Academic literature on the topic 'Gellan gum'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gellan gum.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gellan gum"
Giavasis, Ioannis, Linda M. Harvey, and Brian McNeil. "Gellan Gum." Critical Reviews in Biotechnology 20, no. 3 (January 2000): 177–211. http://dx.doi.org/10.1080/07388550008984169.
Full textTran, Thi Phuong An, Hoon Cho, Gye-Chun Cho, Jong-In Han, and Ilhan Chang. "Nickel (Ni2+) Removal from Water Using Gellan Gum–Sand Mixture as a Filter Material." Applied Sciences 11, no. 17 (August 26, 2021): 7884. http://dx.doi.org/10.3390/app11177884.
Full textSukumar, Soumiya, Santhiagu Arockiasamy, and Moothona Manjusha Chemmattu. "Gellan gum biopolymer- A review." Research Journal of Chemistry and Environment 25, no. 10 (September 25, 2021): 150–57. http://dx.doi.org/10.25303/2510rjce150157.
Full textSun, Ling, Yazhen Wang, Meixiang Yue, Xialiang Ding, Xiangyang Yu, Jing Ge, Wenjing Sun, and Lixiao Song. "Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring." Foods 11, no. 24 (December 16, 2022): 4078. http://dx.doi.org/10.3390/foods11244078.
Full textWang, Xia, Ping Xu, Yong Yuan, Changlong Liu, Dezhong Zhang, Zhengting Yang, Chunyu Yang, and Cuiqing Ma. "Modeling for Gellan Gum Production by Sphingomonas paucimobilis ATCC 31461 in a Simplified Medium." Applied and Environmental Microbiology 72, no. 5 (May 2006): 3367–74. http://dx.doi.org/10.1128/aem.72.5.3367-3374.2006.
Full textHara, Shintaro, Yasuyuki Hashidoko, Roman V. Desyatkin, Ryusuke Hatano, and Satoshi Tahara. "High Rate of N2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-Poor Medium Solidified with Gellan Gum." Applied and Environmental Microbiology 75, no. 9 (March 13, 2009): 2811–19. http://dx.doi.org/10.1128/aem.02660-08.
Full textSworn, G., G. R. Sanderson, and W. Gibson. "Gellan gum fluid gels." Food Hydrocolloids 9, no. 4 (December 1995): 265–71. http://dx.doi.org/10.1016/s0268-005x(09)80257-9.
Full textGrasdalen, Hans, and Olav Smidsrød. "Gelation of gellan gum." Carbohydrate Polymers 7, no. 5 (January 1987): 371–93. http://dx.doi.org/10.1016/0144-8617(87)90004-x.
Full textHilal, Adonis, Anna Florowska, Tomasz Florowski, and Małgorzata Wroniak. "A Comparative Evaluation of the Structural and Biomechanical Properties of Food-Grade Biopolymers as Potential Hydrogel Building Blocks." Biomedicines 10, no. 9 (August 28, 2022): 2106. http://dx.doi.org/10.3390/biomedicines10092106.
Full textYamada, Masanori, and Yoshihiro Kametani. "Preparation of Gellan Gum-Inorganic Composite Film and Its Metal Ion Accumulation Property." Journal of Composites Science 6, no. 2 (January 25, 2022): 42. http://dx.doi.org/10.3390/jcs6020042.
Full textDissertations / Theses on the topic "Gellan gum"
McGovern-Traa, Caroline. "Studies on gellan gum." Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/15337.
Full textGothard, Michelle Gina Elizabeth. "Functional properties of gellan gum." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426116.
Full textCassanelli, Mattia. "Drying and rehydration of gellan gum gels." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8810/.
Full textDhameri, Sulaiman Ali A. "Rheological Properties and Decomposition Rates of Gellan Gum." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1562780919692096.
Full textYang, Li. "Physicochemical properties of biodegradable/edible films made with gellan gum." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0026/MQ31662.pdf.
Full textTsiami, Amalia A. "Physiochemical properties of Gellan gum in gel and solution state." Thesis, University of East Anglia, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358455.
Full textGiavasis, Ioannis. "Physiological studies on the production of gellan gum by Sphingomonas paucimobilis." Thesis, University of Strathclyde, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273429.
Full textBaawad, Abdullah. "Release of Low Acyl Gellan Gum in a Controlled Release System." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544823979777171.
Full textMahdi, Mohammed Hamzah. "Development of gellan gum fluid gel as modified release drug delivery systems." Thesis, University of Huddersfield, 2016. http://eprints.hud.ac.uk/id/eprint/30293/.
Full textPicone, Carolina Siqueira Franco 1983. "Formação de nanopartículas por associação de biopolímeros e surfactantes = Formation of nanoparticles by biopolymer - surfactant association." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254194.
Full textTexto em português e inglês
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-20T12:57:32Z (GMT). No. of bitstreams: 1 Picone_CarolinaSiqueiraFranco_D.pdf: 4074904 bytes, checksum: 1a2779daa118fabb35ba241a8f6bf16f (MD5) Previous issue date: 2012
Resumo: As nano partículas possuem grande potencial para a liberação controlada de bioativos, porém ainda são pouco exploradas na área de alimentos. Neste trabalho foi estudada a formação de nanopartículas a partir da autoagregação de surfactantes, associação surfactante-polissacarídeo e complexação eletrostática entre diferentes polissacarídeos, no caso, quitosana e gelana. A compreensão das interações moleculares responsáveis pela formação das partículas e o conhecimento das variáveis que afetam sua formação permitem predizer e controlar suas propriedades. Tais interações dependem fortemente das características de cada macromolécula, como flexibilidade, estado conformacional e densidade de cargas que são diretamente afetadas pelas condições físico-químicas do meio como pH, força iônica e temperatura. Por isso, este trabalho foi dividido em três etapas. (I) Inicialmente foi avaliado o comportamento em solução dos polissacarídeos utilizados posteriormente para a formação de complexos. Os efeitos do pH e da temperatura nas características reológicas e no estado conformacional de soluções puras de gelana e quitosana foram estudados. A agregação da gelana foi mais sensível às alterações do meio que a quitosana. (II) Na segunda etapa, nanopartículas foram formadas por autoassociação de polissorbatos na presença de quitosana. A influência do comprimento da cauda hidrofóbica do surfactante e do pH do meio nas propriedades das partículas foi estudada por espalhamento de luz, reologia, condutivimetria e microscopia de luz polarizada. O tamanho e estrutura das partículas formadas pelo surfactante de menor cadeia hidrofóbica foram mais favoráveis à associação com a quitosana. O pH do meio (3,0 ou 6,7) não influenciou de maneira significativa as características das partículas. O efeito da concentração de quitosana na estrutura e tamanho de partículas foi analisado. Maiores concentrações levaram a viscosidades mais elevadas, impedindo a agregação das micelas e formando partículas menores. (III) No terceiro estudo, nanopartículas foram obtidas pela complexação eletrostática de gelana e quitosana. Os efeitos da razão de concentração de cada polissacarídeo, do tempo de estocagem a 25 °C e da presença de um surfactante nãoiônico (polissorbato) no tamanho, carga e quantidade de partículas formadas foram avaliados. Devido à menor densidade de carga e flexibilidade da gelana, maior quantidade deste polissacarídeo foi necessária para obtenção de partículas neutras. De forma geral, as partículas apresentaram aumento de tamanho ao longo das primeiras 100 horas após o preparo e não foram observadas mudanças significativas das propriedades das partículas devido à adição de surfactante. O método de preparo das amostras também foi estudado. Partículas preparadas pela mistura das soluções de polissacarídeos em dois passos foram consideravelmente maiores que as preparadas pela mistura em uma única etapa. Este trabalho confirmou a possibilidade de formação de nanopartículas promissoras para a encapsulação de bioativos em alimentos a partir da associação de biopolímeros e surfactantes, cujas propriedades poderiam ser moduladas em função da composição e condições de processo
Abstract: Nanoparticles are promising vehicles for bioactive delivery, but their potential has not been fully explored by the food industry. This work studied the formation of nanoparticles by self-assembly of surfactants, polysaccharide-surfactant association, and electrostatic complexes formed by different polysaccharides, especially chitosan and gellan gum. The knowledge of molecular interactions and the variables that affect particle formation allows predicting and controlling the properties of nanoparticles. These interactions depend on the characteristics of each macromolecule such as conformation, charge density and flexibility, which are affected by the physicol-chemical properties of the solution, such as pH, ionic strength and temperature. This work was divided in three parts: (I) Firstly it was studied the behaviour of each polysaccharide alone. The influence of the pH and temperature on the rheological properties and structural conformation of the pure gellan and chitosan samples was determined. Gellan aggregation was more strongly affected by such variables than chitosan. (II) In the second part, nanoparticles were obtained by polysorbate-chitosan association. The effect of the length of surfactant tail and the solution pH on the particle properties was studied by dynamic light scattering, rheological and conductivity measurements and polarizing microscopy. The size and structure of nanoparticles composed by the shorter surfactant were more appropriated to chitosan assembly. The pH (6.7 or 3.0) did not affect significantly the particle properties. The effects of chitosan concentration on particle structure and size were studied. Greater chitosan concentration led to smaller particles due to the increase in viscosity values which prevented micelles aggregation. (III) In the third study nanoparticles were produced by electrostatic complexation of chitosan and gellan gum. Particle size, charge density, stability and complexes number were evaluated as a function of polysaccharide concentration, chitosan:gellan ratio and the presence of a non-ionic surfactant. Due to the stiffness and low charge density of gellan gum, a greater amount of such polysaccharide was necessary to obtain neutral particles. Overall particles showed an increase in size during 100 hours of storage at 25 °C, but no significant changes on particle properties were observed due to surfactant addition. The methodology of particle preparation was also evaluated. Particles prepared by 2 mixing steps were markedly larger than those prepared by mixing polysaccharides in a single step (all together). This work showed that it is possible to produce nanoparticles with promising application on bioactive delivery by biopolymer-surfactant association, since their properties could be modulated as a function of composition and process conditions
Doutorado
Engenharia de Alimentos
Doutor em Engenharia de Alimentos
Books on the topic "Gellan gum"
Nishinari, K., ed. Physical Chemistry and Industrial Application of Gellan Gum. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48349-7.
Full textTsiami, Amalia A. Physiochemical properties of gellan gum in gel and solution state. Norwich: University of East Anglia, 1994.
Find full textCe lue gui hua jia : Zhu Geliang da zhuang. Taibei Shi: Yuan liu chu ban shi ye gu fen you xian gong si, 1992.
Find full textIndonesia) Festival Legu Gam Moloku Kie Raha (2011 Ternate. Geliat Legu gam Moloku kie raha: Pesona kie raha, pesona Nusantara. Ternate Tengah]: Dewan Pakar Kesultanan Ternate, 2011.
Find full textBergmann, Jörg R., and Christian Meyer, eds. Ethnomethodologie reloaded. Bielefeld, Germany: transcript Verlag, 2021. http://dx.doi.org/10.14361/9783839454381.
Full text(Firm), NutraSweet Kelco, and Monsanto, eds. Alginates, xanthan gum & gellan gum seminar. Tadworth, Surrey: NutraSweet Kelco and Monsanto, 1998.
Find full textNayak, Amit Kumar, and Saquib Hasnain. Gellan Gum As a Biomedical Polymer. Elsevier Science & Technology Books, 2022.
Find full textGellan Gum As a Biomedical Polymer. Elsevier Science & Technology, 2023.
Find full textNishinari, K. Physical Chemistry and Industrial Application of Gellan Gum. Springer, 2013.
Find full textNishinari, K. Physical Chemistry and Industrial Application of Gellan Gum. Springer London, Limited, 2003.
Find full textBook chapters on the topic "Gellan gum"
Nussinovitch, A. "Gellan gum." In Hydrocolloid Applications, 63–82. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6385-3_4.
Full textGibson, W. "Gellan gum." In Thickening and Gelling Agents for Food, 227–49. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3552-2_10.
Full textGibson, W., and G. R. Sanderson. "Gellan gum." In Thickening and Gelling Agents for Food, 119–43. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-2197-6_6.
Full textSanderson, G. R. "Gellan Gum." In Food Gels, 201–32. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0755-3_6.
Full textBährle-Rapp, Marina. "Gellan Gum." In Springer Lexikon Kosmetik und Körperpflege, 219. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_4207.
Full textMonferrer, Albert, Claudia Cortés, Núria Cubero, and Laura Gómez. "E-418 Gellan Gum." In Hydrocolloids in food product development, 105–11. Boca Raton, FL : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9781003019862-12.
Full textSanderson, George R., and David Ortega. "Alginates and Gellan Gum: Complementary Gelling Agents." In Food Hydrocolloids, 83–89. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2486-1_8.
Full textPanda, Pritish Kumar, Amit Verma, Shivani Saraf, Ankita Tiwari, and Sanjay K. Jain. "Ionically Gelled Gellan Gum in Drug Delivery." In Ionically Gelled Biopolysaccharide Based Systems in Drug Delivery, 55–69. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2271-7_3.
Full textNagpal, Shakti, Sunil Kumar Dubey, Vamshi Krishna Rapalli, and Gautam Singhvi. "Pharmaceutical Applications of Gellan Gum." In Natural Polymers for Pharmaceutical Applications, 87–109. Includes bibliographical references and indexes.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429328299-4.
Full textVendrusculo, Claire T., José L. Pereira, and Adilma R. P. Scamparini. "Gellan Gum: Production And Properties." In Food Hydrocolloids, 91–95. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2486-1_9.
Full textConference papers on the topic "Gellan gum"
Ya´n˜ez-Ferna´ndez, J., J. A. Salazar-Montoya, and E. G. Ramos-Rami´rez. "Effect of Mesquite Seed Gum on the Rheological Properties of Mixtures With Arabic and Gellan Gums." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32195.
Full textYu, Ilhan, Roland Chen, and Samantha Grindrod. "Fabrication of Gellan Gum Tubular Structure Using Coaxial Needles: A Study on Wall Thickness and Encapsulation." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6614.
Full textTorres, Francisco R., Pedro H. L. Sanches, Hernane S. Barud, and José Maurício A. Caiut. "Biocomposites of Eu3+-doped gellan gum and nanocellulose for 3D printing." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.w1a.2.
Full textFerris, C. J., and M. in het Panhuis. "Diffusion of vitamin B12 in gellan gum-carbon nanotube hydrogels." In 2010 International Conference on Nanoscience and Nanotechnology (ICONN). IEEE, 2010. http://dx.doi.org/10.1109/iconn.2010.6045180.
Full textModrogan, Cristina. "REMOVAL OF MANGANESE FROM GROUNDWATER BY ADSORPTION ON GELLAN GUM/Fe3O4 COMPOSITE." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/5.1/s20.091.
Full textReichel, Eric, Christopher M. Salinas, Clara Curiel-Lewandrowski, and Russell S. Witte. "Transparent Gellan Gum as an Efficient Coupling Media For Photoacoustic Imaging Applications." In 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9958558.
Full textK., Mithra, Santripti Khandai, and Sidhartha S. Jena. "Effect of sodium dodecyl sulfate surfactant on rheological properties of gellan gum hydrogels." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980230.
Full textLoureiro, Jorge, Sonia P. Miguel, Victor P. Galvan-Chacon, David Patrocinio, Francisco M. Sanchez-Margallo, J. Blas Pagador, Maximiano P. Ribeiro, and Paula Coutinho. "Swelling Analysis of Thermal and Chemical Crosslinked Konjac Glucomannan/Gellan Gum Cardiac Patch." In 2021 International Conference on e-Health and Bioengineering (EHB). IEEE, 2021. http://dx.doi.org/10.1109/ehb52898.2021.9657686.
Full textCortela, G., K. M. Lima, L. E. Maggi, C. Negreira, and W. C. A. Pereira. "Evaluation of acoustic and thermal properties of gellan-gum phantom to mimic biological tissue." In 2015 Pan American Health Care Exchanges (PAHCE). IEEE, 2015. http://dx.doi.org/10.1109/pahce.2015.7173326.
Full textMuktar, Muhammad Zulhelmi, Laili bt Che Rose, and Khairul Anuar Mat Amin. "Formulation and optimization of virgin coconut oil with Tween-80 incorporated in gellan gum hydrogel." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002238.
Full textReports on the topic "Gellan gum"
Kuhnt, Matthias, Tilman Reitz, and Patrick Wöhrle. Arbeiten unter dem Wissenschaftszeitvertragsgesetz : Eine Evaluation von Befristungsrecht und -realität an deutschen Universitäten. Technische Universität Dresden, 2022. http://dx.doi.org/10.25368/2022.132.
Full textKuhnt, Mathias, Tilman Reitz, and Patrick Wöhrle. Arbeiten unter dem Wissenschaftszeitvertragsgesetz : Eine Evaluation von Befristungsrecht und -realität an deutschen Universitäten. Technische Universität Dresden, 2022. http://dx.doi.org/10.25368/2022.366.
Full text