Academic literature on the topic 'Gear mesh stiffness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gear mesh stiffness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gear mesh stiffness"
Olanipekun, K. A. "Estimation of a Planetary Gear Mesh Stiffness: An Approach Based on Minimising Error Function." European Journal of Engineering and Technology Research 6, no. 3 (April 30, 2021): 164–69. http://dx.doi.org/10.24018/ejers.2021.6.3.2416.
Full textYin, Jiao. "Analysis of Gear Static Transmission Error and Mesh Stiffness." Applied Mechanics and Materials 365-366 (August 2013): 327–30. http://dx.doi.org/10.4028/www.scientific.net/amm.365-366.327.
Full textMuhammad, Arif Abdullah, and Guang Lei Liu. "Time Varying Meshing Stiffness of Cracked Sun and Ring Gears of Planetary Gear Train." Applied Mechanics and Materials 772 (July 2015): 164–68. http://dx.doi.org/10.4028/www.scientific.net/amm.772.164.
Full textZhang, Donglin, Rupeng Zhu, Bibo Fu, and Wuzhong Tan. "Mesh Phase Analysis of Encased Differential Gear Train for Coaxial Twin-Rotor Helicopter." Mathematical Problems in Engineering 2019 (July 25, 2019): 1–9. http://dx.doi.org/10.1155/2019/8421201.
Full textCui, Lingli, Tongtong Liu, Jinfeng Huang, and Huaqing Wang. "Improvement on Meshing Stiffness Algorithms of Gear with Peeling." Symmetry 11, no. 5 (May 1, 2019): 609. http://dx.doi.org/10.3390/sym11050609.
Full textChen, Ying Chung, Chung Hao Kang, and Siu Tong Choi. "Dynamic Analysis of a Spur Geared Rotor-Bearing System with Nonlinear Gear Mesh Stiffness." Advanced Materials Research 945-949 (June 2014): 853–61. http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.853.
Full textWang, J., and I. Howard. "The torsional stiffness of involute spur gears." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 218, no. 1 (January 1, 2004): 131–42. http://dx.doi.org/10.1243/095440604322787009.
Full textZhang, Dongsheng, and Shiyu Wang. "Parametric vibration of split gears induced by time-varying mesh stiffness." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229, no. 1 (April 23, 2014): 18–25. http://dx.doi.org/10.1177/0954406214531748.
Full textGu, Cheng Zhong, and Xin Yue Wu. "Study of the Modeling of the Gear Dynamics Considering Mesh Stiffness and Sliding Friction." Applied Mechanics and Materials 29-32 (August 2010): 618–23. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.618.
Full textZhang, K.-Z., H.-D. Yu, X.-X. Zeng, and X.-M. Lai. "Numerical simulation of instability conditions in multiple pinion drives." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, no. 6 (May 25, 2011): 1319–27. http://dx.doi.org/10.1177/2041298310392649.
Full textDissertations / Theses on the topic "Gear mesh stiffness"
Yao, ShiPing. "Modelling and simulation of vibration signals for monitoring of gearboxes." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301653.
Full textMehdi, Pour Reza. "Transmission DynamicsModelling : Gear Whine Simulation Using AVL Excite." Thesis, KTH, Fordonsdynamik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243090.
Full textFör närvarande tvingar ökat tryck från lagstiftning och kundkrav inom bilindustrin tillverkarna attproducera grönare fordon med lägre utsläpp och bränsleförbrukning. Som ett resultat ärelektrifierade och hybridfordon ett växande populärt alternativ till traditionellaförbränningsmotorer (ICE). Bullret från ett elfordon kommer främst från kontakten mellan däckoch väg, vindmotstånd och drivlinan. Bullret från drivlinan är i huvudsak relaterat till växellådan.Vid utveckling av en drivlina är det av betydelse att uppskatta bullret från växellådan för att uppnåen acceptabel design.Utväxlingar används i stor utsträckning i elfordons drivlina. Eftersom kugghjulen är i kontaktuppstår ett huvudproblem som är känt som ett vinande ljud från kugghjulskontakten.Kugghjulsljud är ett oönskat vibro-akustiskt fenomen och uppstår sannolikt på grund avkugghjulkontakterna och överförs via de mekaniska komponenterna till växellådshuset därvibrationerna omvandlas till luftburet och strukturburet ljud. Kugghjulsljudet härstammarhuvudsakligen från exciteringen som kommer från transmissionsfel (TE) i kugghjulskontakten.Överföringsfelet definieras som skillnaden mellan den ideala smidiga rörelseöverföringen hoskugghjulen och rörelsen som sker i verkligheten på grund av ojämnheter.Huvudsyftet med denna studie är att simulera vibrationerna som genereras avkugghjulskontakterna i en elektrisk drivlina utvecklad av AVL Vicura. Den elektriska drivlinan somanvänds i denna studie har endast ett fast utväxlingsförhållande, dvs 9,59, för alladriftsförhållanden. Det antas att systemet är exciterat endast av överföringsfelet och kugghjulensstyvhet i kuggkontakterna. För att kunna utföra NVH-analys under olika driftsförhållanden har enstelkroppsdynamikmodell utvecklats med hjälp av programmet AVL Excite. De dynamiskasimuleringarna jämförs sedan med tidigare experimentella mätningar som tillhandahålls av AVLVicura.Två valideringskriterier har använts för att analysera det dynamiska beteendet hos AVL Excitemodellen:signalbehandling med FFT-metoden och jämförelse med experimentella mätningar.Resultaten från AVL Excite-modellen visar att FFT-kriteriet är ganska framgångsrikt och allaexcitationsfrekvenser observeras korrekt i FFT-diagrammen. Men när det gäller det andra kriteriet,så länge som inte alla dynamiska parametrar i systemet, såsom dämpnings- ellerstyvhetskoefficienter, är tillförlitliga i modellen, är det för svårt att undersöka exaktheten hos AVLExcite-modellen.En annan undersökning som utförts är en numerisk designstudie för att analysera hurdämpningskoefficienterna påverkar responsen. Efter minskning av dämpningsparametrarna visarresultaten att växellådshus och lager har störst inflytande på resultatet. Om mer acceptabla resultatär önskvärda måste framtida studier koncentreras på dessa parametrar för att uppnå mer acceptabladämpningsvärden.
Mehdi, Pour Reza. "Transmission Dynamics Modelling : Gear Whine Simulation Using AVL Excite." Thesis, KTH, Fordonsdesign, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234817.
Full textFör närvarande tvingar ökat tryck från lagstiftning och kundkrav inom bilindustrin tillverkarna attproducera grönare fordon med lägre utsläpp och bränsleförbrukning. Som ett resultat ärelektrifierade och hybridfordon ett växande populärt alternativ till traditionellaförbränningsmotorer (ICE). Bullret från ett elfordon kommer främst från kontakten mellan däckoch väg, vindmotstånd och drivlinan. Bullret från drivlinan är i huvudsak relaterat till växellådan.Vid utveckling av en drivlina är det av betydelse att uppskatta bullret från växellådan för att uppnåen acceptabel design.Utväxlingar används i stor utsträckning i elfordons drivlina. Eftersom kugghjulen är i kontaktuppstår ett huvudproblem som är känt som ett vinande ljud från kugghjulskontakten.Kugghjulsljud är ett oönskat vibro-akustiskt fenomen och uppstår sannolikt på grund avkugghjulkontakterna och överförs via de mekaniska komponenterna till växellådshuset därvibrationerna omvandlas till luftburet och strukturburet ljud. Kugghjulsljudet härstammarhuvudsakligen från exciteringen som kommer från transmissionsfel (TE) i kugghjulskontakten.Överföringsfelet definieras som skillnaden mellan den ideala smidiga rörelseöverföringen hoskugghjulen och rörelsen som sker i verkligheten på grund av ojämnheter.Huvudsyftet med denna studie är att simulera vibrationerna som genereras avkugghjulskontakterna i en elektrisk drivlina utvecklad av AVL Vicura. Den elektriska drivlinan somanvänds i denna studie har endast ett fast utväxlingsförhållande, dvs 9,59, för alladriftsförhållanden. Det antas att systemet är exciterat endast av överföringsfelet och kugghjulensstyvhet i kuggkontakterna. För att kunna utföra NVH-analys under olika driftsförhållanden har enstelkroppsdynamikmodell utvecklats med hjälp av programmet AVL Excite. De dynamiskasimuleringarna jämförs sedan med tidigare experimentella mätningar som tillhandahålls av AVLVicura.Två valideringskriterier har använts för att analysera det dynamiska beteendet hos AVL Excitemodellen:signalbehandling med FFT-metoden och jämförelse med experimentella mätningar.Resultaten från AVL Excite-modellen visar att FFT-kriteriet är ganska framgångsrikt och allaexcitationsfrekvenser observeras korrekt i FFT-diagrammen. Men när det gäller det andra kriteriet,så länge som inte alla dynamiska parametrar i systemet, såsom dämpnings- ellerstyvhetskoefficienter, är tillförlitliga i modellen, är det för svårt att undersöka exaktheten hos AVLExcite-modellen.En annan undersökning som utförts är en numerisk designstudie för att analysera hurdämpningskoefficienterna påverkar responsen. Efter minskning av dämpningsparametrarna visarresultaten att växellådshus och lager har störst inflytande på resultatet. Om mer acceptabla resultatär önskvärda måste framtida studier koncentreras på dessa parametrar för att uppnå mer acceptabladämpningsvärden.
Jayasankaran, Kathik. "STRUCTURE-BORNE NOISE MODEL OF A SPUR GEAR PAIR WITH SURFACE UNDULATION AND SLIDING FRICTION AS EXCITATIONS." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1269451200.
Full textPlanka, Michal. "Využití neuronových sítí pro výpočet průběhu záběrové tuhosti soukolí s čelními ozubenými koly." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318391.
Full textOudich, Hamza. "Analytical Investigation of Planetary Gears Instabilities and the Impact of Micro-Macro Geometry Modifications." Thesis, KTH, Farkostteknik och Solidmekanik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276775.
Full textLin, Jhao-wei, and 林兆偉. "Analysis of the Mesh Stiffness and Vibration of a Spur Gear Pair." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/13964418738100480146.
Full text國立中央大學
機械工程研究所
100
The purpose of this research is to investigate the dynamic characteristics of a spur gear pair and to study the effects of tooth crack on the dynamic response. The gear dynamic model is developed by a lumped parameter method for the vibration response. The mesh stiffness between two gears is calculated by using a finite element software – ANSYS. Then, the equations of motion are solved by using Runge-Kutta method. The features of dynamic signals for the crack in a tooth are found.
Wu, Sheng Lin, and 吳昇霖. "The Effects of Bearing Stiffness on Nonlinear Dynamic Behaviors of Multi-Mesh Gear Train." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/33067020701510520015.
Full text國立中正大學
機械工程學系暨研究所
99
This study discusses bearing stiffness effect on the multi-tooth system.First,the gear profile with modification coefficient by using rack cutter is proposed and the mesh stiffness at the position along the line of action is calculated.Final,the time-varying mesh stiffness into the system of equations of motion and use the Runge-Kutta method in the system, discuss different bearing stiffness on nonlinear dynamic behavior of gear system. The results show, from low speed to high speed of the system , if the bearing stiffness is 10^10 and 10^12N/mm , that bearing stiffness reduction will make chaos ahead of the system. In the case of high speed, positive modification coefficient chaos to occur is faster than negative modification coefficient when bearing stiffness lower, Moreover,bearing stiffness Increase the scope of the system of Chaos whan bearing stiffness lower. In terms of radial displacement, due to the strong stiffness of bearing, radial displacement effect on dynamic transmission error will low. On the other hand,Bearing damping did not affect of chaos of system.
Yang, I.-Lin, and 楊宜霖. "Nonlinear Dynamic Analysis of Geared System with Time-Dependent Gear Mesh Stiffness Using Rack Cutter." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/13419728619668052053.
Full text國立中正大學
機械工程所
96
The analysis of the mesh stiffness in the nonlinear dynamic gear train was simulated by applying mathematical technique such as Fourier series, rectangular wave function. However, the error always exists between practical experience and mathematical technique. This study is focused on the involute tooth profile of generation of the rack cutter and evaluated the mesh stiffness by using tooth profile. Furthermore, the effect of the mesh stiffness affected the non-linear dynamic behavior of the gear train. The generated parameters of the rack cutter included line and fillet parts, pressure angle, and tooth depth (which included root tooth, addendum, and clearance). These can affect the tooth profile and evaluation of the mesh stiffness. In this study, the parameters design how to affect the tooth profile, mesh stiffness, and non-linear dynamic behavior. According to the results, the dynamic behavior of gear train was affected by the contact ratio and mesh stiffness. The system response was small for the gear train of high contact ratio as stable action at high speed. The response can be increased for high mesh stiffness. This theoretical model of system can be quickly solved response to pre-analysis a situation of the motion and selected the gear train in the mechanical transmission.
Cheng, Cheng-Jie, and 鄭丞傑. "A Study on Bifurcation and Chaotic Motion of the Multi-Mesh Gear Train with Time-Varying Stiffness Application of Rack Cutter." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/80829600385089700797.
Full text國立中正大學
機械工程所
96
In dynamic behavior of gear system, such parameters as torque, backlash and mesh stiffness well use for a long time. The mesh stiffness influences dynamic behavior in this respect, the researchers use a constant value, multi-term Fourier series and periodic rectangular wave to approximation the mesh stiffness. There are not real mesh stiffness under the involute tooth profile condition. In this study, generation of spur gear tooth profile by using rack cutter has been proposed, and calculates the mesh stiffness of each mesh position on line of action. In addition, the equations of motion of a nonlinear time-varying dynamic model are derived by using Lagragian approach. The harmonic response of system is analyzed by applying Harmonic Balance Method. Furthermore, the Runge-Kutta method is used to analyze the bifurcation phenomenon and chaotic behavior of system. According to the numerical results, the harmonic response and chaotic motion are significantly affected by the mesh stiffness with different tooth depth and pressure angle. The mesh stiffness of single tooth pair is reduced by increasing the tooth depth, causing the dynamic response is strengthened when the tooth pair separated (the mesh tooth depth turns from double into single tooth). Furthermore, because the contact ratio is advanced, the longer double tooth pair mesh time causes the system placidly operation. Similarly, the mesh stiffness of single tooth pair is increased due to increasing the pressure angle, causing the dynamic response is mitigated. On the other hand, the damping ratio deeply influences the system bifurcation phenomenon. The dynamic response not only will be decreased by increased the damping ratio, but also occurrence of chaotic motion will be reduced.
Books on the topic "Gear mesh stiffness"
Parker, Robert G. Modeling, modal properties, and mesh stiffness variation instabilities of planetary gears. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textBook chapters on the topic "Gear mesh stiffness"
de Carvalho, Áquila Chagas, Fabio Mazzariol Santiciolli, Samuel Filgueira da Silva, Jony J. Eckert, Ludmila C. A. Silva, and Franco G. Dedini. "Gear Mesh Stiffness and Damping Co-simulation." In Multibody Mechatronic Systems, 177–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60372-4_20.
Full textMeagher, Jim, Xi Wu, Dewen Kong, and Chun Hung Lee. "A Comparison of Gear Mesh Stiffness Modeling Strategies." In Structural Dynamics, Volume 3, 255–63. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9834-7_23.
Full textChakroun, Ala Eddin, Chaima Hammami, Ahmed Hammami, Ana De-Juan, Fakher Chaari, Alfonso Fernandez, Fernando Viadero, and Mohamed Haddar. "Quasi-static Study of Gear Mesh Stiffness of a Polymer-Metallic Spur Gear System." In Lecture Notes in Mechanical Engineering, 301–7. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84958-0_32.
Full textOnkareshwar, M., Vamsi Inturi, S. P. Rajendra, P. K. Penumakala, and G. R. Sabareesh. "Effect of Local Gear Tooth Failures on Gear Mesh Stiffness and Vibration Response of a Single-Stage Spur Gear Pair." In Lecture Notes in Mechanical Engineering, 1095–103. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8049-9_69.
Full textChen, Zhiying, and Pengfei Ji. "Time Varying Mesh Stiffness Calculation of Spur Gear Pair Under Mixed Elastohydrodynamic Lubrication Condition." In Lecture Notes in Electrical Engineering, 2898–911. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_237.
Full textPeng, Quancheng, Tengjiao Lin, Zeyin He, Jing Wei, and Hesheng Lv. "Calculation of Mesh Stiffness of Gear Pair with Profile Deviation Based on Realistic Tooth Flank Equation." In Communications in Computer and Information Science, 506–17. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2396-6_47.
Full textLiang, Xihui, Ming J. Zuo, and Yangming Guo. "Evaluating the Time-Varying Mesh Stiffness of a Planetary Gear Set Using the Potential Energy Method." In Lecture Notes in Mechanical Engineering, 365–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06966-1_33.
Full textContartese, Nicola, Piervincenzo Giovanni Catera, and Domenico Mundo. "Static mesh stiffness decomposition in hybrid metal-composite spur gears." In Advances in Mechanism and Machine Science, 977–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20131-9_97.
Full textVerma, Jay Govind, Shivdayal Patel, and Pavan Kumar Kankar. "Mesh Stiffness Variation Due to the Effect of Back-Side Contact of Gears." In Reliability, Safety and Hazard Assessment for Risk-Based Technologies, 393–402. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9008-1_31.
Full textJelić, Miloš, and Ivana Atanasovska. "The New Approach for Calculation of Total Mesh Stiffness and Nonlinear Load Distribution for Helical Gears." In Power Transmissions, 645–54. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6558-0_52.
Full textConference papers on the topic "Gear mesh stiffness"
Stringer, D. Blake, Amir Younan, Pradip N. Sheth, and Paul E. Allaire. "Generalized Stiffness Gear-Mesh Matrix Including EHD Stiffness." In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44473.
Full textGuo, Yichao, and Robert G. Parker. "Back-Side Contact Gear Mesh Stiffness." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48055.
Full textJiang, Hanjun, and Yimin Shao. "Dynamic Analysis of a Multi-Mesh Gear System With Mesh Stiffness Variation." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12750.
Full textWu zhifei, Wang tie, and Zhang ruiliang. "A study of spur gear torsional mesh stiffness." In International Technology and Innovation Conference 2009 (ITIC 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.1476.
Full textZhang, Luke, and Yimin Shao. "Mesh Stiffness Calculation of Spur Gears With Tooth Surface Crack." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97857.
Full textLin, Jian, and Robert G. Parker. "Mesh Stiffness Variation Instabilities in Two-Stage Gear Systems." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21439.
Full textBonori, G., A. O. Andrisano, and F. Pellicano. "Stiffness Evaluation and Vibration in a Tractor Gear." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59492.
Full textWang, Zhi, Guicheng Wang, Longbao Wang, and Jinhui Zhu. "Equivalent Conversion Calculation of Straight Bevel Gear Mesh Stiffness." In 2009 Fifth International Conference on Natural Computation. IEEE, 2009. http://dx.doi.org/10.1109/icnc.2009.707.
Full textKarpat, F., B. Engin, O. Dogan, C. Yuce, and T. G. Yilmaz. "Effect of Rim Thickness on Tooth Root Stress and Mesh Stiffness of Internal Gears." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39181.
Full textKarpat, Fatih, Tufan Gürkan Yılmaz, Oğuz Doğan, and Onur Can Kalay. "Stress and Mesh Stiffness Evaluation of Bimaterial Spur Gears." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11554.
Full text