Academic literature on the topic 'Gels and Hydrogels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gels and Hydrogels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gels and Hydrogels"
Xu, Bo, Yuwei Liu, Lanlan Wang, Xiaodong Ge, Min Fu, Ping Wang, and Qiang Wang. "High-Strength Nanocomposite Hydrogels with Swelling-Resistant and Anti-Dehydration Properties." Polymers 10, no. 9 (September 14, 2018): 1025. http://dx.doi.org/10.3390/polym10091025.
Full textBurchak, Vadym, Fritz Koch, Leonard Siebler, Sonja Haase, Verena K. Horner, Xenia Kempter, G. Björn Stark, et al. "Evaluation of a Novel Thiol–Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells." International Journal of Molecular Sciences 23, no. 14 (July 19, 2022): 7939. http://dx.doi.org/10.3390/ijms23147939.
Full textNaficy, Sina, Hugh R. Brown, Joselito M. Razal, Geoffrey M. Spinks, and Philip G. Whitten. "Progress Toward Robust Polymer Hydrogels." Australian Journal of Chemistry 64, no. 8 (2011): 1007. http://dx.doi.org/10.1071/ch11156.
Full textBhuyan, Md Murshed, and Jae-Ho Jeong. "Gels/Hydrogels in Different Devices/Instruments—A Review." Gels 10, no. 9 (August 23, 2024): 548. http://dx.doi.org/10.3390/gels10090548.
Full textShoukat, Hina, Fahad Pervaiz, and Sobia Noreen. "Novel Crosslinking Methods to Design Hydrogels." Global Pharmaceutical Sciences Review I, no. I (December 30, 2016): 1–5. http://dx.doi.org/10.31703/gpsr.2016(i-i).01.
Full textLi, Peng, Nam Hoon Kim, Sambhu Bhadra, and Joong Hee Lee. "Electroresponsive Property of Novel Poly(acrylate- acryloyloxyethyl trimethyl ammonium chloride)/Clay Nanocomposite Hydrogels." Advanced Materials Research 79-82 (August 2009): 2263–66. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.2263.
Full textGorantla, Srividya, Tejashree Waghule, Vamshi Krishna Rapalli, Prem Prakash Singh, Sunil Kumar Dubey, Ranendra Narayan Saha, and Gautam Singhvi. "Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery." Recent Patents on Drug Delivery & Formulation 13, no. 4 (April 29, 2020): 291–300. http://dx.doi.org/10.2174/1872211314666200108094851.
Full textO’Connor, Naphtali A., Abdulhaq Syed, Madeline Wong, Josiah Hicks, Greisly Nunez, Andrei Jitianu, Zach Siler, and Marnie Peterson. "Polydopamine Antioxidant Hydrogels for Wound Healing Applications." Gels 6, no. 4 (October 31, 2020): 39. http://dx.doi.org/10.3390/gels6040039.
Full textFallon, Halligan, Pezzoli, Geever, and Higginbotham. "Synthesis and Characterisation of Novel Temperature and pH Sensitive Physically Cross-Linked Poly (N-vinylcaprolactam-co-itaconic Acid) Hydrogels for Drug Delivery." Gels 5, no. 3 (August 29, 2019): 41. http://dx.doi.org/10.3390/gels5030041.
Full textSeida, Yoshimi, and Hideaki Tokuyama. "Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent." Gels 8, no. 4 (April 3, 2022): 220. http://dx.doi.org/10.3390/gels8040220.
Full textDissertations / Theses on the topic "Gels and Hydrogels"
Vaculíková, Hana. "Hyaluronan hydrogels." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-401877.
Full textShukla, Pranav. "Inducing Liquid Evaporation with Hygroscopic Gels." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/101555.
Full textMaster of Science
Park, Tae Gwan. "Immobilized biocatalysts in stimuli-sensitive hydrogels /." Thesis, Connect to this title online; UW restricted, 1990. http://hdl.handle.net/1773/8070.
Full textRehab, M. M. A. M. "Preparation and characterization of copolymeric hydrogels." Thesis, University of Salford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381697.
Full textGräfe, David. "Tetra-Responsive Grafted Hydrogels for Flow Control in Microfluidics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219926.
Full textSingh, Nishant. "Functional gels as microreactors." Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/397698.
Full textHidrogelantes funcionalizados sobre autoensamblaje pueden demostrar como la catálisis enzimática mejorada basada en varios factores tales como bolsillos hidrofóbicos, cambio en pH, cambio en pKa, aumento en la concentración local de los sitios activos etc. Aquí presentamos tales tipos de hidrogelantes que son capaces de demostrar varios tipos de reacciones importantes como aldolica, Mannicli, hidrolisis, deactetalisation, etc.
Mujeeb, Ayeesha. "Self-assembled octapeptide gels for cartilage repair." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/selfassembled-octapeptide-gels-for-cartilage-repair(ce161da3-4ce4-4d42-b0cc-6933fc6aa394).html.
Full textBuerkle, Lauren Elizabeth. "Tailoring the Properties of Supramolecular Gels." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1317946752.
Full textGruberová, Eliška. "Gelace hydrofobizovaného hyaluronanu." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449414.
Full textLe, blay Heiva. "Use of shear wave imaging to assess the mechanical and fracture behaviors of tough model gels." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS096.
Full textA hydrogel is a soft material, largely swollen with water, made elastic via a network of polymer chains. A gel is inherently fragile. This brittleness can be overcome by adding dynamic sacrificial bonds. Macromolecular engineering of the 21st century has made possible the formulation of gels for use in biology in order to provide synthetic materials while addressing biocompatibility issues, tissue/material interface compatibility, and mechanical properties that the body requires. However, the fracture of these highly deformable and sometimes viscoelastic materials remains a poorly understood subject that has been little investigated experimentally. The challenge today is to better understand the mechanisms involved at the crack tip but the experimental techniques that allow a local approach and with fast acquisition rates are limited. Our work aims at developing an innovative method to probe the fracture of gels. Water being their main component, these materials, like biological tissues, are an excellent platform to study the propagation of acoustic waves, i.e. shear (S) or compression (P) waves. In materials composed mainly of water, compressional waves, typically ultrasound, propagate at about 1500 m/s (P-wave velocity in water) while shear waves are of the order of m/s (between about 1-8 m/s) and their velocity increases with the rigidity of the material. It is therefore possible to see the S waves propagating through the difference in speed between these two waves. This is the principle of shear wave elastography, an imaging technique used in this study to understand the mechanics and fracture of hydrogels.The gel fracture was studied locally at the crack tip in a quasi-static way. Then, the physical phenomena involved during crack propagation were investigated using ultrafast imaging.It is important to understand how the fracture propagates and if it is possible to avoid or stop it. The goal of any material is to avoid breaking and therefore to resist fracture propagation
Books on the topic "Gels and Hydrogels"
Park, Kinam. Biodegradable hydrogels for drug delivery. Lancaster, PA: Technomic Pub., 1993.
Find full textM, Ottenbrite Raphael, Huang Samuel J. 1937-, Park Kinam, American Chemical Society Meeting, and American Chemical Society. Division of Polymer Chemistry. (Washington, D.C.), eds. Hydrogels and biodegradable polymers for bioapplications. Washington, D.C: American Chemical Society, 1996.
Find full textScott, Adams, Palaszewski Bryan, and United States. National Aeronautics and Space Administration., eds. Nanoparticulate gellants for metallized gelled liquid hydrogen wth aluminum. [Washington, DC]: National Aeronautics and Space Administration, 1996.
Find full textB, Sunkara H., and United States. National Aeronautics and Space Administration., eds. Design of intelligent mesoscale periodic array structures utilizing smart hydrogel. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Find full textHydrogels in medicine and pharmacy. Boca Raton, Fla: CRC Press, 1986.
Find full textPeppas, Nikolaos. Hydrogels in Medicine and Pharmacy: Fundamentals. CRC Press, 1987.
Find full textPark, Kinam, Haesun Park, and Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Find full textPark, Kinam, Haesun Park, and Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Find full textPark, Kinam, Haesun Park, and Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Find full textGels Handbook : Fundamentals, Properties and ApplicationsVolume 1 : Fundamentals of Hydrogelsvolume 2 : Applications of Hydrogels in Regenerative Medicinevolume 3: Application of Hydrogels in Drug Delivery and Biosensing. World Scientific Publishing Co Pte Ltd, 2016.
Find full textBook chapters on the topic "Gels and Hydrogels"
Brøndsted, Helle, and Jindřich Kopeček. "pH-Sensitive Hydrogels." In Polyelectrolyte Gels, 285–304. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch017.
Full textKong, Weiqing, Qingqing Dai, Cundian Gao, Junli Ren, Chuanfu Liu, and Runcang Sun. "Hemicellulose-Based Hydrogels and Their Potential Application." In Polymer Gels, 87–127. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6086-1_3.
Full textOsada, Yoshihito, Ryuzo Kawamura, and Ken-Ichi Sano. "Biomimetic Functions of Synthetic Polymer Gels." In Hydrogels of Cytoskeletal Proteins, 73–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27377-8_7.
Full textGitsov, Ivan, Thomas Lys, and Chao Zhu. "Amphiphilic Hydrogels with Highly Ordered Hydrophobic Dendritic Domains." In Polymer Gels, 218–32. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch015.
Full textDualeh, Abdulkadir J., and Carol A. Steiner. "Structure and Properties of Surfactant-Bridged Viscoelastic Hydrogels." In Polyelectrolyte Gels, 42–52. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch003.
Full textOppermann, W. "Swelling Behavior and Elastic Properties of Ionic Hydrogels." In Polyelectrolyte Gels, 159–70. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch010.
Full textDong, Liang Chang, and Allan S. Hoffman. "Thermally Reversible Hydrogels." In Reversible Polymeric Gels and Related Systems, 236–44. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0350.ch016.
Full textChau, Mokit, Shivanthi Easwari Sriskandha, Héloïse Thérien-Aubin, and Eugenia Kumacheva. "Supramolecular Nanofibrillar Polymer Hydrogels." In Supramolecular Polymer Networks and Gels, 167–208. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15404-6_5.
Full textAllcock, Harry R., and Archel Ambrosio. "Synthesis and Characterization of pH-Responsive Poly(organophosphazene) Hydrogels." In Polymer Gels, 82–101. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch006.
Full textPape, A. C. H., and Patricia Y. W. Dankers. "Supramolecular Hydrogels for Regenerative Medicine." In Supramolecular Polymer Networks and Gels, 253–79. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15404-6_7.
Full textConference papers on the topic "Gels and Hydrogels"
Morovati, Vahid, Mohammad Ali Saadat, and Roozbeh Dargazany. "Modelling Stress Softening and Necking Phenomena in Double Network Hydrogels." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12253.
Full textGeisler, Chris G., Ho-Lung Li, David M. Wootton, Peter I. Lelkes, and Jack G. Zhou. "Soft Biomaterial Study for 3-D Tissue Scaffold Printing." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34274.
Full textVicente, Adam, Zachary McCreery, and Karen Chang Yan. "Printability of Hydrogels for Hydrogel Molding Based Microfluidic Device Fabrication." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11545.
Full textHaraguchi, Kazutoshi, and Toru Takehisa. "Novel Manufacturing Process of Nanocomposite Hydrogel For Bio-Applications." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80533.
Full textMorovati, Vahid, and Roozbeh Dargazany. "Micro-Mechanical Modeling of the Stress Softening in Double-Network Hydrogels." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88252.
Full textThien, Austen, and Kishore Pochiraju. "Additive Manufacturing Techniques for Soft Electroactive Polymer Hydrogels Using a Customized 3D Printer." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72007.
Full textMarks, William H., Sze C. Yang, George W. Dombi, and Sujata K. Bhatia. "Carbon Nanobrushes Embedded Within Hydrogel Composites for Tissue Engineering." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93122.
Full textYao, Hai, and Weiyong Gu. "New Insight Into Deformation-Dependent Hydraulic Permeability of Hydrogels and Cartilage." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32520.
Full textDrzewiecki, Kathryn, Ian Gaudet, Douglas Pike, Jonathan Branch, Vikas Nanda, and David Shreiber. "Temperature Dependent Reversible Self Assembly of Methacrylated Collagen Gels." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14705.
Full textEarnshaw, Audrey L., Justine J. Roberts, Garret D. Nicodemus, Stephanie J. Bryant, and Virginia L. Ferguson. "The Mechanical Behavior of Engineered Hydrogels." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206705.
Full textReports on the topic "Gels and Hydrogels"
Benicewicz, Brian C., Glenn A. Eisman, S. K. Kumar, and S. G. Greenbaum. Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1121336.
Full text