Academic literature on the topic 'General polynomial chaos expansion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'General polynomial chaos expansion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "General polynomial chaos expansion"
SEPAHVAND, K., S. MARBURG, and H. J. HARDTKE. "UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION." International Journal of Applied Mechanics 02, no. 02 (June 2010): 305–53. http://dx.doi.org/10.1142/s1758825110000524.
Full textZhao, Wei, and Ji Ke Liu. "Stochastic Finite Element Method Using Polynomial Chaos Expansion." Advanced Materials Research 199-200 (February 2011): 500–504. http://dx.doi.org/10.4028/www.scientific.net/amr.199-200.500.
Full textSEPAHVAND, K., S. MARBURG, and H. J. HARDTKE. "STOCHASTIC STRUCTURAL MODAL ANALYSIS INVOLVING UNCERTAIN PARAMETERS USING GENERALIZED POLYNOMIAL CHAOS EXPANSION." International Journal of Applied Mechanics 03, no. 03 (September 2011): 587–606. http://dx.doi.org/10.1142/s1758825111001147.
Full textYin, Shengwen, Yuan Gao, Xiaohan Zhu, and Zhonggang Wang. "Anisotropy-Based Adaptive Polynomial Chaos Method for Hybrid Uncertainty Quantification and Reliability-Based Design Optimization of Structural-Acoustic System." Mathematics 11, no. 4 (February 7, 2023): 836. http://dx.doi.org/10.3390/math11040836.
Full textSEPAHVAND, K., S. MARBURG, and H. J. HARDTKE. "NUMERICAL SOLUTION OF ONE-DIMENSIONAL WAVE EQUATION WITH STOCHASTIC PARAMETERS USING GENERALIZED POLYNOMIAL CHAOS EXPANSION." Journal of Computational Acoustics 15, no. 04 (December 2007): 579–93. http://dx.doi.org/10.1142/s0218396x07003524.
Full textPanayirci, H. M. "Efficient solution for Galerkin-based polynomial chaos expansion systems." Advances in Engineering Software 41, no. 12 (December 2010): 1277–86. http://dx.doi.org/10.1016/j.advengsoft.2010.09.004.
Full textJacquelin, E., O. Dessombz, J. J. Sinou, S. Adhikari, and M. I. Friswell. "Polynomial chaos-based extended Padé expansion in structural dynamics." International Journal for Numerical Methods in Engineering 111, no. 12 (February 7, 2017): 1170–91. http://dx.doi.org/10.1002/nme.5497.
Full textNovák, Lukáš, Miroslav Vořechovský, Václav Sadílek, and Michael D. Shields. "Variance-based adaptive sequential sampling for Polynomial Chaos Expansion." Computer Methods in Applied Mechanics and Engineering 386 (December 2021): 114105. http://dx.doi.org/10.1016/j.cma.2021.114105.
Full textZhang, Wei, Qiang Wang, and Chao Yan. "An intelligent polynomial chaos expansion method based upon features selection." Journal of Physics: Conference Series 1786, no. 1 (February 1, 2021): 012046. http://dx.doi.org/10.1088/1742-6596/1786/1/012046.
Full textChen, Ming, Xinhu Zhang, Kechun Shen, and Guang Pan. "Polynomial chaos expansion for uncertainty analysis and global sensitivity analysis." Journal of Physics: Conference Series 2187, no. 1 (February 1, 2022): 012071. http://dx.doi.org/10.1088/1742-6596/2187/1/012071.
Full textDissertations / Theses on the topic "General polynomial chaos expansion"
Szepietowska, Katarzyna. "POLYNOMIAL CHAOS EXPANSION IN BIO- AND STRUCTURAL MECHANICS." Thesis, Bourges, INSA Centre Val de Loire, 2018. http://www.theses.fr/2018ISAB0004/document.
Full textThis thesis presents a probabilistic approach to modelling the mechanics of materials and structures where the modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the methods described are applied to medical and civil engineering problems. The motivation for this work was the necessity of mechanics-based approaches in the modelling and simulation of implants used in the repair of ventral hernias. Many uncertainties appear in the modelling of the implant-abdominal wall system. The probabilistic approach proposed in this thesis enables these uncertainties to be propagated to the output of the model and the investigation of their respective influences. The regression-based polynomial chaos expansion method is used here. However, the accuracy of such non-intrusive methods depends on the number and location of sampling points. Finding a universal method to achieve a good balance between accuracy and computational cost is still an open question so different approaches are investigated in this thesis in order to choose an efficient method. Global sensitivity analysis is used to investigate the respective influences of input uncertainties on the variation of the outputs of different models. The uncertainties are propagated to the implant-abdominal wall models in order to draw some conclusions important for further research. Using the expertise acquired from biomechanical models, modelling of historic timber joints and simulations of their mechanical behaviour is undertaken. Such an investigation is important owing to the need for efficient planning of repairs and renovation of buildings of historical value
Nydestedt, Robin. "Application of Polynomial Chaos Expansion for Climate Economy Assessment." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223985.
Full textInom klimatekonomi används integrated assessment models (IAMs) för att förutspå hur klimatförändringar påverkar ekonomin. Dessa IAMs modellerar komplexa interaktioner mellan geofysiska och mänskliga system för att kunna kvantifiera till exempel kostnaden för den ökade koldioxidhalten på planeten, i.e. Social Cost of Carbon (SCC). Detta representerar den ekonomiska kostnaden som motsvaras av utsläppet av ett ton koldioxid. Faktumet att både de geofysiska och ekonomiska submodulerna är stokastiska gör att SCC-uppskattningar varierar mycket även inom väletablerade IAMs som PAGE och DICE. Variationen grundar sig i skillnader inom modellerna men också från att val av sannolikhetsfördelningar för de stokastiska variablerna skiljer sig. Eftersom IAMs ofta är formulerade som optimeringsproblem leder dessutom osäkerheterna till höga beräkningskostnader. I denna uppsats introduceras en ny IAM, FAIR/DICE, som är en diskret tids hybrid av DICE och FAIR. Den utgör en potentiell förbättring av DICE eftersom klimat- och kolmodulerna i FAIR även behandlar återkoppling från klimatmodulen till kolmodulen. FAIR/DICE är analyserad med hjälp av Polynomial Chaos Expansions (PCEs), ett alternativ till Monte Carlo-metoder. Med hjälp av PCEs kan de osäkerheter projiceras på stokastiska polynomrum vilket har fördelen att beräkningskostnader reduceras men nackdelen att lagringskraven ökar. Detta eftersom många av beräkningarna kan sparas från första simuleringen av systemet, dessutom kan statistik extraheras direkt från PCE koefficienterna utan behov av sampling. FAIR/DICE systemet projiceras med hjälp av PCEs där en osäkerhet är introducerad via equilibrium climate sensitivity (ECS), vilket i sig är ett värde på hur känsligt klimatet är för koldioxidförändringar. ECS modelleras med hjälp av en fyra-parameters Beta sannolikhetsfördelning. Avslutningsvis jämförs resultat i medelvärde och varians mellan PCE implementationen av FAIR/DICE och en Monte Carlo-baserad referens, därefter ges förslag på framtida utvecklingsområden.
Koehring, Andrew. "The application of polynomial response surface and polynomial chaos expansion metamodels within an augmented reality conceptual design environment." [Ames, Iowa : Iowa State University], 2008.
Find full textPrice, Darryl Brian. "Estimation of Uncertain Vehicle Center of Gravity using Polynomial Chaos Expansions." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/33625.
Full textMaster of Science
Song, Chen [Verfasser], and Vincent [Akademischer Betreuer] Heuveline. "Uncertainty Quantification for a Blood Pump Device with Generalized Polynomial Chaos Expansion / Chen Song ; Betreuer: Vincent Heuveline." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177252406/34.
Full textLangewisch, Dustin R. "Application of the polynomial chaos expansion to multiphase CFD : a study of rising bubbles and slug flow." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92097.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 157-167).
Part I of this thesis considers subcooled nucleate boiling on the microscale, focusing on the analysis of heat transfer near the Three-Phase (solid, liquid, and vapor) contact Line (TPL) region. A detailed derivation of one representative TPL model is presented. From this work, it was ultimately concluded that heat transfer in the vicinity of the TPL is rather unimportant in the overall quantification of nucleate boiling heat transfer; despite the extremely high heat fluxes that are attainable, it is limited to a very small region so the net heat transfer from this region is comparatively small. It was further concluded that many of the so-called microlayer heat transfer models appearing in the literature are actually models for TPL heat transfer; these models do not model the experimentally observed microlayer. This portion of the project was terminated early, however, in order to focus on the application of advanced computational uncertainty quantification methods to computational multiphase fluid dynamics (Part II). Part II discusses advanced uncertainty quantification (UQ) methods for long-running numerical models, namely computational multiphase fluid dynamics (CMFD) simulations. We consider the problem of how to efficiently propagate uncertainties in the model inputs (e.g., fluid properties, such as density, viscosity, etc.) through a computationally demanding model. The challenge is chiefly a matter of economics-the long run-time of these simulations limits the number of samples that one can reasonably obtain (i.e., the number of times the simulation can be run). Chapter 2 introduces the generalized Polynomial Chaos (gPC) expansion, which has shown promise for reducing the computational cost of performing UQ for a large class of problems, including heat transfer and single phase, incompressible flow simulations; example applications are demonstrated in Chapter 2. One of main objectives of this research was to ascertain whether this promise extends to realm of CMFD applications, and this is the topic of Chapters 3 and 4; Chapter 3 covers the numerical simulation of a single bubble rising in a quiescent liquid bath. The pertinent quantities from these simulations are the terminal velocity of the bubble and terminal bubble shape. the simulations were performed using the open source gerris flow solver. A handful of test cases were performed to validate the simulation results against available experimental data and numerical results from other authors; the results from gerris were found to compare favorably. Following the validation, we considered two uncertainty quantifications problems. In the first problem, the viscosity of the surrounding liquid is modeled as a uniform random variable and we quantify the resultant uncertainty in the bubbles terminal velocity. The second example is similar, except the bubble's size (diameter) is modeled as a log-normal random variable. In this case, the Hermite expansion is seen to converge almost immediately; a first-order Hermite expansion computed using 3 model evaluations is found to capture the terminal velocity distribution almost exactly. Both examples demonstrate that NISP can be successfully used to efficiently propagate uncertainties through CMFD models. Finally, we describe a simple technique to implement a moving reference frame in gerris. Chapter 4 presents an extensive study of the numerical simulation of capillary slug flow. We review existing correlations for the thickness of the liquid film surrounding a Taylor bubble and the pressure drop across the bubble. Bretherton's lubrication analysis, which yields analytical predictions for these quantities when inertial effects are negligible and Ca[beta] --> o, is considered in detail. In addition, a review is provided of film thickness correlations that are applicable for high Cab or when inertial effects are non-negligible. An extensive computational study was undertaken with gerris to simulate capillary slug flow under a variety of flow conditions; in total, more than two hundred simulations were carried out. The simulations were found to compare favorably with simulations performed previously by other authors using finite elements. The data from our simulations have been used to develop a new correlation for the film thickness and bubble velocity that is generally applicable. While similar in structure to existing film thickness correlations, the present correlation does not require the bubble velocity to be known a priori. We conclude with an application of the gPC expansion to quantify the uncertainty in the pressure drop in a channel in slug flow when the bubble size is described by a probability distribution. It is found that, although the gPC expansion fails to adequately quantify the uncertainty in field quantities (pressure and velocity) near the liquid-vapor interface, it is nevertheless capable of representing the uncertainty in other quantities (e.g., channel pressure drop) that do not depend sensitively on the precise location of the interface.
by Dustin R. Langewisch.
Ph. D.
Yadav, Vaibhav. "Novel Computational Methods for Solving High-Dimensional Random Eigenvalue Problems." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4927.
Full textMühlpfordt, Tillmann [Verfasser], and V. [Akademischer Betreuer] Hagenmeyer. "Uncertainty Quantification via Polynomial Chaos Expansion – Methods and Applications for Optimization of Power Systems / Tillmann Mühlpfordt ; Betreuer: V. Hagenmeyer." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1203211872/34.
Full textScott, Karen Mary Louise. "Practical Analysis Tools for Structures Subjected to Flow-Induced and Non-Stationary Random Loads." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/38686.
Full textPh. D.
Segui, Vasquez Bartolomé. "Modélisation dynamique des systèmes disque aubes multi-étages : Effets des incertitudes." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00961270.
Full textBook chapters on the topic "General polynomial chaos expansion"
Chu, Liu. "Polynomial Chaos Expansion." In Uncertainty Quantification of Stochastic Defects in Materials, 37–49. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003226628-5.
Full textLacor, Chris, and Éric Savin. "General Introduction to Polynomial Chaos and Collocation Methods." In Uncertainty Management for Robust Industrial Design in Aeronautics, 109–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77767-2_7.
Full textChikhaoui, K., N. Kacem, N. Bouhaddi, and M. Guedri. "Uncertainty Propagation Combining Robust Condensation and Generalized Polynomial Chaos Expansion." In Model Validation and Uncertainty Quantification, Volume 3, 225–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15224-0_24.
Full textMarchi, Mariapia, Enrico Rigoni, Rosario Russo, and Alberto Clarich. "Percentile via Polynomial Chaos Expansion: Bridging Robust Optimization with Reliability." In EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII, 57–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49325-1_3.
Full textHu, Junjun, S. Lakshmivarahan, and John M. Lewis. "Quantification of Forecast Uncertainty and Data Assimilation Using Wiener’s Polynomial Chaos Expansion." In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III), 141–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43415-5_7.
Full textZhao, Huan, and Zhenghong Gao. "Uncertainty-Based Design Optimization of NLF Airfoil Based on Polynomial Chaos Expansion." In Lecture Notes in Electrical Engineering, 1576–92. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_126.
Full textDu, Yuncheng, and Dongping Du. "Cardiac Image Segmentation Using Generalized Polynomial Chaos Expansion and Level Set Function." In Level Set Method in Medical Imaging Segmentation, 261–88. Boca Raton : Taylor & Francis, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/b22435-9.
Full textCedeño, Naomi, and Saba Infante. "Estimation of Ordinary Differential Equations Solutions with Gaussian Processes and Polynomial Chaos Expansion." In Information and Communication Technologies, 3–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89941-7_1.
Full textLiatsikouras, Athanasios G., Varvara G. Asouti, Kyriakos Giannakoglou, and Guillaume Pierrot. "Aerodynamic Shape Optimization by Considering Geometrical Imperfections Using Polynomial Chaos Expansion and Evolutionary Algorithms." In Computational Methods in Applied Sciences, 439–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89890-2_28.
Full textDutta, Subhrajit, and Chandrasekhar Putcha. "Reliability-Based Design Optimization of a Large-Scale Truss Structure Using Polynomial Chaos Expansion Metamodel." In Reliability, Safety and Hazard Assessment for Risk-Based Technologies, 481–88. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9008-1_39.
Full textConference papers on the topic "General polynomial chaos expansion"
Liu, Jingyu, Xiaoting Wang, and Xiaozhe Wang. "A Sparse Polynomial Chaos Expansion-Based Method for Probabilistic Transient Stability Assessment and Enhancement." In 2022 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2022. http://dx.doi.org/10.1109/pesgm48719.2022.9916882.
Full textWang, F., F. Xiong, S. Yang, and Y. Xiong. "A Sparse Data-Driven Polynomial Chaos Expansion Method for Uncertainty Propagation." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59795.
Full textShen, Danfeng, Hao Wu, Lu Liu, and Deqiang Gan. "Solving Probabilistic Power Flow with Wind Generation by Polynomial Chaos Expansion Method from the Perspective of Parametric Problems." In 2020 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2020. http://dx.doi.org/10.1109/pesgm41954.2020.9281771.
Full textFan, Miao, Xiaoyu Wang, Lengcheng Huang, and Feng Dong. "Data-Driven Probabilistic Dynamic Analysis for Power Systems with Correlated Renewable Energy Sources based on Polynomial Chaos Expansion." In 2022 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2022. http://dx.doi.org/10.1109/pesgm48719.2022.9916667.
Full textWang, Xiaoting, Xiaozhe Wang, Hao Sheng, and Xi Lin. "A Data-Driven Sparse Polynomial Chaos Expansion Method to Assess Probabilistic Total Transfer Capability for Power Systems with Renewables." In 2022 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2022. http://dx.doi.org/10.1109/pesgm48719.2022.9916717.
Full textPanizza, Andrea, Dante Tommaso Rubino, and Libero Tapinassi. "Efficient Uncertainty Quantification of Centrifugal Compressor Performance Using Polynomial Chaos." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25081.
Full textBabaee, Hessam, Xiaoliang Wan, and Sumanta Acharya. "Effect of Uncertainty in Blowing Ratio on Film Cooling Effectiveness." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17159.
Full textPepper, Nick, Francesco Montomoli, Francesco Giacomel, Giovanna Cavazzini, Michele Pinelli, Nicola Casari, and Sanjiv Sharma. "Uncertainty Quantification and Missing Data for Turbomachinery With Probabilistic Equivalence and Arbitrary Polynomial Chaos, Applied to Scroll Compressors." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16139.
Full textGeroulas, Vasileios, Zissimos P. Mourelatos, Vasiliki Tsianika, and Igor Baseski. "Reliability of Nonlinear Vibratory Systems Under Non-Gaussian Loads." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67313.
Full textGreene, M. Steven, Yu Liu, Wei Chen, Wing Kam Liu, and Hong-Zhong Huang. "Enabling Integrated Material and Product Design Under Uncertainty Through Stochastic Constitutive Relations." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28917.
Full text