Academic literature on the topic 'Gene therapy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gene therapy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gene therapy"

1

Goyal, Anjana, Reena Doomra, Aayushi Garg, and Kruthiventi Hemalata. "CRISPR Gene Therapy in Dentistry." Asian Pacific Journal of Health Sciences 6, no. 2 (June 2019): 182–83. http://dx.doi.org/10.21276/apjhs.2019.6.2.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gawthorpe, Paula. "Gene Therapy Gene Therapy." Nursing Standard 17, no. 33 (April 30, 2003): 29. http://dx.doi.org/10.7748/ns2003.04.17.33.29.b25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

M. Gordon, Erlinda, Joshua R. Ravicz, Sant P. Chawla, Christopher W. Szeto, Sant P. Chawla, Michael A. Morse, Frederick L. Hall, and Erlinda M. Gordon. "CCNG1 oncogene: a novel biomarker for cancer therapy /gene therapy." Cancer Research and Cellular Therapeutics 5, no. 4 (August 30, 2021): 01–09. http://dx.doi.org/10.31579/2640-1053/090.

Full text
Abstract:
Background: Metastatic cancer is associated with an invariably fatal outcome. However, DeltaRex-G, a tumor-targeted retrovector encoding a gene-edited dominant-negative CCNG1 inhibitor gene, has induced long term (>10 years) survival of patients with chemo-resistant metastatic pancreatic adenocarcinoma, malignant peripheral nerve sheath tumor, osteosarcoma, B-cell lymphoma, and breast carcinoma. Objective: To evaluate the level of CCNG1 expression in tumors as a potential biomarker for CCNG1 (Cyclin G1-blocking) inhibitor therapy. Methods: CCNG1 RNA expression levels that were previously measured as part of whole genome molecular profiling of tumors (TCGA, N=9161), adjacent “tissues” (TCGA, N=678) and GTEx normal tissues (N=7187) across 22 organ sites were analyzed. Differential expression of CCNG1 and Ki-67 in primary (N= 9161) vs metastatic (N= 393) tumors were also compared in primary (N=103) vs. metastatic (N=367) skin cancers (i.e., melanoma). Statistical Analysis: To detect systematically differential expression of CCNG1 and Ki-67 expression between populations (e.g. tumor vs. normal), unpaired Student's t-tests were performed. Results: Enhanced CCNG1 RNA and Cyclin G1 protein expression were noted in tumors compared to normal analogous counterparts, and CCNG1 expression correlated significantly with that of Ki-67. Moreover, CCNG1 expression tended to be higher than that of Ki-67 in metastatic vs primary tumors. Conclusions: Taken together with the emerging Cyclin G1 / Cdk / Myc / Mdm2 / p53 Axis governing Cancer Stem Cell Competence, this supportive data indicates: (1) CCNG1 expression is frequently enhanced in tumors when compared to their normal analogous counterparts, (2) CCNG1 and Ki-67 expressions are higher in metastatic vs primary tumors, (3) CCNG1 expression is significantly correlated with that of Ki-67, and (4) CCNG1 may actually be a stronger prognostic marker of stem cell competence, chemo-refractoriness, and EMT/metastasis than Ki-67. Phase 2 studies are planned to identify patients most likely to respond favorably to CCNG1 inhibitor therapy.
APA, Harvard, Vancouver, ISO, and other styles
4

Sose, Mr Aadesh S., and Mr Pramod M. Bhosale. "A Review on Gene Therapy for Cancer." International Journal of Research Publication and Reviews 4, no. 4 (April 2023): 3058–63. http://dx.doi.org/10.55248/gengpi.4.423.36713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

&NA;. "Gene therapy." Inpharma Weekly &NA;, no. 1161 (October 1998): 12. http://dx.doi.org/10.2165/00128413-199811610-00018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

&NA;. "Gene therapy." Inpharma Weekly &NA;, no. 1184 (April 1999): 8. http://dx.doi.org/10.2165/00128413-199911840-00015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peroutka, Christina, and Joann Bodurtha. "Gene Therapy." Pediatrics in Review 41, no. 11 (November 2020): 606–8. http://dx.doi.org/10.1542/pir.2019-0224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

&NA;. "Gene therapy." Inpharma Weekly &NA;, no. 1120 (January 1998): 4. http://dx.doi.org/10.2165/00128413-199811200-00004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Whartenby, Katharine A., Aizen J. Marrogi, and Scott M. Freeman. "Gene Therapy." Drugs 50, no. 6 (December 1995): 951–58. http://dx.doi.org/10.2165/00003495-199550060-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Williamson, Robert. "Gene therapy." Australian Prescriber 20, no. 3 (July 1, 1997): 72–73. http://dx.doi.org/10.18773/austprescr.1997.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Gene therapy"

1

Vasanwala, Farha Huseini. "Gene manipulations for cancer gene therapy." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/289776.

Full text
Abstract:
Tumor cells can be modified with cytokine genes such as the Interleukin-2 (IL-2) gene. The levels of IL-2 expressed are critical for successful treatment. We have tried to achieve higher levels of IL-2 than those currently available by conventional plasmids. Use of a transcriptional activator, e.g; the tat gene along with the HIV promoter driving the IL-2 gene, greatly increased IL-2 levels compared to widely used cytomegalovirus (CMV) driven plasmids. Control of the tat gene with an inducible promoter, i.e; the human HSP70B promoter, permitted control of gene expression. The inducibility of the HSP70B promoter by heat, γ-radiation and geldanamycin (a chemotherapeutic drug) allowed for a combinatorial approach to cancer treatment with hyperthermia, radiation therapy and chemotherapy. Also a brief heat treatment of 10 min at 42°C of target cells increased plasmid uptake, and higher levels of gene expression could be achieved. Another arm of immunotherapy is adoptive therapy with Tumor Infiltrating Lymphocytes (TILs). Insufficient numbers of tumor-specific T-cells limit the success of TIL therapy. An alternative approach to overcome this limitation is to transfer tumor-specific T cell receptor (TCR) into peripheral T-cells, redirecting their specificity to the tumor cell. To prove the feasibility of this technique, T-cell receptors were identified and cloned from hybridomas specific for the tumor cell line, MO5. A three domain single chain T-cell receptor was also constructed from the tumor-specific TCR genes to investigate the ability of a single chain T-cell receptor to activate T-cells. The CD3ζ chain was linked to the single chain to allow signal transduction upon antigen recognition by the TCR. The full length and the single chain TCR were cloned into a retroviral vector and transfected into mouse and human T cell lines. Cell surface expression of the chains were detected by flow cytometry. Functionality of the transfected TCR chains was assessed by IL-2 secretion on co-culture of the tumor cell line MO5 and the transfected T-cells. The two different approaches described here, i.e; higher levels of IL-2 for IL-2 gene therapy and specific redirection of T-cells can potentially greatly enhance the success rate of cancer treatment.
APA, Harvard, Vancouver, ISO, and other styles
2

Santos, João Miguel Almeida. "Gene therapy: development of a new nanocarrier system for mitochondrial gene therapy." Master's thesis, Universidade da Beira Interior, 2013. http://hdl.handle.net/10400.6/1627.

Full text
Abstract:
Mitochondria are unique organelles that have their own genome, the mitochondrial DNA (mtDNA). Although quite small compared to nuclear DNA (nDNA), mutations in mtDNA are quite frequent due to the lack of protection and repair mechanisms. Per consequence, cytopathies and diseases are quite common and mostly associated with high energy demanding tissues such as muscles and the brain. Therefore, the development of a new and efficient mitochondrial gene therapy protocol is seen as a promising approach. During this MSc thesis we try to bring together a new nanocarrier system with the ability to deliver plasmid DNA into the mitochondria, for future application in mitochondrial gene therapy (MGT). Hence, the development of this research project can be divided itself into three main stages: 1. Isolation and purification of three plasmid DNAs (pUC19, pVAX1-LacZ and pcDNA3-myc-FLNa S2152A); 2. Synthesis and characterization of nanoparticles with mitochondria affinity; 3. In vitro study of mitochondrial transfection ability. The newly developed nanoparticles, created through a co precipitation method, offer us unique features such as: biocompatibility, plasmid DNA (pDNA) encapsulation efficiency and low manufacturing cost. We were able to successfully achieve transfection into the mitochondria which may result in a huge step in the correction of mitochondrial defects, offering new therapeutic strategies for a variety of pathologies ranging from cancer to Parkinson and Alzheimer´s diseases.
As mitocôndrias são organelos únicos pois possuem o seu próprio genoma, o ADN mitocondrial (ADNmt). Apesar de bastante pequeno quando comparado com o ADN nuclear (ADNn), mutações ao nível do ADNmt são bastante frequentes devido à falta de mecanismos de protecção e de reparação. Como consequência, citopatias e doenças associadas à mitocôndria são bastante frequentes afectando essencialmente órgãos e tecidos onde existe muito dispêndio de energia como é o caso dos músculos e do cérbero. Logo, o desenvolvimento de um novo e eficiente protocolo para terapia génica mitocondrial (MGT) é visto como uma proposta aliciante. Durante esta tese de Mestrado, tentamos criar um novo nanosistema que consiga entregar eficazmente ADN plasmídico (pDNA) à mitocôndria para que no futuro possa ser usado em terapia génica mitocondrial (MGT). Assim, este projecto de investigação pode ser dividido em três etapas principais: 1. O isolamento e purificação de três plasmídeos (pUC19, pVAX1-LacZ e pcDNA3-myc-FLNa S2152A); 2. A síntese e caracterização de nanopartículas com afinidade para a mitocôndria; 3. O estudo da capacidade das nanopartículas efectuarem transfecção celular e dirigirem-se à mitocôndria; As nanopartículas desenvolvidas, através do método de co-precipitação oferecem-nos qualidades únicas como a sua biocompatibilidade, alta eficiência de encapsulamento de ADN e baixo custo de produção. A transfecção celular foi alcançada com sucesso sendo que, tais resultados, podem contribuir em grandes avanços na correcção de defeitos mitocondriais, oferecendo-nos uma nova estratégia terapêutica no combate a diversas patologias desde o cancro, às doenças de Parkinson e Alzheimer.
APA, Harvard, Vancouver, ISO, and other styles
3

Nanda, Dharminderkoemar. "Gene therapy for gliomas." [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 2008. http://hdl.handle.net/1765/13140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hayes, E. A. L. "Anti-angiogenic gene therapy." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603877.

Full text
Abstract:
The aim of this project was to assess a novel anti-angiogenic gene therapy in which a therapeutic gene is activated exclusively in proliferating endothelial cells using tissue-specific promoters and the Cre/IoxP recombination system. Adenoviruses and transgenic mice were generated in parallel to test individual components of the targeting system. One of the therapeutic effector strategies investigated was the herpes simplex virus-1 thymidine kinase (HSV-1TK)/ganciclovir (GCV)-mediated suicide system, which is reported to kill proliferating cells selectively. Administration of GCV to pTie2-TK transgenic mice expressing HSV-1 TK under the control of the endothelial cell-specific Tie2 promoter and to mice treated systemically with a pTie2-TK adenovirus was lethal, demonstrating that additional control was required to target exclusively proliferating endothelial cells. Intra-tumoural (i.t.) injection of pTie2-TK adenovirus resulted in tumour-restricted expression of HSV-1 TK and preliminary data demonstrated a trend towards a decrease in primary tumour growth following treatment of mice with i.t. pTie2 adenovirus and GCV. The tet Off system was investigated as a method to obtain conditional control of Cre recombinase expression. Despite showing tight regulation in vitro, this system did not result in complete silencing of transgene expression in vivo. Transgenic mice expressing tamoxifen (TMX)-regulated Cre recombinase under the control of the cell-cycle dependent Cyclin A promoter were also generated, but problems with TMX administration precluded determination of whether Cre recombinase was activated by TMX in these mice. However, conditional transgene activation was achieved in vivo by generating a pCycA-Cre adenovirus in which the Cyclin A promoter was used to drive expression of Cre recombinase. A pTie2-stuffer-TK transgenic mouse line was generated which expressed a Cre-activatable form of HSV-1 TK under the control of the Tie2 promoter. To target proliferating endothelial cells specifically, the pCycA-Cre adenovirus was used to activate HSV-1 TK in these transgenic mice. Preliminary data showed that there was a trend towards a decrease in primary tumour growth following treatment of pTie2-stuffer-TK transgenic mice with i.t. pCycA-Cre adenovirus and GCV. Transgenic mice expressing an alternative Cre-activated therapeutic gene, the pro-apoptotic gene Bax, under the control of the Tie2 promoter were generated by direct pronuclear injection and by site-specific transgene insertion into the hprt locus. pTie2-stuffer-Bax mice generated using the latter technique showed higher levels of Tie2 promoter-driven transgene expression than those made by pronuclear injection.
APA, Harvard, Vancouver, ISO, and other styles
5

Bilsland, Alan. "Telomerase directed gene therapy." Thesis, University of Glasgow, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Katabi, Maha M. "Transcriptional targeting of suicide genes in cancer gene therapy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0021/NQ55345.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morin, Kevin Wayne. "Scintigraphic imaging during gene therapy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21605.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Singwi, Sanjeev. "HIV gene therapy using nucleases." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0001/MQ46100.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Horst, Maarten ter. "Gene therapy of malignant gliomas." [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 2008. http://hdl.handle.net/1765/10864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lau, Cara Jean. "Gene therapy for malignant gliomas." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18478.

Full text
Abstract:
Gliomas are the most common primary brain tumours found in adults. The median survival of patients diagnosed with the most malignant form, glioblastoma multiforme (GBM), is 9-12 months and has changed little over the years despite advances in medical technology. Gene therapy may offer new solutions to treat this resistant disease. Hence, we tested three different gene therapy strategies. In our first study, we tested the efficacy of targeted therapy to correct common aberrations found in gliomas including amplification/mutation of receptor tyrosine kinases (RTK) and loss of PTEN, which result in an overactive PI3K/Akt pathway. Without PTEN, FOXO transcription factors are inactivated, and the cell becomes resistant to apoptosis and cell cycle arrest. By using an adenoviral vector (AdV) expressing an activated FOXO1 mutant (AdFOXO1;AAA), we restored apoptosis and cell cycle arrest, reduced tumour volume and prolonged survival in an intracerebral xenograft model. Secondly, we examined the therapeutic capacity of a novel replicating/non-disseminating AdV expressing the fusion protein of cytosine deaminase and uracil phosphoribosyltransferase (CU). CU can convert the non-toxic pro-drug, 5-fluorocytosine (5-FC) to the tissue diffusible chemotherapeutic drug, 5-fluorouracil (5-FU) to target dividing cells. In vitro, the replicating vectors were superior to the non-replicating vectors, but the fully replicating/disseminating vector did not perform considerably better than the replicating/non-disseminating vector suggesting that dissemination may not be advantageous. In vivo, the replicating/non-disseminating vector administered in conjunction with 5-FC prolonged survival in both an athymic and an immunocompetent mouse model. Moreover, an immune bystander effect in vivo was mediated by macrophages and T cells. Lastly, we investigated a method to harness a tool of the immune system, IFN-ß; this cytokine is known to have anti-angiogenic, anti-proliferative, and immunomo
Les gliomes sont des tumeurs primaires de cerveau les plus communes retrouvées dans les adultes. La survie médiane des patients diagnostiqués avec la forme la plus maligne, le glioblastome multiforme (GBM), est de 9 à 12 mois et a peu changé au cours des années en dépit des avances en technologie médicale. La thérapie génique peut offrir de nouvelles solutions pour traiter cette maladie résistante. Durant nos travaux, nous avons examiné trois stratégies différentes de thérapie génique Dans notre première étude, nous avons examiné l'efficacité de la thérapie visée à corriger des anomalies communes retrouvées dans les gliomes, comprenant l'amplification/mutation de récepteurs de type tyrosine kinase (RTK) et la perte de PTEN, qui mènent en conséquence à une voie activée de PI3K/Akt. Sans PTEN, les facteurs de transcription FOXO sont inactivés, et la cellule devient résistante à l'arrêt du cycle cellulaire et à l'apoptose. En utilisant un vecteur adénoviral (AdV) exprimant une protéine activée du mutant FOXO1 (AdFOXO1;AAA.), nous avons reconstitué les signaux pour l'arrêt du cycle cellulaire et l'apoptose in vitro ainsi que in vivo. Deuxièmement, nous avons examiné la capacité thérapeutique d'un nouveau vecteur adénovirale qui a la capacité de se répliquer sans provoquer de lyse cellulaire et qui exprime en plus la protéine de fusion uracile phosphoribosyltransférase/cytosine déaminase (CU). La protéine CU peut convertir le promédicament non-toxique, le 5-fluorocytosine (5-FC) à la drogue chimiothérapeutique diffusible, le 5-fluorouracile (5-FU) qui a comme cible des cellules en division cellulaire. In vitro, les vecteurs à capacité de répliquation étaient meilleurs que ceux qui ne pouvaient pas se répliquer. In vivo, le vecteur en présence du 5-FC a prolongé la survie de deux modès animaux (avec et sans sytèmes immunitaires). Dans un dernier temps, nous avons étudié une méthode pour exprimer l'IF
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Gene therapy"

1

Xanthopoulos, Kleanthis G., ed. Gene Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72160-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Blankenstein, Thomas, ed. Gene Therapy. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-7011-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sobol, R. E., K. J. Scanlon, and E. Nestaas, eds. Gene Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03577-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giacca, Mauro. Gene Therapy. Milano: Springer Milan, 2010. http://dx.doi.org/10.1007/978-88-470-1643-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kelly, Evelyn B. Gene therapy. Westport, Conn: Greenwood Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Naff, Clay Farris. Gene therapy. Edited by Naff Clay Farris. Detroit: Thomson/Gale, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Services, Nestle Nutrition, ed. Gene therapy. Vevey: Nestle Nutrition Services, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dr, Cooper David N., and Lemoine Nicholas R, eds. Gene therapy. Oxford, UK: Bios Scientific Publishers, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1958-, Xanthopoulos Kleanthis, ed. Gene therapy. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1952-, Sobol Robert E., ed. Gene therapy. Berlin: Springer-Verlag, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gene therapy"

1

Akpolat, Veysi. "Gene Therapy Techniques;Physical and Chemical Methods." In Gene Therapy, 17–38. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053358824.2.

Full text
Abstract:
Gene therapy is a technique that changes a person’s genes to treat or cure disease. To insert new genes directly into cells, scientists use a tool called a “vector.” Vectors are genetically engineered to deliver the genes needed to treat the disease. Various approaches can be used to deliver DNA into the cell with different gene transfer techniques. It is divided into two categories: 1. Biological vectors 2. Physical and Chemical methods. With gene transfers, the chance of treatment for diseases caused by defective genes increases.
APA, Harvard, Vancouver, ISO, and other styles
2

Gulhan, Baris. "Biological Methods Used in Gene Therapy." In Gene Therapy, 39–63. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053358824.3.

Full text
Abstract:
Gene therapy is used to prevent or treat genetic diseases. To treat genetic diseases, transfer of genes that correct the effects of the mutation that causes the disease to the patient. In gene therapy, the therapeutic gene is transferred to target cells through a vector and viral vectors are most used. Retroviruses (lentiviruses), adenoviruses, adeno-associated viruses, and herpes virus vectors are common as viral vectors. In this section, biological methods used especially in gene therapy stages examined.
APA, Harvard, Vancouver, ISO, and other styles
3

Arvas, Hayati, and Zuhat Urakci. "Gene Therapy in Oncology." In Gene Therapy, 83–91. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053358824.5.

Full text
Abstract:
Gene therapy refers to any method aimed at treating or alleviating a disease by genetically modifying a patien’s cells. Gene therapy for cancer is carried out by the integration of a genetic substance in a host cell by means of viral or non-viral vectors. Delivery of therapeutic nucleic acids such as genes, oligonucleotides, microRNAs (miRNA) or small combatant RNAs (siRNA) to cancer cells allows fighting cancer by inactivating oncogenes or reestablishing the production of cancer suppressor genes. Cancer remains a prevalent cause of death worldwide because of high recurrence rates after traditional treatments and lack of early detection. The traditional treatments currently used in cancer therapy are insufficient in controlling the disease and reducing mortality rates. The diversity of gene therapy holds promise for cancer treatment. As studies on gene therapy mature, it is anticipated that it will become more prevalent in clinical practice to help make cancer a manageable disease.
APA, Harvard, Vancouver, ISO, and other styles
4

Onur, Hakan. "Therapeutics in Pediatric Diseases." In Gene Therapy, 65–81. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053358824.4.

Full text
Abstract:
Gene therapy is a treatment method that involves the alteration, correction or replacement of diseased genes in order to treat genetic diseases or alleviate their symptoms. Gene therapy in children stands out as a promising approach, especially in the treatment of inherited genetic diseases. This therapy aims to correct the source of the disease by targeting the underlying genetic causes of the disease. Gene therapy is usually applied with three main methods: Increasing Gene Expression, Gene Regulation, Gene Silencing Gene therapy is used especially in the treatment of the following diseases in children: Inherited Genetic Diseases: Diseases such as cystic fibrosis, Duchenne muscular dystrophy, haemophilia. Metabolic Disorders: Metabolic diseases such as phenylketonuria. Neurological Diseases: Motor neurone diseases such as SMA (spinal muscular atrophy). Gene therapy in children has great potential in the treatment of genetic diseases. With the advancement of technology, safer and more effective treatment methods are expected to be developed. However, overcoming the ethical and financial challenges in this field is important for gene therapy applications to reach a wider audience.
APA, Harvard, Vancouver, ISO, and other styles
5

Oral, Diclehan. "History of Gene Therapy." In Gene Therapy, 1–16. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053358824.1.

Full text
Abstract:
Gene therapy aims to treat genetic diseases by introducing genetic material into cells to correct medical conditions or enhance health. This involves using nucleic acids, viruses, or genetically modified microorganisms to integrate therapeutic genetic material into the recipient’s genome. Recent advancements have significantly progressed gene therapy, focusing on treating inherited and acquired diseases like cancer and cardiovascular ailments through clinical trials. Overcoming delivery efficiency and immune reaction challenges is crucial for widespread clinical use. Gene therapy is categorized into germline and somatic gene transplantation, with somatic alterations not being passed to future generations. Rapid developments in molecular biology since the 1990s have expanded gene therapy’s potential to address genetic defects and various diseases, with promising results from animal experiments leading to human trials.
APA, Harvard, Vancouver, ISO, and other styles
6

Silan, Coskun, and Buket GüNgor. "Licensing Processes for Gene Therapy Products: Approved and Pending Clinical Trials in the World and Turkey." In Gene Therapy, 153–87. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053358824.10.

Full text
Abstract:
Gene therapy is a medical technology that aims to treat diseases by alteration, insertion or correction of genes. Gene therapy offers potential in treating many genetic diseases such as cystic fibrosis, blood cancers and neurological disorders. Preclinical processes include laboratory research, vector selection, gene editing studies and animal experiments. Clinical research phases consist of four phases: Phase I, safety and tolerability; Phase II, clinical efficacy and best dosages; Phase III, efficacy, safety and availability; Phase IV evaluates long-term effects and rare side effects. Gene therapy products undergo rigorous clinical research and approval processes. Regulatory bodies make decisions about the safety and effectiveness of products. Approval of gene therapy products is subject to different regulations around the world. . These processes may differ in countries such as the USA, China, the European Union and Türkiye. As of 2023, 6590 clinical trials have been conducted in the field of gene therapy in Turkey, the majority of which are in Phase I and Phase I/II stages. The first approved gene therapy product was launched in 1998, and rapid advances have been made in this field in recent years. In this section, information and examples about clinical research on gene therapies are given. Information about the registration processes of gene therapy products and approved products was presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Thomas F. "Gene Therapy." In Gene Future, 127–63. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2760-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cornetta, Kenneth. "Gene Therapy." In Molecular Genetic Pathology, 717–29. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-405-6_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Douglas, Joanne T., and David T. Curiel. "Gene Therapy." In Molecular Biology of the Lung, 1–20. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8784-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Choi, Vivian W., and R. Jude Samulski. "Gene Therapy." In Vogel and Motulsky's Human Genetics, 867–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-37654-5_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gene therapy"

1

Hubel, Allison, and Jeffrey McCullough. "Cryopreservation of Cultured Blood Cells for Use in Gene Therapy and Immunotherapy." In ASME 1997 International Mechanical Engineering Congress and Exposition, 97–98. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1318.

Full text
Abstract:
Abstract The freezing characteristics of genetically manipulated lymphocytes and hematopoietic stem cells were studied. The water transport characteristics of stem cells which had been cultured and transduced with a therapeutic gene were different from that of a freshly isolated cells. Changes in the freezing characteristics for genetically transformed lymphocytes were also observed. Specifically, cryopreservation protocols developed for the fresh peripheral blood lymphocytes do not produce comparable survival rates for lymphocytes which have been cultured and transduced. These results indicate that there are significant changes in the freezing characteristics resulting from the culture and transduction process.
APA, Harvard, Vancouver, ISO, and other styles
2

Hardwick, R. Alan, Bruce L. Levine, Carl H. June, Julio Cotte, Harry L. Malech, Robert E. Butz, Charles S. Carter, and Phillip B. Maples. "Development of Closed Systems for Ex Vivo Cell Processing: Utility in Cell and Gene Therapy." In ASME 1997 International Mechanical Engineering Congress and Exposition, 91–93. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1316.

Full text
Abstract:
Abstract Two examples are described in which cells were processed in a closed sterile fluid path by using custom-designed instruments, plastic bags and tubing sets, and a sterile connection device. In the first example, nucleated blood cells were collected from HIV+ patients. These cells were enriched for CD4+ cells and the CD4+ cells were expanded in the presence of immobilized CD3 and CD28 antibodies. The cells were then concentrated, washed, and re-infused. For the largest batches this resulted in 2.20 × 1010 cells with 86% viability and a CD4+ cell purity ≥ 95%. In two out of three re-infused patients, CD4+ cell counts have remained elevated. In the second example, nucleated blood cells were collected from chronic granulomatous disease (CGD) pauents. CD34+ progenitor cells were immunomagnetically selected and then transfected with a retrovirus containing a corrected copy of the p47 gene. This resulted in 10%–30% of the CD34+ cells being successfully transduced. After transduction, the cells were washed and re-infused. Corrected neutrophils were transiently detected in all five patients. The closed system approach to cell processing is particularly well-suited to clinical trials in cell therapy and gene therapy.
APA, Harvard, Vancouver, ISO, and other styles
3

"Advances in Gene Therapy." In International Conference on Cellular & Molecular Biology and Medical Sciences. Universal Researchers (UAE), 2016. http://dx.doi.org/10.17758/uruae.ae0916417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

. Shcherbakova, S. A., P. E. Karitskaya, A. S. Chesnokova, I. O. Karpets, I. V. Evgenov, and D. V. Tseylikman. "DIFFERENTIALLY EXPRESSED GENES PREDICTING RESPONSE TO TAMOXIFEN THERAPY IN BREAST CANCER PATIENTS." In OpenBio-2023. ИПЦ НГУ, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-40.

Full text
Abstract:
The study is aimed at finding genes mediating the response to tamoxifen therapy. Meta-analysis of the articles and the construction of gene networks revealed 7 genes that make a significant contribution to survival rates. For the purpose of validation, the approach of analysis of differential gene expression was chosen. The validation results revealed a high occurrence of the desired genes. The pattern of deviation of their expression from the reference values was combined with that indicated by other authors.
APA, Harvard, Vancouver, ISO, and other styles
5

Salimova, A. A., V. D. Drozd, D. S. Rybalko, A. A. Eldeeb, A. A. Dedovskayav, and D. M. Kolpashchikov. "ANTISENSE OLIGONUCLEOTIDES RELEASING CASSETTE FOR CANCER THERAPY." In OpenBio-2023. ИПЦ НГУ, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-49.

Full text
Abstract:
Cancer gene therapy is a challenging area of research. Cancer therapy aims to target mutated genes that play crucial roles in tumorigenesis. However, this approach often encounters challenges such as low efficiency and off-target effects. Consequently, the number of drugs approved for clinical use remains limited. Here, we suggest a novel approach in cancer therapy — a DNA construct that is able to target vital housekeeping genes in a cancer-marker dependent manner.
APA, Harvard, Vancouver, ISO, and other styles
6

Dias, Heike Felipe Rangel, Rennyson Siqueira do Amaral, Marina Rosan Costa, Fernanda Melo Oliveira, José Henrique Amaral dos Santos, and Gabriela Capalbo Garrote. "Advances in gene therapy for neuromuscular diseases." In III Seven International Medical and Nursing Congress. Seven Congress, 2024. http://dx.doi.org/10.56238/iiicongressmedicalnursing-041.

Full text
Abstract:
Gene therapy has shown significant potential in the treatment of neuromuscular diseases such as Duchenne muscular dystrophy and spinal muscular atrophy. Advances in viral vector technology and gene editing techniques such as CRISPR-Cas9 have opened up new therapeutic possibilities. This paper explores the main advances, clinical outcomes and challenges associated with the application of this therapeutic approach. The literature review is based on recent studies on innovations in the field of gene therapy.
APA, Harvard, Vancouver, ISO, and other styles
7

Jiang, Xingyu. "Nanocluster-enabled Gene Therapy." In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sakr, N. "DEVELOPMENT OF GENE THERAPY FOR CAH." In Конференция «Перспективы применения генной терапии и биомедицинского клеточного продукта» с блоком летней школы для молодых ученых. Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр эндокринологии» Министерства здравоохранения Российской Федерации, 2022. http://dx.doi.org/10.14341/gnct-2022-51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morgan, Jeffrey R. "Genetic Strategies for Tissue Engineering." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1165.

Full text
Abstract:
Abstract Recent advances in molecular genetics have resulted in the development of new technologies for the introduction and expression of genes in human somatic cells. These gene transfer technologies have given rise to a potentially new field of medical treatment known as gene therapy. Gene therapy is broadly defined as the transfer of genetic material to cells or tissues in order to achieve a therapeutic effect for inherited as well as acquired diseases. We are exploring the potential application of gene transfer technologies to the field of tissue engineering and are interested in determining if genetic modification can be used to enhance the function and/or performance of cells used as or part of biological substitutes for the restoration, maintenance or improvement of tissue function. We believe that gene transfer technologies will be an important addition to the field of tissue engineering.
APA, Harvard, Vancouver, ISO, and other styles
10

Vahedi, Golnaz, Babak Faryabi, Jean-Francois Chamberland, Aniruddha Datta, and Edward Dougherty. "Modeling cyclic therapy in gene regulatory networks." In 2008 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2008. http://dx.doi.org/10.1109/gensips.2008.4555670.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gene therapy"

1

Higgins, Paul J. Inducible Anti-Angiogenic Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada437209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Agarwal, Nitin, Jorgen Magnus, John Kerwin, Charlotte Holmes, Sy Gebrekidan, Don Powers, Emily Moran, et al. Gene therapy process manufacturing maps. BioPhorum, September 2020. http://dx.doi.org/10.46220/2020cgt003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada491350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada454306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada426169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Higgins, Paul J. Inducible Anti-Angiogenic Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada427186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baylink, David J. Gene Therapy for Fracture Repair. Fort Belvoir, VA: Defense Technical Information Center, December 2003. http://dx.doi.org/10.21236/ada431895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Segal, David J. Gene Therapy for Childhood Neurofibromatosis. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada609751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Buchsbaum, Donald J. Radiopharmaceutical and Gene Therapy Program. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/875908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lau, William. Gene Therapy for Fracture Repair. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada474569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography