Academic literature on the topic 'Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH)"
Hanifa, Rezky Dwi, Mustafid Mustafid, and Arief Rachman Hakim. "PEMODELAN AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE DENGAN EFEK EXPONENTIAL GARCH (ARFIMA-EGARCH) UNTUK PREDIKSI HARGA BERAS DI KOTA SEMARANG." Jurnal Gaussian 10, no. 2 (May 31, 2021): 279–92. http://dx.doi.org/10.14710/j.gauss.v10i2.29933.
Full textRossetti, Nara, Marcelo Seido Nagano, and Jorge Luis Faria Meirelles. "A behavioral analysis of the volatility of interbank interest rates in developed and emerging countries." Journal of Economics, Finance and Administrative Science 22, no. 42 (June 12, 2017): 99–128. http://dx.doi.org/10.1108/jefas-02-2017-0033.
Full textCheng, Cong, Ling Yu, and Liu Jie Chen. "Structural Nonlinear Damage Detection Based on ARMA-GARCH Model." Applied Mechanics and Materials 204-208 (October 2012): 2891–96. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.2891.
Full textSukono, Sukono, Emah Suryamah, and Fujika Novinta S. "Application of ARIMA-GARCH Model for Prediction of Indonesian Crude Oil Prices." Operations Research: International Conference Series 1, no. 1 (February 5, 2020): 25–33. http://dx.doi.org/10.47194/orics.v1i1.21.
Full textSun, Kaiying. "Equity Return Modeling and Prediction Using Hybrid ARIMA-GARCH Model." International Journal of Financial Research 8, no. 3 (June 12, 2017): 154. http://dx.doi.org/10.5430/ijfr.v8n3p154.
Full textMirza, Hammad Hassan, and Naveed Mushtaq . "Stock Market Returns and Weather Anomaly: Evidence from an Emerging Economy." Journal of Economics and Behavioral Studies 4, no. 5 (May 15, 2012): 239–44. http://dx.doi.org/10.22610/jebs.v4i5.323.
Full textAbdullah, Ezatul Akma, Siti Meriam Zahari, S. Sarifah Radiah Shariff, and Muhammad Asmu’i Abdul Rahim. "Modelling volatility of Kuala Lumpur composite index (KLCI) using SV and garch models." Indonesian Journal of Electrical Engineering and Computer Science 13, no. 3 (March 1, 2019): 1087. http://dx.doi.org/10.11591/ijeecs.v13.i3.pp1087-1094.
Full textKaya Soylu, Pınar, Mustafa Okur, Özgür Çatıkkaş, and Z. Ayca Altintig. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple." Journal of Risk and Financial Management 13, no. 6 (May 29, 2020): 107. http://dx.doi.org/10.3390/jrfm13060107.
Full textBiałek-Jaworska, Anna, and Tomasz Krawczyk. "Corporate bonds or bank loans? The choice of funding sources and information disclosure of Polish listed companies." Central European Economic Journal 6, no. 53 (July 8, 2020): 262–85. http://dx.doi.org/10.2478/ceej-2019-0017.
Full textAnand, C. "Comparison of Stock Price Prediction Models using Pre-trained Neural Networks." March 2021 3, no. 2 (July 19, 2021): 122–34. http://dx.doi.org/10.36548/jucct.2021.2.005.
Full textDissertations / Theses on the topic "Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH)"
Edberg, Christopher, and Oliver Kjellander. "Calendar Anomalies in the Nordic Stock Markets : A quantitative study of the Sell in May effect, January effect & Monthly Anomalies." Thesis, Linnéuniversitetet, Institutionen för ekonomistyrning och logistik (ELO), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-105272.
Full textDuarte, Felipe Machado. "Acurácia de previsões para vazão em redes: um comparativo entre ARIMA, GARCH e RNA." Universidade Federal de Pernambuco, 2014. https://repositorio.ufpe.br/handle/123456789/16238.
Full textMade available in DSpace on 2016-03-31T15:28:39Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Felipe Machado Duarte.pdf: 1439236 bytes, checksum: 970d1a4b49da9d4541eb167aa39a82fa (MD5) Previous issue date: 2014-08-29
Em consequência da evolução da internet, causada por mudanças de paradigma como a Internet das coisas, por exemplo, surgem novas demandas tecnológicas por conta do crescimento do número de dispositivos conectados. Um dos novos desafios que vieram junto a esta demanda é gerenciar esta rede em expansão, de maneira a garantir conectividade aos dispositivos que a integram. Um dos aspectos que merecem atenção no gerenciamento da rede é o provisionamento da largura de banda, que deve ser realizado de maneira a evitar o desperdício de banda, sem por outro lado comprometer a conectividade ao restringi-la demais. No entanto, balancear esta equação não é uma tarefa simples, pois o tráfego de dados na rede é bastante complexo e exibe componentes, como a volatilidade, que tornam difícil a sua modelagem. Já há algum tempo, estudos são publicados apresentando a utilização de ferramentas de análise de séries temporais para prever a vazão de dados em redes de computadores, e entre as técnicas aplicadas com mais sucesso estão os modelos ARMA, GARCH e RNA. Embora estas técnicas tenham sido discutidas como alternativa para modelar dados de tráfego de redes, pouco material está disponível sobre a comparação de suas acurácias, de maneira que neste estudo foi proposta uma avaliação das acurácias dos modelos ARIMA, GARCH e RNA. Esta avaliação foi realizada em cenários configurados em diferentes granularidades de tempo e para múltiplos horizontes de previsão. Para cada um destes cenários foram ajustados modelos ARIMA, GARCH e RNA, e a validação das métricas de acurácia das previsões obtidas se deu através do Rolling Forecast Horizon. Os resultados obtidos mostraram que a RNA exibiu melhor acurácia em grande parte dos cenários propostos, chegando a exibir RMSE até 32% menor que as previsões geradas pelos modelos ARIMA e GARCH. No entanto, na presença de alta volatilidade, o GARCH conseguiu apresentar as previsões com melhor desempenho, exibindo RMSE até 29% menores que os outros modelos estudados. Os resultados deste trabalho servem de auxílio para a área de gerenciamento de redes, em especial a tarefa de provisionamento de largura de banda de tráfego, pois trazem mais informações sobre os desempenhos dos modelos ARIMA, GARCH e RNA ao gerar previsões para este tipo de tráfego.
The Internet evolution, caused by paradigm changes as the Internet of Things, fosters technological advances to cope with the rising number of connected devices. One of the new challenges that appeared with this new reality is the management of such expanding networks, assuring connectivity to every device within them. One of the major aspects of network management is bandwidth provisioning, which must be performed in a way to avoid bandwidth wasting, but without compromising connectivity by restricting it too much. Balancing such an equation is not a simple task, as network data traffic is very complex and presents property features, such as volatility, that turns its modeling rather difficult. It has been some time since research is published with the use of temporal analysis tools to predict data throughput in computer networks, among them, the most successful techniques employ the ARMA, GARCH and ANN models. Although these approaches have been discussed as alternatives do network data traffic modeling, there is little literature available concerning their accuracy, which motivated this work to perform an accuracy evaluation of the ARIMA, GARCH and ANN models. This evaluation was conducted in scenarios configured with different time granularities and for multiple forecast horizons. For each scenario, ARIMA, GARCH and ANN models were set, and the accuracy metrics evaluation was performed with a Rolling Forecast Horizon. Results show that ANN yielded better accuracy in most proposed scenarios, having a RMSE up to 32% lower than the forecasts generated by the ARIMA and GARCH models. However, when there is a high volatility, GARCH provided better forecasts, with a RMSE up to 29% lower than its counterparts. The results from this work provide a useful assistance to network management, especially to bandwidth provisioning, by shedding light on the accuracy presented by the ARIMA, GARCH and ANN models when generating forecasts for this type of traffic.
Book chapters on the topic "Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH)"
Osagie Adenomon, Monday. "Financial Time Series Analysis via Backtesting Approach." In Linked Open Data - Applications, Trends and Future Developments. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94112.
Full textConference papers on the topic "Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH)"
Li, Qianru, Christophe Tricaud, Rongtao Sun, and YangQuan Chen. "Great Salt Lake Surface Level Forecasting Using FIGARCH Model." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34909.
Full textIlbeigi, Mohammad, Alireza Joukar, and Baabak Ashuri. "Modeling and Forecasting the Price of Asphalt Cement Using Generalized Auto Regressive Conditional Heteroscedasticity." In Construction Research Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479827.071.
Full textSheng, Hu, and YangQuan Chen. "The Modeling of Great Salt Lake Elevation Time Series Based on ARFIMA With Stable Innovations." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86864.
Full text