Academic literature on the topic 'Gene selection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gene selection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gene selection"
Liu, Junjie, Peng Li, Liuyang Lu, Lanfen Xie, Xiling Chen, and Baizhong Zhang. "Selection and evaluation of potential reference genes for gene expression analysis in Avena fatua Linn." Plant Protection Science 55, No. 1 (November 20, 2018): 61–71. http://dx.doi.org/10.17221/20/2018-pps.
Full textR, Dr Prema. "Feature Selection for Gene Expression Data Analysis – A Review." International Journal of Psychosocial Rehabilitation 24, no. 5 (May 25, 2020): 6955–64. http://dx.doi.org/10.37200/ijpr/v24i5/pr2020695.
Full textLee, K. E., N. Sha, E. R. Dougherty, M. Vannucci, and B. K. Mallick. "Gene selection: a Bayesian variable selection approach." Bioinformatics 19, no. 1 (January 1, 2003): 90–97. http://dx.doi.org/10.1093/bioinformatics/19.1.90.
Full textKlee, Eric W., Stephen C. Ekker, and Lynda B. M. Ellis. "Target selection forDanio rerio functional genomics." genesis 30, no. 3 (2001): 123–25. http://dx.doi.org/10.1002/gene.1045.
Full textTsakas, SC. "Species versus gene selection." Genetics Selection Evolution 21, no. 3 (1989): 247. http://dx.doi.org/10.1186/1297-9686-21-3-247.
Full textGreenspan, R. J. "Selection, Gene Interaction, and Flexible Gene Networks." Cold Spring Harbor Symposia on Quantitative Biology 74 (January 1, 2009): 131–38. http://dx.doi.org/10.1101/sqb.2009.74.029.
Full textD., Saravanakumar. "Improving Microarray Data Classification Using Optimized Clustering-Based Hybrid Gene Selection Algorithm." Journal of Advanced Research in Dynamical and Control Systems 51, SP3 (February 28, 2020): 486–95. http://dx.doi.org/10.5373/jardcs/v12sp3/20201283.
Full textNesvadbová, M., and A. Knoll. "Evaluation of reference genes for gene expression studies in pig muscle tissue by real-time PCR." Czech Journal of Animal Science 56, No. 5 (May 30, 2011): 213–16. http://dx.doi.org/10.17221/1428-cjas.
Full textGilad, Yoav, Alicia Oshlack, and Scott A. Rifkin. "Natural selection on gene expression." Trends in Genetics 22, no. 8 (August 2006): 456–61. http://dx.doi.org/10.1016/j.tig.2006.06.002.
Full textBehar, Hilla, and Marcus W. Feldman. "Gene-culture coevolution under selection." Theoretical Population Biology 121 (May 2018): 33–44. http://dx.doi.org/10.1016/j.tpb.2018.03.001.
Full textDissertations / Theses on the topic "Gene selection"
Petronella, Nicholas. "Gene Conversions and Selection in the Gene Families of Primates." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20538.
Full textZid, Mouldi. "Gene Conversions in the Siglec and CEA Immunoglobulin Gene Families of Primates." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23625.
Full textLiu, Zhilin. "Gene expression profiling of bovine ovarian follicular selection." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4490.
Full textThe entire dissertation/thesis text is included in the research.pf file; the official abstract appears in the short.pf file (which also appears in the research.pf); a non-technical general description, or public abstract, appears in the public.pf file. Title from title screen of research.pf file (viewed on May 6, 2009) Vita. Includes bibliographical references.
Huisman, Jisca. "Gene Flow and Natural Selection in Atlantic Salmon." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16991.
Full textChen, Li. "Ranking-Based Methods for Gene Selection in Microarray Data." Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/3888.
Full textMedeiros, Lucas Paoliello de. "Coevolution in mutualistic networks: gene flow and selection mosaics." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/41/41134/tde-17102017-154829/.
Full textInterações ecológicas como predação, competição e mutualismo são importantes forças que influenciam a evolução de espécies. Chamamos de coevolução a mudança evolutiva recíproca em espécies que interagem. A Teoria do Mosaico Geográfico da Coevolução (TMGC) fornece um arcabouço teórico para entender como conjuntos de populações coevoluem ao longo do espaço. Dois aspectos fundamentais da TMGC são o fluxo gênico entre populações e a presença de mosaicos de seleção, isto é, conjuntos de locais com regimes de seleção particulares. Diversos estudos exploraram como o acoplamento entre fenótipos de diferentes espécies evolui em pares ou pequenos grupos de espécies. Entretanto, interações ecológicas frequentemente formam grandes redes que conectam dezenas de espécies presentes em uma comunidade. Em redes de mutualismos, por exemplo, a organização das interações pode influenciar processos ecológicos e evolutivos. Um próximo passo para a compreensão do processo coevolutivo consiste em investigar como aspectos da TMGC influenciam a evolução de espécies em redes de interações. Nesta dissertação, tentamos preencher esta lacuna usando um modelo matemático de coevolução, ferramentas de redes complexas e informação sobre redes mutualistas empíricas. Nossas simulações numéricas do modelo coevolutivo apontam para três principais conclusões. Primeiro, o fluxo gênico influencia os padrões fenotípicos gerados por coevolução e pode favorecer a emergência de acoplamento fenotípico entre espécies dependendo do mosaico de seleção. Segundo, a organização de redes mutualistas influencia a coevolução, mas este efeito pode desaparecer quando o fluxo gênico favorece acoplamento fenotípico. Mutualismos íntimos, como proteção de plantas hospedeiras por formigas, formam redes pequenas e compartimentalizadas que geram um maior acoplamento fenotípico do que as redes grandes e aninhadas típicas de mutualismos entre espécies de vida livre, como polinização. Por fim, a fragmentação de habitat, ao extinguir o fluxo gênico, pode reduzir as adaptações recíprocas entre espécies e ao mesmo tempo tornar cada espécie mais adaptada ao seu ambiente abiótico local. Em suma, mostramos que interações complexas entre fluxo gênico, estrutura geográfica da seleção e organização de redes ecológicas moldam a evolução de grandes grupos de espécies. Dessa forma, podemos traçar previsões sobre como impactos ambientais como a fragmentação de habitat irão alterar a evolução de interações ecológicas
Dai, Xiaotian. "Novel Statistical Models for Quantitative Shape-Gene Association Selection." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6856.
Full textPerucchini, Matteo. "The cervid PrP gene : patterns of variability and selection." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/15634.
Full textRiddoch, B. "Selection component analysis of the PGI polymorphism in Sphaeroma rugicauda." Thesis, University of Essex, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378440.
Full textPanji, Sumir. "Identification of bacterial pathogenic gene classes subject to diversifying selection." Thesis, University of the Western Cape, 2009. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5842_1297942831.
Full textAvailability of genome sequences for numerous bacterial species comprising of different bacterial strains allows elucidation of species and strain specific adaptations that facilitate their survival in widely fluctuating micro-environments and enhance their pathogenic potential. Different bacterial species use different strategies in their pathogenesis and the pathogenic potential of a bacterial species is dependent on its genomic complement of virulence factors. A bacterial virulence factor, within the context of this study, is defined as any endogenous protein product encoded by a gene that aids in the adhesion, invasion, colonization, persistence and pathogenesis of a bacterium within a host. Anecdotal evidence suggests that bacterial virulence genes are undergoing diversifying evolution to counteract the rapid adaptability of its host&rsquo
s immune defences. Genome sequences of pathogenic bacterial species and strains provide unique opportunities to study the action of diversifying selection operating on different classes of bacterial genes.
Books on the topic "Gene selection"
Collins, Warwick. A silent gene theory of evolution. Buckingham, UK: University of Buckingham Press, 2009.
Find full textThe genial gene: Deconstructing Darwinian selfishness. Berkeley: University of California Press, 2009.
Find full textSilson, Roy G. Additive gene systems: An explanation for problems in evolution and selection. Herts: Greenfield, 1988.
Find full textUnnatural selection: The promise and the power of human gene research. New York: Bantam Books, 1998.
Find full textWingerson, Lois. Unnatural selection: The promise and the power of human gene research. New York: Bantam Books, 1999.
Find full textFoster, Charles A. The selfless gene: Living with God and Darwin. Nashville, Tenn: Thomas Nelson, 2009.
Find full textFoster, Charles A. The selfless gene: Living with God and Darwin. Nashville, Tenn: Thomas Nelson, 2009.
Find full textDawkins, Richard. The extended phenotype: The long reach of the gene. Oxford: Oxford University Press, 1989.
Find full textDawkins, Richard. The Extended Phenotype: The long reach of the gene. Oxford: Oxford University Press, 1999.
Find full textDawkins, Richard. The Selfish Gene. Oxford: Oxford University Press, 1999.
Find full textBook chapters on the topic "Gene selection"
Kriegler, Michael. "Selection and Amplification." In Gene Transfer and Expression, 103–13. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-11891-5_6.
Full textGoodnight, Charles J. "Gene Interaction and Selection." In Plant Breeding Reviews, 269–91. Oxford, UK: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470650240.ch12.
Full textRodriguez-Grande, Jorge, and Raul Fernandez-Lopez. "Measuring Plasmid Conjugation Using Antibiotic Selection." In Horizontal Gene Transfer, 93–98. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9877-7_6.
Full textBradshaw, John E. "Gene Expression and Selection of Major Genes." In Plant Breeding: Past, Present and Future, 133–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23285-0_5.
Full textRothenberg, S. Michael, Joan Fisher, David Zapol, David Anderson, Yasumichi Hitoshi, Philip Achacoso, and Gany P. Nolan. "Intracellular Combinatorial Chemistry with Peptides in Selection of Caspase-like Inhibitors." In Gene Therapy, 171–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72160-1_18.
Full textHust, Michael, André Frenzel, Thomas Schirrmann, and Stefan Dübel. "Selection of Recombinant Antibodies from Antibody Gene Libraries." In Gene Function Analysis, 305–20. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-721-1_14.
Full textHust, Michael, Stefan Dübel, and Thomas Schirrmann. "Selection of Recombinant Antibodies From Antibody Gene Libraries." In Gene Function Analysis, 243–55. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-547-3_14.
Full textBorges, Helyane Bronoski, and Julio Cesar Nievola. "Gene Selection from Microarray Data." In Intelligent Text Categorization and Clustering, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85644-3_1.
Full textMirzal, Andri. "SVD Based Gene Selection Algorithm." In Lecture Notes in Electrical Engineering, 223–30. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4585-18-7_26.
Full textHudson, Richard R., and Norman L. Kaplan. "Gene Trees with Background Selection." In Non-Neutral Evolution, 140–53. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2383-3_12.
Full textConference papers on the topic "Gene selection"
Aouf, Mohamad, Amr Sharawi, Khaled Samir, Sultan Almotatiri, Abdulla Bajahzar, and Ghada Kareem. "Gene Expression Data For Gene Selection Using Ensemble Based Feature Selection." In 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS). IEEE, 2019. http://dx.doi.org/10.1109/icicis46948.2019.9014722.
Full textMarvi-Khorasani, Hanieh, and Hamid Usefi. "Feature Clustering Towards Gene Selection." In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. http://dx.doi.org/10.1109/icmla.2019.00240.
Full textYildiz, Oktay, Mesut Tez, H. Sakir Bilge, M. Ali Akcayol, and Inan Guler. "Gene selection for breast cancer." In 2012 20th Signal Processing and Communications Applications Conference (SIU). IEEE, 2012. http://dx.doi.org/10.1109/siu.2012.6204693.
Full textWang, Fei, and Tao Li. "Gene Selection via Matrix Factorization." In 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering. IEEE, 2007. http://dx.doi.org/10.1109/bibe.2007.4375686.
Full textMitra, P., and D. D. Majumder. "Feature selection and gene clustering from gene expression data." In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334213.
Full textLiu, Quanzhong, Yang Zhang, Yong Wang, and Zhengguo Hu. "Study of Informative Gene Selection for Gene Expression Profiles." In 2009 WRI Global Congress on Intelligent Systems. IEEE, 2009. http://dx.doi.org/10.1109/gcis.2009.94.
Full textWang, Shulin, Huowang Chen, and Shutao Li. "Gene Selection Using Neighborhood Rough Set from Gene Expression Profiles." In 2007 International Conference on Computational Intelligence and Security (CIS 2007). IEEE, 2007. http://dx.doi.org/10.1109/cis.2007.169.
Full textQi, Jianlong, and Jian Tang. "Gene Ontology Driven Feature Selection from Microarray Gene Expression Data." In 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology. IEEE, 2006. http://dx.doi.org/10.1109/cibcb.2006.330968.
Full textLancucki, Adrian, Indrajit Saha, and Piotr Lipinski. "A new evolutionary gene selection technique." In 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2015. http://dx.doi.org/10.1109/cec.2015.7257080.
Full textBanu, P. K. Nizar, and S. Andrews. "Informative Gene Selection - An evolutionary approach." In 2013 International Conference on Current Trends in Information Technology (CTIT). IEEE, 2013. http://dx.doi.org/10.1109/ctit.2013.6749491.
Full textReports on the topic "Gene selection"
Hayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada491350.
Full textHayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada426169.
Full textHayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada454306.
Full textCuriel, David T., Gene Siegal, and Minghui Wang. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada485589.
Full textCuriel, David T., Gene Siegal, and Minghui Wang. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada472761.
Full textSavageau, Michael A. Selection and Computational Potential of Gene Control Elements and Their Circuitry. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada389769.
Full textZeng, Jian, Ali Toosi, Rohan L. Fernando, Jack C. M. Dekkers, and Dorian J. Garrick. Genomic Selection of Purebred Animals for Crossbred Performance in the Presence of Dominant Gene Action. Ames (Iowa): Iowa State University, January 2013. http://dx.doi.org/10.31274/ans_air-180814-1249.
Full textYeung, Ka Y., Roger E. Bumgarner, and Adrian E. Raftery. Bayesian Model Averaging: Development of an Improved Multi-Class, Gene Selection and Classification Tool for Microarray Data. Fort Belvoir, VA: Defense Technical Information Center, October 2004. http://dx.doi.org/10.21236/ada454826.
Full textKufe, Donald W. Gene Therapy of Breast Cancer: Studies of Selective Promoter/Enhancer-Modified Vectors to Deliver Suicide Genes. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada368313.
Full textBagamasbad, Pia. Selective Gene Regulation by Androgen Receptor in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada612316.
Full text