Academic literature on the topic 'Gear transmissions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gear transmissions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gear transmissions"
Litvin, F. L., J. C. Wang, R. B. Bossler, Y. J. D. Chen, G. Heath, and D. G. Lewicki. "Application of Face-Gear Drives in Helicopter Transmissions." Journal of Mechanical Design 116, no. 3 (September 1, 1994): 672–76. http://dx.doi.org/10.1115/1.2919434.
Full textAmir Mustafayev, Amir Mustafayev, and Chingiz Nasirov Chingiz Nasirov. "MATHEMATICAL EXPRESSIONS FOR TEMPERATURE IN THE CONTACT ZONE OF TEETH OF THE GEAR MECHANISMS." ETM - Equipment, Technologies, Materials 14, no. 02 (April 18, 2023): 126–34. http://dx.doi.org/10.36962/etm14022023-126.
Full textSalamandra, Konstantin. "Static analysis and parameters synthesis of planetary-layshaft transmissions with three power flows." MATEC Web of Conferences 224 (2018): 02040. http://dx.doi.org/10.1051/matecconf/201822402040.
Full textMustafayev, Amir G., and Chingiz R. Nasirov. "A study of factors affecting wear and destruction of teeth in gear mechanisms." Nafta-Gaz 79, no. 9 (September 2023): 604–10. http://dx.doi.org/10.18668/ng.2023.09.06.
Full textRadzevich, Stephen P. "A Way to Improve the Accuracy of Hobbed Involute Gears." Journal of Mechanical Design 129, no. 10 (October 19, 2006): 1076–85. http://dx.doi.org/10.1115/1.2761919.
Full textMaláková, Silvia, Matej Urbanský, Gabriel Fedorko, Vieroslav Molnár, and Samuel Sivak. "Design of Geometrical Parameters and Kinematical Characteristics of a Non-circular Gear Transmission for Given Parameters." Applied Sciences 11, no. 3 (January 22, 2021): 1000. http://dx.doi.org/10.3390/app11031000.
Full textBrancati, Renato, Stefano Pagano, and Ernesto Rocca. "Dynamic Behaviour of an Automotive Dual Clutch Transmission during Gear Shift Maneuvers." Applied Sciences 13, no. 8 (April 12, 2023): 4828. http://dx.doi.org/10.3390/app13084828.
Full textWu, Yi-Chang, and Che-Wei Chang. "DEVELOPMENT OF 3-SPEED REAR HUB BICYCLE TRANSMISSIONS WITH GEAR-SHIFTING MECHANISMS." Transactions of the Canadian Society for Mechanical Engineering 39, no. 3 (September 2015): 407–18. http://dx.doi.org/10.1139/tcsme-2015-0030.
Full textHandschuh, R. F., D. G. Lewicki, and R. B. Bossler. "Experimental Testing of Prototype Face Gears for Helicopter Transmissions." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 208, no. 2 (July 1994): 129–36. http://dx.doi.org/10.1243/pime_proc_1994_208_262_02.
Full textLiu, Dezheng, Yan Li, Zhongren Wang, You Wang, and Yu Wang. "Modeling and Analysis of Effective Case Depth on Meshing Strength of Internal Gear Transmissions." Mathematical Problems in Engineering 2018 (December 30, 2018): 1–12. http://dx.doi.org/10.1155/2018/5153292.
Full textDissertations / Theses on the topic "Gear transmissions"
Sainte-Marie, Nina. "A transmission-error-based gear dynamic model : Applications to single- and multi-mesh transmissions." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI133/document.
Full textNoise measurements have shown that helicopters main gearboxes highly contribute to the overall cabin noise. Gear mesh vibrations propagate through the shafts to the rolling element bearings and the casing which becomes a source of radiated noise. The latter is characterized by high-amplitude tones emerging from broadband noise whose frequencies lie in the range of maximum human ear sensitivity. In the context of continuous improvement in the acoustic comfort of helicopter passengers, it is therefore necessary to analyse and optimize gearbox vibrations in order to reduce casing noise radiations. The research work presented in this memoir is focused on the development of a numerical model dedicated to the prediction of gear system dynamic behaviour, comprising several gear stages and different types of gears. This model relies on classic beam and lumped parameter elements along with specific two-node gear elements for both cylindrical (spur, helical) and spiral-bevel gears. The equations of motion are developed based on time-varying functions representative of mesh excitations which comprise: (a) mesh stiffness functions, (b) quasi-static transmission error under load, and (c) kinematic (or no-load) transmission error. A number of comparisons with benchmark numerical and experimental results from the literature are presented which demonstrate that the proposed approach is sound as far as single-stage systems with spur, helical or spiral-bevel gears are considered. Validations are then extended to double-stage gears and, here again, it is confirmed that the proposed transmission error based formulation is accurate and can account for tooth shape modifications. In the second part of the memoir, several examples of application are presented and commented upon. First, the combined influence of tooth pitch errors and load on the dynamic behaviour of gear transmissions is tackled. An extended three-dimensional model and a reduced torsional version are then confronted in order to investigate the dependency between dynamic transmission errors and mesh force / root stress dynamic factors. Further investigations on bearing dynamic response in two-stage spur gear systems are conducted and the particular contributions of profile modifications are analysed. Finally, a system combining a cylindrical gear and a spiral-bevel gear is considered and particular attention is paid to the dynamic couplings between the various meshes and their influence on bearing dynamic responses
Janakiraman, Venkatakrishna. "Modelling of Steady-State and Transient Power Losses in Planetary Gear Trains." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492510708602145.
Full textKurth, Franz [Verfasser]. "Efficiency Determination and Synthesis of Complex-Compound Planetary Gear Transmissions / Franz Kurth." München : Verlag Dr. Hut, 2012. http://d-nb.info/1029400172/34.
Full textBrauer, Jesper. "Investigation of transmisison error, friction and wear in anti-backlash involute gear transmissions." Doctoral thesis, KTH, Machine Design, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3590.
Full textBrethee, Khaldoon F. "Condition monitoring of helical gear transmissions based on vibration modelling and signal processing." Thesis, University of Huddersfield, 2018. http://eprints.hud.ac.uk/id/eprint/34519/.
Full textFargere, Romain. "Simulation du comportement dynamique des transmissions par engrenages sur paliers hydrodynamiques." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0130/document.
Full textThe present work is aimed at predicting the dynamic behaviour of geared transmissions supported by hydrodynamic journal bearings, similar to those used in naval propulsion. A global model of mechanical transmissions is introduced which deals with most of the possible interactions between gears, shafts and hydrodynamic journal bearings. A specific element for wide-faced gears with non linear time-varying mesh stiffness and tooth shape deviations is combined with shaft finite elements whereas the bearing contributions are introduced based on the direct solution of REYNOLDS’ equation and a simple thermal model. Because of the large bearing clearances, particular attention has been paid to the definition of the degrees-of-freedom and their datum. Solutions are derived by combining a time-step integration scheme, a NEWTON-RAPHSON method and a normal contact algorithm in such a way that the contact conditions in the bearings and on the gear teeth are simultaneously dealt with. The simulation results are compared with the measurement obtained on a high-precision test rig with single stage spur and helical gears supported by hydrodynamic journal bearings. The experimental and simulation results compare well thus validating the simulation strategy both at the global and local scales. A number of results are presented which show that parameters often discarded in global models such as the location of the oil inlet area, the oil temperature in the bearings and external couplings with mechanical parts can be influential on the static and dynamic behaviour of the system
White, Robert J. "Exploration of a Strategy for Reducing Gear Noise in Planetary Transmissions and Evaluation of Laser Vibrometry as a Means for Measuring Transmission Error." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1129928063.
Full textLarsson, Camilla. "Reduction of oil pump losses in automatic transmissions." Thesis, Linköpings universitet, Fordonssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-111937.
Full textVinayak, Harsh. "Multi-body Dynamics and Modal Analysis Approaches for Multi-mesh Transmissions with Compliant Gear Bodies." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392059093.
Full textTerrin, Andrea. "Analysis and design against pitting of gears in power transmissions for off-highway vehicles." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3426672.
Full textIl lavoro descritto in questa tesi è stato sviluppato nell'ambito di un programma di apprendistato in alta formazione e ricerca in collaborazione con Carraro S.p.A., azienda leader nel mercato delle trasmissioni di potenza per veicoli “off-highway”, ovvero veicoli destinati ad uso in campo agricolo ed industriale. Lo studio è finalizzato all'analisi dei meccanismi che portano al cedimento per fatica da contatto degli ingranaggi, ed allo sviluppo di metodi affidabili ed efficienti per caratterizzare i materiali con cui vengono realizzate le ruote dentate. Il pitting è il più pericoloso tra i fenomeni di fatica da contatto a cui gli ingranaggi sono soggetti. Si manifesta con la formazione di crateri sulle superfici, che causano rumore, vibrazioni e perdita di efficienza, e può a sua volta dare luogo a danni secondari come la frattura dei denti. Le ruote solari dei riduttori epicicloidali che costituiscono lo stadio finale di riduzione delle trasmissioni fuoristrada sono particolarmente critiche dal punto di vista del pitting, essendo soggette a coppie elevate ed a condizioni di scarsa lubrificazione determinate dalla bassa velocità di rotazione. In questo lavoro, i fenomeni di fatica da contatto sono studiati sulla base della loro osservazione su ruote solari danneggiate durante i test di validazione eseguiti sugli assali completi. I meccanismi di cedimento, così come gli approcci più comuni proposti in letteratura per la valutazione della capacità di carico e la previsione della durata degli ingranaggi, sono commentati attraverso un'analisi della letteratura esistente sull'argomento. Il problema della progettazione a pitting degli ingranaggi cementati è quindi affrontato da due diversi punti di vista: in primo luogo i limiti di resistenza per i materiali utilizzati dai fornitori di Carraro S.p.A. nella produzione di ingranaggi cementati sono stati determinati sulla base di una rianalisi del database dei test di validazione eseguiti in passato gli assali completi; in secondo luogo, un'analisi sperimentale della distribuzione della pressione sui denti delle ruote solari durante il funzionamento ha permesso di valutare le principali discrepanze tra i modelli teorici e i sistemi attuali, al fine di migliorare la consapevolezza nell'uso dei pacchetti software di calcolo dedicati alla previsione della durata delle ruote dentate. Infine, viene descritto lo sviluppo di un banco di prova per la caratterizzazione della fatica da contatto di materiali per ruote dentate, mediante prove relativamente veloci su coppie di dischi di semplice ed economica realizzazione. Viene inoltre presentato l’approccio utilizzato per ricreare le condizioni operative di una particolare coppia di ruote dentate mediante un design dedicato di provini, e sono discusse le problematiche riscontrate nel tentativo di ricavare una correlazione fra le prestazioni a fatica di ingranaggi e dischi.
Books on the topic "Gear transmissions"
Choy, Fred K. Dynamics analysis of multimesh-gear helicopter transmissions. Cleveland, Ohio: Lewis Research Center, 1988.
Find full textP, Townsend Dennis, Oswald Fred B, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Dynamic analysis of multimesh-gear helicopter transmissions. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textL, Litvin F., United States. Army Aviation Systems Command., and United States. National Aeronautics and Space Administration., eds. Application of face-gear drives in helicopter transmissions. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textL, Litvin F., United States. Army Aviation Systems Command., and United States. National Aeronautics and Space Administration., eds. Application of face-gear drives in helicopter transmissions. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textHandschuh, Robert F. Experimental and analytical assessment of the thermal behavior of spiral bevel gears. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textHandschuh, Robert F. Experimental and analytical assessment of the thermal behavior of spiral bevel gears. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textHandschuh, Robert F. Experimental and analytical assessment of the thermal behavior of spiral bevel gears. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. Gear and transmission research at NASA Lewis Research Center. [Washington, DC]: National Aeronautics and Space Administration, 1997.
Find full textUnited States. National Aeronautics and Space Administration., ed. Gear and transmission research at NASA Lewis Research Center. [Washington, DC]: National Aeronautics and Space Administration, 1997.
Find full textK, Choy Fred, and Lewis Research Center, eds. Effects of gear box vibration and mass imbalance on the dynamics of multi-stage gear transmissions. [Cleveland, Ohio: Lewis Research Center, 1991.
Find full textBook chapters on the topic "Gear transmissions"
Ognjanović, Milosav, and Miloš Ristić. "Gear System Reliability-Based Design of Gear Drive Units." In Power Transmissions, 155–64. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6558-0_10.
Full textOgnjanović, Milosav, Miloš Ristić, and Sanja Vasin. "Bearings Failure of Gear Drive Unit Caused by Gear Resonance." In Power Transmissions, 389–98. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6558-0_30.
Full textIvanov, Konstantin, Almas Dinassylov, and Ekaterina Yaroslavceva. "Gear Variator—Scientific Reality." In Mechanisms, Transmissions and Applications, 169–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17067-1_18.
Full textSpitas, Vasilios, and Christos Spitas. "Design of Loboid Gear Pairs Using Involute Discretization." In Power Transmissions, 417–25. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6558-0_32.
Full textVasie, Marius, Domenico Mundo, and Laurenţia Andrei. "New Algorithm for Variable Speed Gear Generation Process." In Power Transmissions, 435–44. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6558-0_34.
Full textKurokawa, Syuhei, Yoji Umezaki, Morihisa Hoga, Ryohei Ishimaru, Osamu Ohnishi, and Toshiro Doi. "Application of MEMS Technique for Micro Gear Metrology." In Power Transmissions, 457–66. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6558-0_36.
Full textBostan, Ion, and Valeriu Dulgheru. "Development of Planetary Precessional Transmission with Multicouple Gear." In Power Transmissions, 597–607. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6558-0_48.
Full textDarbinyan, Hrayr. "Task Based Conceptual Design Method for Gear Chamfering Mechanisms." In Power Transmissions, 279–88. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6558-0_20.
Full textKapelevich, A. "Direct Gear Design for Asymmetric Tooth Gears." In Theory and Practice of Gearing and Transmissions, 117–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19740-1_7.
Full textDobreva, Antoaneta. "Theoretical Investigation of the Energy Efficiency of Planetary Gear Trains." In Power Transmissions, 289–98. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6558-0_21.
Full textConference papers on the topic "Gear transmissions"
Darmstadt, Patrick, and Mark Robuck. "Composites for Advanced Drive Systems, a Systems Analysis Revolutionary Vertical Lift Technology (RVLT)." In Vertical Flight Society 74th Annual Forum & Technology Display, 1–16. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12862.
Full textLaBerge, Kelsen, Robert Handschuh, Gary Roberts, and Scott Thorp. "Performance Investigation of a Full-Scale Hybrid Composite Bull Gear." In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–7. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11520.
Full textLitvin, F. L., J. C. Wang, R. B. Bossler, Y. J. D. Chen, G. Heath, and David G. Lewicki. "Application of Face-Gear Drives in Helicopter Transmissions." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0033.
Full textChoi, Sukhwan, and C. James Li. "Model Based Spur Gear Failure Prediction Using Gear Diagnosis." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82482.
Full textStarzhinsky, Victor E., Yuri L. Soliterman, and Arcadi M. Goman. "Reliability Prediction of Gear Transmissions." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34103.
Full textBeauchesne, Dennis. "Heat Treating of EV Transmissions." In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021p0081.
Full textTuller, Zachary, Nadirsh Patel, and McKenzie Walsh. "Optimum Shifting of Hybrid and Battery Electric Powertrain Systems with Motors before and after a Transmission." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2143.
Full textBo¨rner, J., K. Humm, and F. Joachim. "Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/ptg-48089.
Full textHurrell, Michael, and Irebert Delgado. "Swept Volume Approach for the Characterization of Pumping Loss of Shrouded Meshed Cylindrical Gears." In Vertical Flight Society 75th Annual Forum & Technology Display. The Vertical Flight Society, 2019. http://dx.doi.org/10.4050/f-0075-2019-14681.
Full textJáuregui, Juan Carlos, and Rodrigo López Sansalvador. "Criteria for the Design of High Efficiency Planocentric Transmissions." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0325.
Full textReports on the topic "Gear transmissions"
Litvin, F. L., J. C. Wang, R. B. Bossler, Chen Jr., Heath Y. J., and G. Application of Face-Gear Drives in Helicopter Transmissions. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada257727.
Full textParker, Robert. Analytical/Computational Investigation of Planetary Gear Dynamics in Rotorcraft Transmissions. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada499395.
Full textCao Romero, Julio A., Jorge Reyes-Avendaño, Julio Soriano, Leonardo Farfan-Cabrera, and Ali Erdemir. A Pin-on-Disc Study on the Electrified Sliding Wear of EVs Powertrain Gears. SAE International, March 2022. http://dx.doi.org/10.4271/2022-01-0320.
Full textKorendyasev, G. AUTOMATIC TRANSMISSION GEAR SHIFTS ANALYSIS AT LOW SPEEDS OF THE VEHICLE. Journal Article published January 2020 in Bulletin of Science and Technical Development issue 149, 2020. http://dx.doi.org/10.18411/vntr2019-149-4.
Full textKorendyasev, G., K. Salamandra, and L. Tyves. AUTOMATIC TRANSMISSION GEAR SHIFTS ANALYSIS AT LOW SPEEDS OF THE VEHICLE. Journal Article published January 2020 in Bulletin of Science and Technical Development issue 149, 2020. http://dx.doi.org/10.18411/vntr2019-149-41.
Full textKorendyasev, G., K. Salamandra, and L. Tyves. AUTOMATIC TRANSMISSION GEAR SHIFTS ANALYSIS AT LOW SPEEDS OF THE VEHICLE. Journal Article published January 2020 in Bulletin of Science and Technical Development issue 149, 2020. http://dx.doi.org/10.18411/vntr2020-149-4.
Full textSkoglund, Paul, Ola Litstrom, and Anders Flodin. Improvement of Powder Metallurgy Gears for Engines and Transmissions. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9102.
Full textKaneko, Yutaka, Kazutaka Adachi, Kimio Kanai, and Yoshimasa Ochi. Design of a Gear Ratio Servo Control System for Toroidal Continuously Variable Transmission. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0040.
Full textRao, Suren B., and Nagesh Sonti. High Strength P/M Gears for Vehicle Transmissions - Phase 2. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada486131.
Full textKumar, T. M. Manoz, Mohan Gangadurai, Vinayak Kathare, and V. Pattabiraman. Optimization of a Manual Transmission Gear Ratios for a Small Cargo Carrier using Statistics-Based Simulation Techniques. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0001.
Full text