Journal articles on the topic 'Gene mapping'

To see the other types of publications on this topic, follow the link: Gene mapping.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Gene mapping.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lathrop, Gregory M., Dora Cherif, Cécile Julier, and Michael James. "Gene mapping." Current Opinion in Biotechnology 1, no. 2 (December 1990): 172–79. http://dx.doi.org/10.1016/0958-1669(90)90027-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ehrhart, Friederike, Jonathan Melius, Elisa Cirillo, Martina Kutmon, Egon L. Willighagen, Susan L. Coort, Leopold M. G. Curfs, and Chris T. Evelo. "Providing gene-to-variant and variant-to-gene database identifier mappings to use with BridgeDb mapping services." F1000Research 7 (September 3, 2018): 1390. http://dx.doi.org/10.12688/f1000research.15708.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Database identifier mapping services are important to make database information interoperable. BridgeDb offers such a service. Available mapping for BridgeDb link 1. genes and gene products identifiers, 2. metabolite identifiers and InChI structure description, and 3. identifiers for biochemical reactions and interactions between multiple resources that use such IDs while the mappings are obtained from multiple sources. In this study we created BridgeDb mapping databases for selections of genes-to-variants (and variants-to-genes) based on the variants described in Ensembl. Moreover, we demonstrated the use of these mappings in different software tools like R, PathVisio, Cytoscape and a local installation using Docker. The variant mapping databases are now described on the BridgeDb website and are available from the BridgeDb mapping database repository and updated according to the regular BridgeDb mapping update schedule.
3

Frézal, Jean. "Genes, gene map, gene mapping." Cytogenetic and Genome Research 46, no. 1-4 (1987): 1–10. http://dx.doi.org/10.1159/000132469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harrap, Stephen B. "Repetitive gene mapping." Journal of Hypertension 13, no. 5 (May 1995): 567. http://dx.doi.org/10.1097/00004872-199505000-00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stern, Victoria. "Mapping the Spine, Gene by Gene." Scientific American Mind 19, no. 5 (October 2008): 8. http://dx.doi.org/10.1038/scientificamericanmind1008-8a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Daniels, D. L., and F. R. Blattner. "Mapping using gene encyclopaedias." Nature 325, no. 6107 (February 1987): 831–32. http://dx.doi.org/10.1038/325831a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harper, P. S. "Gene mapping and neurogenetics." Journal of Medical Genetics 24, no. 9 (September 1, 1987): 513–14. http://dx.doi.org/10.1136/jmg.24.9.513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Harper, P. S. "Human Gene Mapping 9." Journal of Medical Genetics 25, no. 11 (November 1, 1988): 788. http://dx.doi.org/10.1136/jmg.25.11.788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yates, J. R. W. "Human Gene Mapping 10." Journal of Medical Genetics 27, no. 5 (May 1, 1990): 343. http://dx.doi.org/10.1136/jmg.27.5.343-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SYKES, BRYAN. "Mapping Collagen Gene Mutations." Annals of the New York Academy of Sciences 580, no. 1 Structure, Mo (February 1990): 385–89. http://dx.doi.org/10.1111/j.1749-6632.1990.tb17946.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lam-Po-Tang, P. R. L. "Human Gene Mapping 9.5." Pathology 22, no. 2 (1990): 127. http://dx.doi.org/10.1016/s0031-3025(16)36287-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Henry, G. "Human Gene Mapping 10." Biochemical Education 18, no. 3 (July 1990): 157. http://dx.doi.org/10.1016/0307-4412(90)90244-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

He, Weigong, and Shibo Li. "Congenital cataracts: gene mapping." Human Genetics 106, no. 1 (January 31, 2000): 1–13. http://dx.doi.org/10.1007/s004390051002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

He, Weigong, and Shibo Li. "Congenital cataracts: gene mapping." Human Genetics 106, no. 1 (January 2000): 1–13. http://dx.doi.org/10.1007/s004399900169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fallow, G. F., N. M. Highton, A. Landless, L. Mascia, and D. H. Pantling. "Human gene mapping report." Chromosome Research 3, no. 4 (June 1995): 265. http://dx.doi.org/10.1007/bf00713055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ooms, L., J. Nicholl, P. Bird, and G. R. Sutherland. "Human gene mapping report." Chromosome Research 3, no. 7 (November 1995): 447. http://dx.doi.org/10.1007/bf00713898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Baker, E., A. D'Andrea, J. H. Phillips, G. R. Sutherland, and L. L. Lanier. "Human gene mapping report." Chromosome Research 3, no. 8 (December 1995): 511. http://dx.doi.org/10.1007/bf00713968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cannizzaro, Linda A. "Gene mapping in cancer." Cancer Genetics and Cytogenetics 55, no. 2 (September 1991): 139–47. http://dx.doi.org/10.1016/0165-4608(91)90069-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Harper, P. S. "Human Gene Mapping 11. The Eleventh International Workshop on Human Gene Mapping." Journal of Medical Genetics 30, no. 1 (January 1, 1993): 87. http://dx.doi.org/10.1136/jmg.30.1.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lander, Eric S., and Harvey Lodish. "Mitochondrial diseases: Gene mapping and gene therapy." Cell 61, no. 6 (June 1990): 925–26. http://dx.doi.org/10.1016/0092-8674(90)90055-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Little, P. F. R. "Gene mapping and the human genome mapping project." Current Opinion in Cell Biology 2, no. 3 (June 1990): 478–84. http://dx.doi.org/10.1016/0955-0674(90)90131-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sharma, M., S. Kaur, M. Saluja, and P. Chhuneja. "Mapping and characterization of powdery mildew resistance gene in synthetic wheat." Czech Journal of Genetics and Plant Breeding 52, No. 3 (September 23, 2016): 120–23. http://dx.doi.org/10.17221/187/2015-cjgpb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kraft, Peter, and Steve Horvath. "The genetics of gene expression and gene mapping." Trends in Biotechnology 21, no. 9 (September 2003): 377–78. http://dx.doi.org/10.1016/s0167-7799(03)00191-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Simpson, Elizabeth, Phillip Chandler, Anne McLaren, Els Goulmy, Christine M. Disteche, David C. Page, and Malcolm A. Ferguson-Smith. "Mapping the H-Y gene." Development 101, Supplement (March 1, 1987): 157–61. http://dx.doi.org/10.1242/dev.101.supplement.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper uses cytotoxic and proliferative T cell clones specific for H-Y and restricted by MHC molecules to type mice and humans inheriting incomplete portions of the Y chromosome. The data have allowed us to map the H-Y antigen gene Hya in mouse to a position closely linked with, but separable from, Tdy on the Sxr fragment and thus presumably to a position of the normal mouse Y chromosome near the centromere. The human H-Y gene maps between deletion intervals 4B and 7, separate from TDF which is on interval 1. We are currently testing cells from a number of additional patients who have inherited different portions of the Y chromosome to pinpoint the mapping more closely. It is of interest that in mouse a Y-linked gene controlling spermatogenesis (Spy) maps near Hya on the Sxr fragment: they could be the same or closely linked genes. In man, a gene controlling spermatogenesis maps to Yq and the data so far do not exclude that it could be coincident with the H-Y gene.
25

Kurtz, T. W., and E. M. St Lezin. "Gene mapping in experimental hypertension." Journal of the American Society of Nephrology 3, no. 1 (July 1992): 28–34. http://dx.doi.org/10.1681/asn.v3128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In the rat, the results of genetic linkage studies by "candidate" gene or "positional mapping" approaches have suggested that DNA sequences that regulate blood pressure may be located in the vicinity of the kallikrein gene family on chromosome 1, the gene for angiotensin-converting enzyme on chromosome 10, the renin gene on chromosome 13, and the major histocompatibility complex on chromosome 20. Some studies have also suggested that blood pressure regulatory genes may be located on the sex chromosomes. Pending the results of confirmatory studies, these experiments should be interpreted with caution. However, with confirmation of these studies, it should be possible to create a variety of new animal models that will provide excellent opportunities for investigating the molecular, biochemical, and physiologic determinants of high blood pressure. In addition, in genetic studies in humans with essential hypertension, it may be worthwhile to target chromosome regions that are homologous to those implicated in linkage studies of hypertension in rodents. By narrowing the focus on selected areas of the genome, experimental linkage studies in the rat may also be used to guide the detailed molecular approaches ultimately required to identify the specific DNA sequence alterations that give rise to increased blood pressure.
26

Qu, Xianggui. "The Statistics of Gene Mapping." Technometrics 50, no. 1 (February 2008): 94. http://dx.doi.org/10.1198/tech.2008.s537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Harper, P. S. "Gene mapping and medical genetics." Journal of Medical Genetics 22, no. 4 (August 1, 1985): 241–42. http://dx.doi.org/10.1136/jmg.22.4.241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shaw, D. J., J. D. Brook, A. L. Meredith, H. G. Harley, M. Sarfarazi, and P. S. Harper. "Gene mapping and chromosome 19." Journal of Medical Genetics 23, no. 1 (February 1, 1986): 2–10. http://dx.doi.org/10.1136/jmg.23.1.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kong, A., and F. Wright. "Asymptotic theory for gene mapping." Proceedings of the National Academy of Sciences 91, no. 21 (October 11, 1994): 9705–9. http://dx.doi.org/10.1073/pnas.91.21.9705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

WOMACK, JAMES E. "Main Session II: Gene mapping." Animal Genetics 20, no. 4 (April 24, 2009): 330–31. http://dx.doi.org/10.1111/j.1365-2052.1989.tb00880.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ott, Jurg, and Josephine Hoh. "Statistical Approaches to Gene Mapping." American Journal of Human Genetics 67, no. 2 (August 2000): 289–94. http://dx.doi.org/10.1086/303031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Alting-Mees, M. A., and J. M. Short. "pBluescript II: gene mapping vectors." Nucleic Acids Research 17, no. 22 (1989): 9494. http://dx.doi.org/10.1093/nar/17.22.9494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Morton, N. E., and A. Collins. "The future of gene mapping." Genetic Analysis: Biomolecular Engineering 14, no. 1 (March 1997): 25–27. http://dx.doi.org/10.1016/s1050-3862(96)00170-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Simsek, M. "Restriction mapping and gene analysis." Biochemical Education 24, no. 2 (April 1996): 117–19. http://dx.doi.org/10.1016/0307-4412(95)00158-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Smith, M. J., and P. N. Goodfellow. "Gene mapping and genetic diseases." Current Opinion in Cell Biology 1, no. 3 (June 1989): 460–65. http://dx.doi.org/10.1016/0955-0674(89)90006-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Frischauf, Anna-Maria. "Gene-mapping techniques and applications." Trends in Genetics 8, no. 2 (February 1992): 78. http://dx.doi.org/10.1016/0168-9525(92)90358-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Barker, Peter E. "Gene Mapping and Cystic Fibrosis." American Journal of the Medical Sciences 299, no. 1 (January 1990): 69–72. http://dx.doi.org/10.1097/00000441-199001000-00015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dorozynski, A. "Gene Mapping the Industrial Way." Science 256, no. 5056 (April 24, 1992): 463. http://dx.doi.org/10.1126/science.256.5056.463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lécuyer, Eric, and Pavel Tomancak. "Mapping the gene expression universe." Current Opinion in Genetics & Development 18, no. 6 (December 2008): 506–12. http://dx.doi.org/10.1016/j.gde.2008.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Galland, Joel, and Mark H. Skolnick. "A gene mapping expert system." Computers and Biomedical Research 23, no. 4 (August 1990): 297–309. http://dx.doi.org/10.1016/0010-4809(90)90023-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Musarella, Maria A. "Gene mapping of ocular diseases." Survey of Ophthalmology 36, no. 4 (January 1992): 285–312. http://dx.doi.org/10.1016/0039-6257(92)90096-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Frattini, Annalisa, Sara Faranda, and Paolo Vezzoni. "Computer Gene Mapping byEagI-Based STSs." Genomics 38, no. 1 (November 1996): 87–91. http://dx.doi.org/10.1006/geno.1996.0597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, R., E. A. Stahl, F. A. S. Kurreeman, P. K. Gregersen, K. A. Siminovitch, J. Worthington, L. Padyukov, S. Raychaudhuri, and R. M. Plenge. "Fine mapping the TAGAP risk locus in rheumatoid arthritis." Genes & Immunity 12, no. 4 (March 10, 2011): 314–18. http://dx.doi.org/10.1038/gene.2011.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kitajima, H., M. Sonoda, and K. Yamamoto. "HLA and SNP haplotype mapping in the Japanese population." Genes & Immunity 13, no. 7 (August 23, 2012): 543–48. http://dx.doi.org/10.1038/gene.2012.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Watanabe, N., N. Takesada, Y. Fujii, and P. Martinek. "Comparative Mapping of Genes for Brittle Rachis in Triticum." Czech Journal of Genetics and Plant Breeding 41, No. 2 (November 21, 2011): 39–44. http://dx.doi.org/10.17221/3671-cjgpb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The brittle rachis phenotype is of adaptive value in wild grass species because it causes spontaneous spike shattering. The genes on the homoeologous group 3 chromosomes determine the brittle rachis in Triticeae. A few genotypes with brittle rachis have also been found in the cultivated Triticum. Using microsatellite markers, the homoeologous genes for brittle rachis were mapped in hexaploid wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. conv. durum /Desf./) and Aegilops tauschii Coss. On chromosome 3AS, the gene for brittle rachis, Br<sub>2</sub>, was linked with the centromeric marker, Xgwm32, at the distance of 13.3 cM. Br<sub>3 </sub>was located on chromosome 3BS and linked with the centromeric marker,<br />Xgwm72 (14.2 cM). Br<sub>1 </sub>was located on chromosome 3DS. The distance from the centromeric marker Xgdm72 was 23.6 cM. The loci Br<sub>1</sub>, Br<sub>2</sub> and Br<sub>3</sub> determine disarticulation of rachides above the junction of the rachilla with the rachis so that a fragment of rachis is attached below each spikelet. The rachides of Ae. tauschii are brittle at every joint, so that the mature spike disarticulates into barrel type. The brittle rachis was determined by a dominant gene, Br<sup>t</sup>, which was linked to the centromeric marker, Xgdm72 (19.7 cM), on chromosome 3DS. A D-genome introgression line, R-61, was derived from the cross Bet Hashita/Ae. tauschii, whose rachis disarticulated as a wedge type. The gene for brittle rachis of R-61, tentatively designated as Br<sup>61</sup>, was distally located on chromosome 3DS, and was linked with the centromeric marker, Xgdm72 (27.5 cM). We discussed how the brittle rachis of R-61 originated genetically. &nbsp; &nbsp;
46

Le Bras, Alexandra. "Mapping gene expression in C.elegans neurons." Lab Animal 50, no. 9 (August 9, 2021): 241. http://dx.doi.org/10.1038/s41684-021-00835-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Weghe, A. "1. Gene mapping and population genetics." Animal Genetics 20, no. 1 (April 24, 2009): 1–24. http://dx.doi.org/10.1111/j.1365-2052.1989.tb01908.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Dobrovic, A., and Marshall Graves. "Gene mapping in marsupials and monotremes." Cytogenetic and Genome Research 41, no. 1 (1986): 9–13. http://dx.doi.org/10.1159/000132189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dawson, G. W., and Marshall Graves. "Gene mapping in marsupials and monotremes." Cytogenetic and Genome Research 42, no. 1-2 (1986): 80–84. http://dx.doi.org/10.1159/000132256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dawson, G. W., P. G. Johnston, and Marshall Graves. "Gene mapping in marsupials and monotremes." Cytogenetic and Genome Research 45, no. 1 (1987): 1–4. http://dx.doi.org/10.1159/000132415.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography