise de germinação de sementes de mamona /." Botucatu : [s.n.], 2010. http://hdl.handle.net/11449/101848.
Full textBanca: Liciana Vaz da Arruda
Banca: Osmar Delmanto Junior
Banca: Célia Regina Lopes Zimback
Banca: Marli Teixeira de A. Minhoni
Resumo: É bastante comum na área agrícola, experimentos cujas variáveis respostas são contagens ou proporções. Para esse tipo de dados, utiliza-se a metodologia de modelos lineares generalizados quando as respostas são independentes. Por outro lado, quando as respostas são dependentes, há uma correlação entre as observações e isso tem que ser levado em consideração na análise, para evitar inferências incorretas sobre os coeficientes de regressão. Na literatura há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. No presente trabalho, utiliza-se a metodologia de equação de estimação generalizada, que inclui no modelo uma matriz de correlação para a obtenção de um melhor ajuste. Outra alternativa, também abordada neste trabalho, é a utilização de um modelo linear generalizado misto, no qual o uso de efeitos aleatórios também introduz uma correlação entre observações que tenham algum efeito em comum. Essas duas metodologias são aplicadas a um conjunto de dados obtidos de um experimento para avaliar certas condições na germinação de sementes de mamona da cultivar AL Guarany 2002, com o objetivo de se verificar qual o melhor modelo de estimação para esses dados
Abstract: Experiments whose response variables are counts or proportions are very common in agriculture. For this type of data, if the observational units are independent, the methodology of generalized linear models can be appropriate. On the other hand, when responses are dependent or clustered, there is a correlation between the observations and that has to be taken into consideration in the analysis to avoid incorrect inferences about the regression coefficients. In the literature there are techniques available for modeling and analyzing such type data, the models being extensions of generalized linear models. The present study explores the use of: 1) generalized estimation equations, that includes a correlation matrix to obtain a better fit; 2) generalized linear mixed models, that introduce a correlation between clustered observations though the addition of random effects in the model. These two methodologies are applied to a data set obtained from an experiment to evaluate certain conditions on the germination of seeds of castor bean cultivar AL Guarany 2002 with the objective of determining the best estimation model for such data
Doutor
SALISBURY, SHEILIA. "The Multivariate Generalized Linear Mixed Model for a Joint Modeling Approach for Analysis of Tumor Multiplicity Data: Development and Comparison of Methods." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1202404654.
Full textChao, Yi. "Bayesian Hierarchical Latent Model for Gene Set Analysis." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/32060.
Full textMaster of Science
Mahmoud, Hamdy Fayez Farahat. "Some Advanced Semiparametric Single-index Modeling for Spatially-Temporally Correlated Data." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/76744.
Full textPh. D.
Barbu, Otilia C. "Using PROC GLIMMIX to Analyze the Animal Watch, a Web-Based Tutoring System for Algebra Readiness." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/238636.
Full textShen, Xia. "Novel Statistical Methods in Quantitative Genetics : Modeling Genetic Variance for Quantitative Trait Loci Mapping and Genomic Evaluation." Doctoral thesis, Uppsala universitet, Beräknings- och systembiologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-170091.
Full textApanasovich, Tatiyana Vladimirovna. "Testing for spatial correlation and semiparametric spatial modeling of binary outcomes with application to aberrant crypt foci in colon carcinogenesis experiments." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2674.
Full textChen, Chen. "Evaluating Time-varying Effect in Single-type and Multi-type Semi-parametric Recurrent Event Models." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/64371.
Full textPh. D.
Oliveira, Izabela Regina Cardoso de. "Modeling strategies for complex hierarchical and overdispersed data in the life sciences." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12082014-105135/.
Full textNeste trabalho foram estudados os chamados modelos combinados, modelos lineares generalizados mistos com extensão para acomodar superdispersão, no contexto de genética e melhoramento. Esses modelos flexíveis acomodam correlação induzida por agrupamento e superdispersão por meio de dois conjuntos separados de efeitos aleatórios e contem como casos especiais os modelos lineares generalizados mistos (MLGM) e os modelos de superdispersão comumente conhecidos. Tais modelos são usados na obtenção do coeficiente de herdabilidade para caracteres não Gaussianos. Herdabilidade é um dos vários importantes conceitos que são frequentemente quantificados com o ajuste de um modelo a dados hierárquicos. Ela é usualmente importante no melhoramento vegetal e animal. Conhecer esse atributo é útil para quantificar a magnitude do ganho na população. Para dados em que modelos lineares podem ser usados, esse atributo é convenientemente definido como uma razão de componentes de variância. Os problemas são menos simples para respostas não Gaussianas. O foco aqui é em características do tipo tempo-até-evento e contagem, em que os modelosWeibull-Gama-Normal e Poisson-Gama-Normal são usados. As expressões resultantes são suficientemente simples e atrativas, em particular nos casos especiais, pelo valor prático. As metodologias propostas são ilustradas usando dados de melhoramento animal e vegetal. Além disso, a atenção é voltada à ocorrência de estimativas negativas de componentes de variância no modelo Poisson-Gama- Normal. A ocorrência de componentes de variância negativos em modelos lineares mistos (MLM) tem recebido certa atenção na literatura enquanto quase nenhum trabalho tem sido feito para MLGM. Esse fenômeno pode ser confuso a princípio porque, por definição, variâncias são quantidades não-negativas. Entretanto, este é um fenômeno bem compreendido no contexto de modelagem linear mista, em que a escolha deverá ser feita entre uma interpretação hierárquica ou marginal. Os componentes de variância do modelo combinado para respostas de contagem são estudados teoricamente e o estudo de melhoramento vegetal usado como ilustração confirma que esse fenômeno pode ser comum em pesquisas aplicadas. A atenção também é voltada ao desempenho de diferentes métodos de estimação, porque nem todos aqueles disponíveis são capazes de estender o espaço paramétrico dos componentes de variância. Então, quando há a necessidade de inferência de tais componentes e é esperado que eles sejam negativos, a acurácia do método de estimação não é a única característica a ser considerada.
Zahid, Saman. "Comparing Resource Abundance And Intake At The Reda And Wisla River Estuaries." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-172770.
Full textVillavicencio, Gastelu Joel [UNESP]. "Análise espacial do potencial fotovoltaico em telhados de residências usando modelagem hierárquica bayesiana." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/137801.
Full textRejected by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: O arquivo submetido está sem a ficha catalográfica. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação. Corrija estas informações e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2016-04-01T13:14:50Z (GMT)
Submitted by JOÉL VILLAVICENCIO GASTELÚ null (tear_295@hotmail.com) on 2016-04-01T19:04:22Z No. of bitstreams: 1 Dissertação_Joel.pdf: 4253690 bytes, checksum: 75d9921d8416eec7341f8bf0e2182766 (MD5)
Rejected by Ana Paula Grisoto (grisotoana@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: A data informada na capa do documento está diferente da data de defesa que consta na ficha catalográfica e folha de aprovação. Corrija esta informação no arquivo PDF e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2016-04-05T13:53:33Z (GMT)
Submitted by JOÉL VILLAVICENCIO GASTELÚ null (tear_295@hotmail.com) on 2016-04-06T22:35:57Z No. of bitstreams: 1 Dissertação_Joel.pdf: 4231140 bytes, checksum: 4bd6143a52dc3a6846abd4f996ba9306 (MD5)
Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-04-07T12:21:23Z (GMT) No. of bitstreams: 1 gastelu_jv_me_ilha.pdf: 4231140 bytes, checksum: 4bd6143a52dc3a6846abd4f996ba9306 (MD5)
Made available in DSpace on 2016-04-07T12:21:23Z (GMT). No. of bitstreams: 1 gastelu_jv_me_ilha.pdf: 4231140 bytes, checksum: 4bd6143a52dc3a6846abd4f996ba9306 (MD5) Previous issue date: 2016-03-01
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
No presente trabalho tem-se como objetivo estimar o potencial fotovoltaico devido à instalação de sistemas fotovoltaicos em telhados de áreas residenciais. Na estimação desse potencial foram consideradas quatro grandezas: o nível de irradiação solar, a área aproveitável de telhado para a instalação dos sistemas fotovoltaicos, a eficiência de conversão dos sistemas fotovoltaicos e as probabilidades de instalação dos sistemas fotovoltaicos, que caracterizam as preferências dos habitantes à instalação desses sistemas. Um modelo hierárquico bayesiano foi proposto para o cálculo das probabilidades de instalação dos sistemas fotovoltaicos. Nesse modelo bayesiano é estabelecida uma relação entre as probabilidades de instalação, as variáveis socioeconômicas e as interações entre as subáreas, através de um modelo linear generalizado misto. O cálculo do valor esperado das probabilidades de instalação foi realizado usando o método de Monte Carlo via cadeias de Markov. Os resultados do potencial fotovoltaico são apresentados através de mapas temáticos, que permitem a visualização da distribuição espacial do seu valor esperado. Esta informação pode ajudar as concessionárias de distribuição no planejamento e expansão de suas redes elétricas em regiões com maior potencial de geração fotovoltaica.
The present work aims to estimate the photovoltaic potential for installing solar panel on the rooftop of residential areas. The estimation of this potential considers four quantities: the solar radiation level, rooftop availability for installation of photovoltaic systems, conversion efficiency of the photovoltaic systems and the probabilities for the installation of photovoltaic systems that characterize the preferences of the inhabitants to the installation of such systems. A bayesian hierarchical model is proposed to calculate the installation probabilities of photovoltaic systems. This bayesian model establishes a relation among the installation probabilities, socioeconomic variables and interactions between subareas, through a generalized linear mixed model. The calculation of expected value of installation probabilities in each subarea is performed using the Markov Chain Monte Carlo method. Photovoltaic potential results are presented through thematic maps that allow the visualization of the spatial distribution of its expected value. This information can help to distribution utilities for planning and expansion of their networks in regions with the greatest potential for photovoltaic generation.
Villavicencio, Gastelu Joel. "Análise espacial do potencial fotovoltaico em telhados de residências usando modelagem hierárquica bayesiana /." Ilha Solteira, 2016. http://hdl.handle.net/11449/137801.
Full textResumo: No presente trabalho tem-se como objetivo estimar o potencial fotovoltaico devido à instalação de sistemas fotovoltaicos em telhados de áreas residenciais. Na estimação desse potencial foram consideradas quatro grandezas: o nível de irradiação solar, a área aproveitável de telhado para a instalação dos sistemas fotovoltaicos, a eficiência de conversão dos sistemas fotovoltaicos e as probabilidades de instalação dos sistemas fotovoltaicos, que caracterizam as preferências dos habitantes à instalação desses sistemas. Um modelo hierárquico bayesiano foi proposto para o cálculo das probabilidades de instalação dos sistemas fotovoltaicos. Nesse modelo bayesiano é estabelecida uma relação entre as probabilidades de instalação, as variáveis socioeconômicas e as interações entre as subáreas, através de um modelo linear generalizado misto. O cálculo do valor esperado das probabilidades de instalação foi realizado usando o método de Monte Carlo via cadeias de Markov. Os resultados do potencial fotovoltaico são apresentados através de mapas temáticos, que permitem a visualização da distribuição espacial do seu valor esperado. Esta informação pode ajudar as concessionárias de distribuição no planejamento e expansão de suas redes elétricas em regiões com maior potencial de geração fotovoltaica.
Abstract: The present work aims to estimate the photovoltaic potential for installing solar panel on the rooftop of residential areas. The estimation of this potential considers four quantities: the solar radiation level, rooftop availability for installation of photovoltaic systems, conversion efficiency of the photovoltaic systems and the probabilities for the installation of photovoltaic systems that characterize the preferences of the inhabitants to the installation of such systems. A bayesian hierarchical model is proposed to calculate the installation probabilities of photovoltaic systems. This bayesian model establishes a relation among the installation probabilities, socioeconomic variables and interactions between subareas, through a generalized linear mixed model. The calculation of expected value of installation probabilities in each subarea is performed using the Markov Chain Monte Carlo method. Photovoltaic potential results are presented through thematic maps that allow the visualization of the spatial distribution of its expected value. This information can help to distribution utilities for planning and expansion of their networks in regions with the greatest potential for photovoltaic generation.
Mestre
Abel, Leah A. "Development and maintenance of victimization associated with bullying during the transition to middle school: The role of school-based factors." Kent State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1594745288709797.
Full textSagara, Issaka. "Méthodes d'analyse statistique pour données répétées dans les essais cliniques : intérêts et applications au paludisme." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM5081/document.
Full textNumerous clinical studies or control interventions were done or are ongoing in Africa for malaria control. For an efficient control of this disease, the strategies should be closer to the reality of the field and the data should be analyzed appropriately. In endemic areas, malaria is a recurrent disease. Repeated malaria episodes are common in African. However, the literature review indicates a limited application of appropriate statistical tools for the analysis of recurrent malaria data. We implemented appropriate statistical methods for the analysis of these data We have also studied the repeated measurements of hemoglobin during malaria treatments follow-up in order to assess the safety of the study drugs by pooling data from 13 clinical trials.For the analysis of the number of malaria episodes, the negative binomial regression has been implemented. To model the recurrence of malaria episodes, four models were used: i) the generalized estimating equations (GEE) using the Poisson distribution; and three models that are an extension of the Cox model: ii) Andersen-Gill counting process (AG-CP), iii) Prentice-Williams-Peterson counting process (PWP-CP); and (iv) the shared gamma frailty model. For the safety analysis, i.e. the assessment of the impact of malaria treatment on hemoglobin levels or the onset of anemia, the generalized linear and latent mixed models (GLLAMM) has been implemented. We have shown how to properly apply the existing statistical tools in the analysis of these data. The prospects of this work remain in the development of guides on good practices on the methodology of the preparation and analysis and storage network for malaria data
Mukherjee, Soumyadeep. "Antenatal Stressful Life Events and Postpartum Depression in the United States: the Role of Women’s Socioeconomic Status at the State Level." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2631.
Full textHecht, Martin. "Optimierung von Messinstrumenten im Large-scale Assessment." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17270.
Full textMeasurement instruments are essential elements in the acquisition of knowledge in scientific research. Special features of measurement instruments in large-scale assessments of student achievement are their frequent reconstruction and the usage of different test versions. Here, threats for the accuracy and validity of the measurement may emerge. To minimize such threats, (a) sources for potential bias of measurement and (b) strategies to optimize measuring instruments should be explored. Therefore, the present dissertation investigates several specific topics within these two research areas.
Karimi, Maryam. "Modélisation conjointe de trajectoire socioprofessionnelle individuelle et de la survie globale ou spécifique." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS120/document.
Full textBeing in low socioeconomic position is associated with increased mortality risk from various causes of death. Previous studies have already shown the importance of considering different dimensions of socioeconomic trajectories across the life-course. Analyses of professional trajectories constitute a crucial step in order to better understand the association between socio-economic position and mortality. The main challenge in measuring this association is then to decompose the respectiveshare of these factors in explaining the survival level of individuals. The complexity lies in the bidirectional causality underlying the observed associations:Are mortality differentials due to differences in the initial health conditions that are jointly influencing employment status and mortality, or the professional trajectory influences directly health conditions and then mortality?Standard methods do not consider the interdependence of changes in occupational status and the bidirectional causal effect underlying the observed association and that leads to substantial bias in estimating the causal link between professional trajectory and mortality. Therefore, it is necessary to propose statistical methods that consider simultaneously repeated measurements (careers) and survivalvariables. This study was motivated by the Cosmop-DADS database, which is a sample of the French salaried population.The first aim of this dissertation was to consider the whole professional trajectories and an accurate occupational classification, instead of using limitednumber of stages during life course and a simple occupational classification that has been considered previously. For this purpose, we defined time-dependent variables to capture different life course dimensions, namely critical period, accumulation model and social mobility model, and we highlighted the association between professional trajectories and cause-specific mortality using the definedvariables in a Cox proportional hazards model.The second aim was to incorporate the employment episodes in a longitudinal sub-model within the joint model framework to reduce the bias resulting from the inclusion of internal time-dependent covariates in the Cox model. We proposed a joint model for longitudinal nominal outcomes and competing risks data in a likelihood-based approach. In addition, we proposed an approach mimicking meta-analysis to address the calculation problems in joint models and large datasets, by extracting independent stratified samples from the large dataset, applying the joint model on each sample and then combining the results. In the same objective, that is fitting joint model on large-scale data, we propose a procedure based on the appeal of the Poisson regression model. This approach consist of finding representativetrajectories by means of clustering methods and then applying the joint model on these representative trajectories
Aljafary, Michelle. "Accounting for potential nonlinearity between catch and effort using meta-analysis and applying GLM and GLMM to fishing data from deployments of fixed and mobile gear." 2016. http://hdl.handle.net/1993/31208.
Full textMay 2016
Gagnon, Jacob A. "A hierarchical spherical radial quadrature algorithm for multilevel GLMMs, GSMMs, and gene pathway analysis." 2010. https://scholarworks.umass.edu/dissertations/AAI3427529.
Full textChen, Hsiang-Chun. "Inference for Clustered Mixed Outcomes from a Multivariate Generalized Linear Mixed Model." Thesis, 2013. http://hdl.handle.net/1969.1/151145.
Full textBinici, Salih. "Random-effect differential item functioning via hierarchical generalized linear model and generalized linear latent mixed model a comparison of estimation methods /." 2007. http://etd.lib.fsu.edu/theses/available/etd-05082007-190825.
Full textAdvisor: Akihito Kamata, Florida State University, College of Education, Dept. of Educational Psychology and Learning Systems. Title and description from dissertation home page (viewed Sept. 19, 2007). Document formatted into pages; contains xiii, 175 pages. Includes bibliographical references.
CHIANG, HSIEN-YU, and 蔣賢煜. "Association Analysis for Juvenile Misbehavior :Application of Generalized Linear Mixed Model." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/av353m.
Full text東吳大學
數學系
102
The focus of this study is to explore factors contributing to juvenile’s misbehavior. Based on the literature, the analysis was performed by considering seven variables from the categories of family, school, friends, and urbanization. These variables are significant in the univariate analysis. The use of student samples is known to produce estimation errors caused by the cluster effect. Lin (2008) and Clark(2007) have shown using “school” as a fixed effect in the model can solve problems of estimation error. In contrast, Clarke (2010) demonstrated that employing “school” as a random effect in a model produces a better estimated result. The purposes of this thesis are as follow: First, use multivariate analysis to explore the connection between juvenile’s misbehavior and the seven chosen variables. Secondly, compare the result of assigning "school type" as a fixed effect and random effect into the model. The finding of this research indicated all factors were significant in both models. The outcome of parameter estimation was better when “school type” was added as a random effect in the model. Conversely, the chance for students to become misbehaving increases when they experience the following situations: less companionship from family, hanging out with misbehaving peers, low rate of urbanization and attending school that has a higher population of misbehaving students. Furthermore, students who often have conflicts with their father and attend school with negative school culture leads to higher chance of having misbehaving friends.
Elmasri, Mohamad. "A Skew-Normal Copula-Driven Generalized Linear Mixed Model for Longitudinal Data." Thesis, 2012. http://spectrum.library.concordia.ca/973992/1/Elmasri_MSc_S2012.pdf.
Full textTsai, Fang-Yu, and 蔡芳榆. "Estimating Control Rates of Three Different Insecticides by Generalized Estimating Equation and Generalized Linear Mixed Model." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/05460098030021084419.
Full text國立臺灣大學
農藝學研究所
93
The aim of this study is to estimate the control rate of three bait-formulated insecticides of red imported fire ants. Two field experiments were conducted, respectively, in Taoyuan and Chiayi county where the red ant infestation were spotted and the three different insecticides applied are Fipronil, Pyripronxyfen and Spinosyns. Repeated counts of ant mound number in each field plot of size 100 $m^2$ were recorded by the researchers in the local agricultural experimental station during the period of eight weeks. Two statistical procedures were employed to analyzed these two data sets and both are of generalized linear models. First one is a GEE model and the second one is a generalized mixed-effects model (GLMM). The former is relatively easy however the later demands more effort to determinea decent model. The estimates of control rate resulted from GEE and GLMM are quite similar though the standard errors are different substantially. We recommend that the SE''s due to GLMM be applied to construct relevant confidence intervals, since variance structure of GLMM does have a better description to the variation of data collected. One interesting result is that all three insecticides show remarkable consistancy in control rates in the two experiment sites.
Chen, Nai-Wei. "Goodness-of-Fit Test Issues in Generalized Linear Mixed Models." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-12-10504.
Full textLin, Chi-Chen, and 林其臻. "Applications of linear mixed model and generalized estimating equation to biological control data." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/99609338700121243103.
Full text國立臺灣大學
農藝學研究所
96
Longitudinal data can be obtained by observing same object at different time. So the observations are not indepedent with each other.In drug experiment,observations on the reactions of the same patient at different time are not mutually independent. In agriculture,the effect of fertilizers or insecticides can be treated as longitudinal data too, especially for perennial crops. Because of the existence of correlations between observations,it is not appropriate to use general regression analysis or ANOVA.Linear mixed model and generalized estimating equation are two kinds of methods often used in analyzing longitudinal data. Generalized estimating equation divides data into different clusters by their correlations.Then it can be analyzed by general regression analysis ,assuming that the clusters are independent with one another.Linear mixed model is used more often,because the model can be used to analyze the data with fixed and random effect at the same time. The data used in the thesis was provided by Biological Control Laboratory in Department of Plant Protection in National PingTung University of Science & Technology.The main interest is to know the effect of Trichoderma spp. on Rhizoctonia solani with repeated measure data. Chan(2003) analyzed the data by using the method of Biological assay.This thesis analyzes the same data by using linear mixed model and generalized estimating equation.The effect of seven species of Trichoderma spp. is fixed effect and the effect of observations from repeat measurement is random effect.The results are also compared with those obtained by Chan(2003).
McIntosh, Avery Isaac. "Extensions to Bayesian generalized linear mixed effects models for household tuberculosis transmission." Thesis, 2017. https://hdl.handle.net/2144/22451.
Full text2018-05-10T00:00:00Z
Yu, Chia-Lun, and 余佳倫. "On the Estimation Methods for the Generalized Linear Mixed Effect Model with Measurement Error." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/52245028576933214937.
Full text淡江大學
數學學系碩士班
100
When the measurement error and mixed effect appear in the model at the same time, we can not find much discussion on the literature. The main reason is that the marginal distribution of the integral to the random effect is no longer a generalized linear model. This paper discussed the estimated method between measurement error and mixed effect in the log-linear and logistic model. In the log-linear model, the estimation method usually included naive, regression calibration, simulation extrapolation, small measurement error approximation, and there is another estimation method "Weighted and Corrected Score Function" which is weighted, corrected and weighted again under replication situation. The logistic model in addition to use the integral to obtain the marginal distribution, it also used the moment constructed estimated equation to estimate and compared between partial calibration and without calibration under replication situation. At last, it used the computer to simulate the estimated method which was brought up in this paper.
Li, Erning. "Estimation for generalized linear models when covariates are subject-specific parameters in a mixed model for longitudinal measurements." 2004. http://www.lib.ncsu.edu/theses/available/etd-05072004-023712/unrestricted/etd.pdf.
Full text"Optimal Experimental Designs for Mixed Categorical and Continuous Responses." Doctoral diss., 2017. http://hdl.handle.net/2286/R.I.45584.
Full textDissertation/Thesis
Doctoral Dissertation Statistics 2017
Siegle, Micha Benjamin. "Einfluss von transkraniellen Wechselstromstimulationen im Thetabereich auf die Bearbeitung der Stroop-Aufgabe." Doctoral thesis, 2021. http://hdl.handle.net/21.11130/00-1735-0000-0005-15A1-D.
Full textLi, Li. "Model Selection via Minimum Description Length." Thesis, 2011. http://hdl.handle.net/1807/31834.
Full text"Three Essays on Comparative Simulation in Three-level Hierarchical Data Structure." Doctoral diss., 2017. http://hdl.handle.net/2286/R.I.46248.
Full textDissertation/Thesis
Doctoral Dissertation Statistics 2017
Hoque, Md Erfanul. "Longitudinal data analysis with covariates measurement error." 2017. http://hdl.handle.net/1993/31988.
Full textFebruary 2017
Otava, Martin. "Metody výpočtu maximálně věrohodných odhadů v zobecněném lineárním smíšeném modelu." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-300455.
Full text