Academic literature on the topic 'Gear grinding modes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gear grinding modes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gear grinding modes"

1

Larshin, Vasily P., Olga B. Babiychuk, Oleksandr V. Lysyi, Serhii M. Verpivskyi, and Zhang Yunxuan. "Optimization of the precision gear grinding operation based on integrated information system." Herald of Advanced Information Technology 4, no. 4 (December 23, 2021): 303–17. http://dx.doi.org/10.15276/hait.04.2021.2.

Full text
Abstract:
In accordance with the principles of hierarchical management, a comprehensive two-level management system is presented for the development and manufacturing of products for the stages of pre-production (the upper level of the management hierarchy) and for the actual production stage (the lower level of the management hierarchy). At the stage of pre-production, the gear grinding operation design on the “MAAG” type machines was carried out. For this purpose, a technique for optimizing the gear grinding parameters for a two dish-wheel rolling scheme has been developed, a mathematical optimization model containing an objective function with restrictions imposed on it has been created. The objective function is the gear grinding machine time, which depends on the operation parameters (gear grinding stock allowance, cutting modes, grinding wheel specification, part material) and the design features of the gears being ground (module, diameter, number of teeth, radius of curvature of the involutes). The article shows that at the stage of pre-production, the gear grinding optimization is a method of operation design. At the stage of actual production, a closed-loop automatic control system with feedback on the deviation of the adjustable value (gear grinding power) automatically supports the numerical power values that were found at the operation design stage, taking into account ensuring defect-free high-performance gear grinding (minimum number of working strokes and maximum longitudinal feeds). At this stage, i.e. when a robust longitudinal feed automatic control system is operating, the optimization carried out at the previous stage (pre-production) sets the functioning algorithm for the adaptive system with corresponding control algorithm. Thus, at the production stage (when the gear grinding machine is running), the operation optimization is a control method. Therefore, it is shown that with two-level control, the gear grinding operation optimization performs a dual function. On the one hand, it is a design method (at the pre-production stage), and on the other – a management method (at the actual production stage). With this approach, i.e. with the integration of production and its preparation based on a single two-level management, the efficiency of a single integrated design and production automation system is significantly higher due to general (unified) optimization, rather than partial one.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Ya Hui, and Xiao Zhong Ren. "Dynamics Behaviors Analysis on the Column of Gear Grinding Machine." Advanced Materials Research 472-475 (February 2012): 1885–88. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.1885.

Full text
Abstract:
Aiming at the issue on the development of gear form grinding machine, a method for analyzing the dynamic behaviors of the machine column was introduced. Based on the model of gear grinding machine developed before, a suitable finite element model of the column was established firstly. Modal analysis on the column was carried out by means of ANSYS software, and the first five natural frequencies and vibration modes of the column were obtained. According to the analysis results, some improvements on the original column structure were made. By comparing the static and dynamic behaviors of several different rib structures presented, the best column structure is selected. This method offers theoretical basis for the structural improvement of gear grinding machine.
APA, Harvard, Vancouver, ISO, and other styles
3

Vorozhcova, Natal'ya, Vladimir Makarov, Aleksandr Gorbunov, and Elena Kolganova. "TECHNOLOGICAL CAPACITY UPDATING OF CONTINUOUS RUN-IN GEAR GRINDING METHOD." Bulletin of Bryansk state technical university 2021, no. 5 (May 3, 2021): 15–22. http://dx.doi.org/10.30987/1999-8775-2021-5-15-22.

Full text
Abstract:
The work purpose consists in the technological capacity updating of the method for cog-wheel continuous run-in gear grinding based on the purpose of efficient modes and characteristics of the worm disk. The investigation methods are based on mathematical modeling and planning experiments. Machining aircraft cylindrical cog-wheels and special samples was carried out on modern NC machines, benches and plants with the use of up-to-date test equipment: coordinate inspection machine KIM R-100 “Klingelnberg”, profile meter MarSurf M300S “Mahr”, optical microscope Axiovert 400MAT “Zeiss”, electronic scanning microscope Tescan Mira3 “Tescan”, micro-hardness gage Micro Met 5104 “Buehler”, X-ray diffractometer Xstress Robot “Stresstech OY”, Barkhausen digital nose analyzer Rollscan 350 “StresstechOY”, plant APOON on the well-known and developed techniques. The research results and novelty. Special strategy and cutting modes at the required characteristics of the combined polish-grinding worm allow ensuring gear profile roughness Ra=0.089 mkm keeping high accuracy of a ring gear (gear profile error Fa=1.6mkm) without gear honing thereby increasing productivity. The quality researches of gear surface layer give grounds for the application of the method for aircraft cog wheels.
APA, Harvard, Vancouver, ISO, and other styles
4

Gorla, Carlo, Francesco Rosa, Edoardo Conrado, and Horacio Albertini. "Bending and contact fatigue strength of innovative steels for large gears." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, no. 14 (January 7, 2014): 2469–82. http://dx.doi.org/10.1177/0954406213519614.

Full text
Abstract:
Large gears for wind turbine gearboxes require high performances and cost-effective manufacturing processes. Heat distortion in the heat treatment phase and the consequent large grinding stock are responsible for high manufacturing costs due to reduced productivity. A research project aimed at the identification of new materials, manufacturing and heat treatment processes has been performed. Air quenchable alloy steels, combined with a specifically developed case hardening and heat treatment process, have been identified as an interesting solution, both from the point of view of cost effectiveness, thanks to reduced distortions and grinding stock, and for the environmental sustainability. The research project has been completed by the manufacturing of a full-scale gear, on which the whole process has been validated. Nevertheless, in order to judge the applicability of these steels to large gears, data from specific tests on the performances against typical gear failure modes, like bending and contact fatigue, are necessary as well. Single tooth fatigue bending tests and disc-on-disc contact fatigue tests have therefore been performed on two innovative materials, respectively, a high hardenability steel and a bainitic structure steel, and on a reference traditional case hardening steel. The results of these tests, which provide useful data for gear designers, are presented and discussed in this paper.
APA, Harvard, Vancouver, ISO, and other styles
5

Клепиков, Виктор, Viktor Klyepikov, Александр Черепахин, and Alyeksandr CHyeryepakhin. "Optimization of spline hole broach processes and grinding of cylindrical surfaces in hardened cog-wheels." Science intensive technologies in mechanical engineering 1, no. 8 (August 30, 2016): 32–36. http://dx.doi.org/10.12737/20813.

Full text
Abstract:
One of the factors affecting considerably gear cutting accuracy consists in technological basis quality. The largest influence upon treatment accuracy of a reference hole have broach wear and errors in hole grinding. In the paper there are shown the investigation results of technological parameter effect upon broach stability and accuracy in broach treatment and grinding of a reference splined hole. The developed model of a process and a tool test allowed defining optimum parameters from the point of view of the treatment accuracy, surface layer parameters and life of a tool and cutting modes. It was considered simultaneously the hardening impact upon a reference hole surface layer.
APA, Harvard, Vancouver, ISO, and other styles
6

Safarov, Damir, Aleksey Kondrashov, and Ayrat Fashudtinov. "TOOTH LEG EXCESSIVE UNDERCUT ELIMINATION IN HELICAL CYLINDRICAL GEARS WITH PROTUBERANCE OF HOBBING CUTTER BASED ON GRAPHIC RUN-IN." Bulletin of Bryansk state technical university 2021, no. 7 (June 16, 2021): 19–27. http://dx.doi.org/10.30987/1999-8775-2021-7-19-27.

Full text
Abstract:
In the paper there are considered procedures for designing a transition curved tooth leg of helical cylindrical gears. A significant parameter of a transition curve is a diameter of boundary points. The boundary point diameter belongs to a bottom point of the involute profile of the teeth side surface of a gear ring. The boundary point position must be lower of the design end point of the involute profile defined by the designer of gearing. A diameter value depends upon a great number of production factors: a profile and wear of a grinding disk, setting up parameters, teeth machining modes of a gear ring, but it is impossible to ensure the specified values of the diameter of boundary points without a correct design solution in the course of the form choice of milling cutter protuberance. The solution on protuberance acceptable parameters of a gear-cutting tool is made by the designer of a cutter during graphic run-in fulfillment. In the paper there are revealed conditions under which arise mistakes in the course of graphic run-in fulfillment within the limits of one teeth pitch of a milling cutter. There are shown recommendations for the fulfillment ensuring the diameter dimension of boundary points of the transition curve specified by the designer of gearing. The data on the design parameter impact of the hob protuberance upon the continuance of cutting edge interaction are shown. There are recommendations given to prevent undercut arising caused by the fulfillment of graphic two-dimensional run-ins of cylindrical helical gears. The work purpose: the elimination of tooth leg excessive undercut in helical cylindrical gears with the protuberance of a worm milling cutter at the expense of the fulfillment of graphic run-in conditions. The investigation methods: the graphical modeling of a run-in process. The investigation results and novelty: there are defined conditions of arising an excessive undercut in the tooth leg of helical cylindrical gears during the fulfillment of graphic run-ins of a tool rack. The conclusions: for mistake prevention in the calculations of the protuberance geometrical parameters of the helical milling cutter the graphic run-in must be carried out not less than on the 1.5 pitch of the milling cutter.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Chia-Chang, and Chung-Biau Tsay. "Mathematical Models and Contact Simulations of Concave Beveloid Gears." Journal of Mechanical Design 124, no. 4 (November 26, 2002): 753–60. http://dx.doi.org/10.1115/1.1517563.

Full text
Abstract:
This study presents two mathematical models of concave beveloid gears ground by Mitome’s grinding method and by the novel grinding method proposed by the authors. Based on the developed mathematical models, the contact simulations are performed and the characteristics of concave beveloid gear pairs are investigated. Simulation results indicate that our novel grinding method ameliorates the drawback of Mitome’s grinding method by eliminating the transmission error of the helical concave beveloid gear pairs. In contrast to conventional beveloid gear pairs, the gears ground by the proposed novel grinding method not only have larger contact ellipses, but also mesh conjugately with non-parallel axes, although assembly errors exist.
APA, Harvard, Vancouver, ISO, and other styles
8

Hübner, Florian, Christoph Löpenhaus, Fritz Klocke, and Christian Brecher. "Extended Calculation Model for Generating Gear Grinding Processes." Advanced Materials Research 1140 (August 2016): 141–48. http://dx.doi.org/10.4028/www.scientific.net/amr.1140.141.

Full text
Abstract:
Generally, hard finishing is the final step in manufacturing cylindrical gears. The most established processes for hard finishing are continuous generation grinding and discontinuous profile grinding [1]. Despite the wide industrial application of the continuous generation grinding process, only few scientific investigations exist. One possible reason for this are the complex contact conditions between tool and gear flank. Modelling the complex contact conditions between grinding worm and gear to calculate cutting forces, characteristic values as well as micro- and macroscopic gear geometry are the topics of this paper. The approaches are introduced and results for validation are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Jiang, Chuang, Huiliang Wang, Tianhao Han, and Xing Liu. "Simulation and Compensation of Axial Geometric Errors for Cycloidal Gears Based on Form Grinding." Mathematical Problems in Engineering 2022 (April 21, 2022): 1–16. http://dx.doi.org/10.1155/2022/4804498.

Full text
Abstract:
To increase quality, reduce cycloidal gear noise, and avoid unnecessary vibration and shock, a compensation of axial geometric errors method is proposed based on the cycloidal gear form grinding. In the process of machining cycloidal gears, the relative position relationship between the grinding wheel and workpiece is affected by geometric errors of the motion axes, which has serious effects on the surface accuracy of the cycloidal gears. Combined with cycloidal gear form grinding kinematic principles, a geometric error model for each axis of a four-axis computer numerical control form grinding machine is established. By changing the compensation value of the geometrical errors on six degrees of freedom, the error of the cycloid gear tooth surface machined is obtained. Based on a sensitivity analysis of geometrical errors of each axis, the corrections are determined through an optimization process that targets the minimization of the tooth flank errors. The geometric errors of each axis of the cycloid gear grinding machine are compensated, and then, the cycloid gears produced by the machine are processed. Through the processing experiment, the error data of the actual processing before and after the compensation are compared, which indicates that the machining accuracy of the cycloid gear grinding machine is obviously improved. It has an important guiding significance in improving the precision and performance of large CNC form gear grinding machines.
APA, Harvard, Vancouver, ISO, and other styles
10

Syusyuka, E. N. "Possibility of applying X-ray methods to control the surface quality of a shaft line after finishing." Journal of Physics: Conference Series 2061, no. 1 (October 1, 2021): 012022. http://dx.doi.org/10.1088/1742-6596/2061/1/012022.

Full text
Abstract:
Abstract The purpose of the paper is to analyze the application limits of X-ray methods of non-destructive testing of loaded parts; to compare the results of microstresses and deformations of the details’ surface layer by methods and by the method of X-ray diffraction analysis for various modes of processing the detail surface layer. The studies are carried out on a “Dron” diffractometer. The technique and algorithm of X-ray structural studies, namely, “sin2v|/”-method are represented. Residual macro σφ and micro stresses, as well as the sizes of the areas of coherent scattering (D) on the samples surfaces processed in various modes, and their distribution in the near-surface layer are designated. Phase analysis is conducted and the presence of residual austenite. The research object is the operating surface of the 46-19-186 gear tooth after various treatments: after HFC hardening; after HFC hardening, grinding and blasting in depressions; after HFC hardening and fine-finish cutting. The X-ray structural analysis (XRD) technique is presented to determine the residual macro-σφ and microstresses, the sizes of the coherent scattering regions (D) on the surfaces of the samples processed in different modes. The outcomes of X-ray structural analysis are compared with the outcomes of metallographic studiesmaking. It was determined that the stress relaxation during the manufacture of the sample is no more than 10%, and the total instrumental error of the X-ray spectral analysis method is about 1%.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Gear grinding modes"

1

Ліщенко, Наталя Володимирівна. "Підвищення продуктивності профільного зубошліфування на верстатах з ЧПК на основі адаптації елементів технологічної системи." Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/37663.

Full text
Abstract:
Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.02.08 – технологія машинобудування. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2018. Дисертація присвячена рішенню важливої науково-технічної проблеми підвищення продуктивності бездефектного профільного зубошліфування на верстатах з ЧПК на основі розробки відповідних технологічних передумов та підсистем проектування, моніторингу і технологічної діагностики операції, які дозволяють виконувати адаптацію елементів технологічної системи до більш високої продуктивності. Для цього розроблено методологію дослідження технологічної системи зубошліфування з використанням наукових методів моделювання, оптимізації і керування, а також відповідні технологічні передумови у вигляді комплексу цілеспрямованих методів і засобів інноваційної технології профільного зубошліфування: математичні моделі припуску для перетворення невизначеності припуску у величину відводу шліфувального круга, метод вирівнювання припуску по периферії зубчастого колеса без внесення корекції в його кутове положення, метод адаптивної правки профільного шліфувального круга тощо. Теоретично показано і практично підтверджено технологічну перевагу високопоруватих шліфувальних кругів у порівнянні зі переривчастими кругами. Виконано комплекс експериментальних досліджень і заводських випробувань, що підтвердили ефективність розроблених методів і засобів.
Thesis for the degree of doctor of technical sciences on specialty 05.02.08 – manufacturing engineering. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2018. The thesis is devoted to solving an important scientific and technical problem of increasing the productivity of defect-free profile gear grinding on CNC machines on the basis of the development of appropriate technological preconditions and subsystems for the designing, monitoring and diagnosing of the operation, which allow adapting the elements of the grinding system to higher productivity. For this purpose a methodology is developed for researching the profile grinding system using scientific methods of modeling, optimization and control, as well as corresponding technology preconditions in the form of a set of purposeful methods and means of innovative profile grinding technology, to wit: grinding stock mathematical models for the transformation of the grinding stock uncertainty into the taking grinding wheel away from a gear to be grinded, method of the grinding stock aligning on the gear periphery without making corrections in its angular position, method of a profile grinding wheel adaptive dressing, etc. The software for these subsystems is created on the basis of the mathematical models of the temperature field with and without taking into account the effect of forced cooling. The technological superiority of high-porosity grinding wheel has been theoretically demonstrated and practically confirmed in comparison with special discontinuous wheel. Complex of experimental research and factory tests is performed for confirming the effectiveness of the methods and means developed.
APA, Harvard, Vancouver, ISO, and other styles
2

Ліщенко, Наталя Володимирівна. "Підвищення продуктивності профільного зубошліфування на верстатах з ЧПК на основі адаптації елементів технологічної системи." Thesis, Одеська національна академія харчових технологій, 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/37665.

Full text
Abstract:
Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.02.08 – технологія машинобудування. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2018. Дисертація присвячена рішенню важливої науково-технічної проблеми підвищення продуктивності бездефектного профільного зубошліфування на верстатах з ЧПК на основі розробки відповідних технологічних передумов та підсистем проектування, моніторингу і технологічної діагностики операції, які дозволяють виконувати адаптацію елементів технологічної системи до більш високої продуктивності. Для цього розроблено методологію дослідження технологічної системи зубошліфування з використанням наукових методів моделювання, оптимізації і керування, а також відповідні технологічні передумови у вигляді комплексу цілеспрямованих методів і засобів інноваційної технології профільного зубошліфування: математичні моделі припуску для перетворення невизначеності припуску у величину відводу шліфувального круга, метод вирівнювання припуску по периферії зубчастого колеса без внесення корекції в його кутове положення, метод адаптивної правки профільного шліфувального круга тощо. Теоретично показано і практично підтверджено технологічну перевагу високопоруватих шліфувальних кругів у порівнянні зі переривчастими кругами. Виконано комплекс експериментальних досліджень і заводських випробувань, що підтвердили ефективність розроблених методів і засобів.
Thesis for the degree of doctor of technical sciences on specialty 05.02.08 – manufacturing engineering. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2018. The thesis is devoted to solving an important scientific and technical problem of increasing the productivity of defect-free profile gear grinding on CNC machines on the basis of the development of appropriate technological preconditions and subsystems for the designing, monitoring and diagnosing of the operation, which allow adapting the elements of the grinding system to higher productivity. For this purpose a methodology is developed for researching the profile grinding system using scientific methods of modeling, optimization and control, as well as corresponding technology preconditions in the form of a set of purposeful methods and means of innovative profile grinding technology, to wit: grinding stock mathematical models for the transformation of the grinding stock uncertainty into the taking grinding wheel away from a gear to be grinded, method of the grinding stock aligning on the gear periphery without making corrections in its angular position, method of a profile grinding wheel adaptive dressing, etc. The software for these subsystems is created on the basis of the mathematical models of the temperature field with and without taking into account the effect of forced cooling. The technological superiority of high-porosity grinding wheel has been theoretically demonstrated and practically confirmed in comparison with special discontinuous wheel. Complex of experimental research and factory tests is performed for confirming the effectiveness of the methods and means developed.
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Yue-fong, and 蔣岳峰. "A STUDY ON THE MATHEMATICAL MODEL OF A FIVE-AXIS CNC GEAR PROFILE GRINDING MACHINE." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/x4hmk4.

Full text
Abstract:
碩士
國立臺灣科技大學
機械工程系
98
There are three methods for finishing cylindrical gears, finish hobbing, finish shaving, and finish grinding. Grinding processes can be further divided into two types: form grinding and generating grinding. In the form grinding process, it is the line contact between the grinding wheel and the gear surface. In addition, because of advances in higher efficiency and easier way to achieve the purpose of flank correction through the wheel modification, compared with the generating grinding process, the form grinding is suitable for gears with large-size and large-module. Up to now, many grinding machines in Taiwan are imported from abroad, and the key techniques are also relied on foreign manufacturers. For the gear machines, because of complicated calculation in programming NC codes, the sophisticated manufacturing software needs to be provided to generate dressing and grinding NC codes automatically. Therefore, in this thesis, we establish the mathematical model for form grinding machine. First, we develop the mathematical model of gear profile for cylindrical gear and its profile modification methods, and then the axial profile of the grinding wheel are derived based on the form grinding theory and the gear profile. Additionally, a correction method for the wheel profile is proposed. We derive the machine settings of the five-axis CNC gear profile grinding machine from the given machine settings of a universal gear profile grinding machine. According to the derived machine settings, the grinding path for form grinding process can be determined, and it can be used to program the grinding NC code. Finally, we use Visual Basic 2008 as a tool to develop the manufacturing program of five-axis CNC gear profile grinding machine.
APA, Harvard, Vancouver, ISO, and other styles
4

Hsieh, Tung-Han, and 謝東翰. "Mathematical Model of The Six-Axis CNC Machine for Grinding Cutting Tools of Hypoid Gear." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/76722477212121657892.

Full text
Abstract:
碩士
國立中正大學
機械工程學系暨研究所
103
This paper aims at building a mathematical model of the six-axis CNC machine for grinding cutting tools of hypoid gear, is based on the Oerlikon’s grinding machine, and input STL file to build the model of machine on VERICUT 7.3, and verify the mathematical model of cutting edge which derived by Lee, Yi-Hui, the student from Department of Mechanical Engineering of National Chung Cheng University. Using Mathematica 9.0 output point data of cutting edge to check the positions; input the designed parameters to calculated the displacement and angle, and simulate cutting processes, and measure the model, imported into Solidwork3D. To Verify correctness of mathematical model of the six-axis CNC machine for grinding cutting tools of hypoid gear by verifying designed and derived cutting edge. Keywords:Cutting Tools, Grinding Machine, Six-Axis
APA, Harvard, Vancouver, ISO, and other styles
5

GUO, YI-YU, and 郭憶妤. "Development an outsourcing selection model based on manufacturing time and process quality - A case study of grinding process of gear." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/pespm4.

Full text
Abstract:
碩士
國立勤益科技大學
工業工程與管理系
105
Small and medium-sized enterprises are up to 95% of machinery industry in Taiwan, it shows that they developed professional job assignment and formed industrial clusters. But facing intense economic competition, manufacturers must improve production flexibility and respond quickly to the market for satisfying customers' needs. In that case outsourcing is one of manufacturers' common way to improve production efficiency. Therefore, this paper will construct the outsourcing vendor selection matrix by a case study of grinding process of gear, because the gear is one of very important and widely applied parts for the machinery, its functions are to transmit power, change power direction, rotate speed and so on, and the grinding process is one of major processing procedures for producing gears. First, this paper will define the six sigma quality level index and manufacturing time index. Then, create a time-qualified rate as the horizontal axis, six sigma quality index as the vertical axis to construct outsourcing selection matrix, and establish outsourcing manufacturer selection rules to provide industry for selection. Avoiding the probability of misjudgment caused by the performance of the samples, we will estimate the upper confidence limit according to the samples and infer rigorously. The results will be drawn in the outsourcing vendor selection matrix chart to determine the five outsourcing manufacturers’ performance. They whose manufacturing time and process quality meet requirements will be selected, as well as ones with poor performance will be suggested for improving. This paper constructs the outsourcing vendor selection system can help the industry to observe the outsourcing manufacturers' performance more conveniently, grasp their process more fully, manage more easily, and realize the poor performance ones' weaknesses from the figure for enhancing the manufacturing quality and manufacturing time performance.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gear grinding modes"

1

Hübner, Florian, Fritz Klocke, Christian Brecher, and Christoph Löpenhaus. "Development of a Cutting Force Model for Generating Gear Grinding." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47424.

Full text
Abstract:
One key component of powertrains is gears which are used in a continuously increasing quantity with improving quality. A productive process for finishing gears is the generating gear grinding process. The process is used mainly for large-batch production of small or mid-size gears after case hardening, especially in the automotive sector. Currently, the knowledge regarding the generating grinding process is limited and research is based mostly on empirical studies. The reasons for this are complex contacting conditions as well as the undetermined interactions between various process parameters. This paper focusses on current questions about generating gear grinding such as new approaches for a simulation based process design in consideration of cutting forces as well as the changing contact conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Tan, Jun Yi, and Rui Cai. "Investigation on the Grinding Force, Power and Heat Flux Distributions Along the Tooth Profile in Form Grinding of Gears." In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8707.

Full text
Abstract:
This paper investigates the distributions of grinding force, power consumption and heat flux along the tooth profile in precision form grinding of gears. A semi-analytical grinding force model has been established considering the static and dynamic chip formation forces and also the sliding force. Variation of the local contact conditions between the wheel and gear flank along the gear tooth profile, including the local depth of cut, local wheel diameter, local wheel speed and also the equivalent wheel diameter has been analyzed. Combining the variation of local contact conditions with the semi-analytical grinding force model, the grinding force and power distributions along the gear tooth profile have been derived. The predicted values of grinding power under different wheel speeds, worktable speeds, radial grinding depths and different contact widths are compared with those experimentally obtained and the results show a reasonable agreement. The predicted grinding forces at different rolling angle positions under different grinding parameters show a good agreement when compared with those experimentally obtained. The heat flux distribution along the interface between the form grinding wheel and the gear flank in form gear grinding has been further calculated.
APA, Harvard, Vancouver, ISO, and other styles
3

Gonzalez-Perez, Ignacio, Alfonso Fuentes, Faydor L. Litvin, Kenichi Hayasaka, and Kenji Yukishima. "Application and Investigation of Modified Helical Gears With Several Types of Geometry." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34027.

Full text
Abstract:
Involute helical gears with modified geometry for transformation of rotation between parallel axes are considered. Three types of topology of geometry are considered: (1) crowning of pinion tooth surface is provided only partially by application of a grinding disk; (2) double crowning of pinion tooth surface is obtained applying a grinding disk; (3) concave-convex pinion and gear tooth surfaces are provided (similar to Novikov-Wildhaber gears). Localization of bearing contact is provided for all three types of topology. Computerized TCA (Tooth Contact Analysis) is performed for all three types of topology to obtain: (i) path of contact on pinion and gear tooth surfaces; (ii) negative function of transmission errors for misaligned gear drives (that allows the contact ratio to be increased). Stress analysis is performed for the whole cycle of meshing. Finite element models of pinion and gear with several pairs of teeth are applied. A relative motion is imposed to the pinion model that allows friction between contact surfaces to be considered. Numerical examples have confirmed the advantages and disadvantages of the applied approaches for generation and design.
APA, Harvard, Vancouver, ISO, and other styles
4

Jolivet, S., S. Mezghani, M. El Mansori, and H. Zahouani. "Numerical Simulation of Tooth Surface Finish Effects on Gear Noise." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20575.

Full text
Abstract:
Due to the rapid development of electric and hybrid motorisations, gear manufacturers have encountered an increasing need to create high level quality gear flanks. While the main goals are to increase the load-carrying capacity and the wear resistance, reducing gear noise has become more and more important. To answer this, macro- and micro-geometry defects have long been studied as well as their effect in amplifying the vibrations of gears. However, the impact of tooth flanks micro-scale roughness on gear noise has not well been studied and understood, even though the teeth surface contacts are essential in the gear mechanics. This paper aimed to discriminate the influence of the tooth finishing process (grinding, powerhoning) on single stage spur gear noise. A two-dimensional finite-element simulation model of a one-stage gear system was hence developed. The transmission system was composed of two identical loaded gears with one degree of freedom. Topological features of teeth surfaces finished by grinding and powerhoning were measured with a three-dimensional white light interferometer. These real topographic profiles of the tooth surfaces were integrated in the model. The meshing stiffness was determined as an output of this dynamic model. It is a parameter directly linked to the acoustic behaviour of the gear. Results show that gear noise could be reduced by the right choice of the finishing process kinematic.
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, David H. "Simulation of Plunge Shaving Operation for Spur and Helical Gear, and Tooth Contact Analysis of Finished Gear Drive." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/ptg-48032.

Full text
Abstract:
A math model of the re-sharpening operation of shaving cutter by grinding disk, and the plunge shaving process for spur and helical gears has been developed. It has been achieved by three steps: a parametric representation of grinding disk surface, the derivation of shaving cutter surface as a function of grinding disk surface and re-sharpening motion parameters, and the derivation of the finished gear surface as a function of cutter surface and synchronized plunge shaving motion parameters. The study is complemented with a methodology of determining the bearing contact as a set of instantaneous contact ellipses and the transmission function for the finished gear drive by plunge shaving. It simulates meshing and contact of two mating gear tooth surfaces in point contact. The described methods will give manufacturers better insight on the interrelationship between the shaving cutter and the plunge-shaved gear tooth topologies, and a tool to enhance existing design and manufacturing practices.
APA, Harvard, Vancouver, ISO, and other styles
6

Gorla, Carlo, and Francesco Rosa. "Form Grinding of Helical Gears: Effects of Disk Shaped Tools Plunging." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/ptg-48093.

Full text
Abstract:
Following the example of aerospace transmissions producers, nowadays, more and more industrial fields are interested in reducing transmission noise and vibration and in increasing operating life. This requires a precise understanding of the real transmission behavior since the first steps of the design process. The usual approach is to apply theoretical meshing loads and to compute web, rim and supporting structures deflections by one of the several available methods (i.e. Finite Element Method), in order to predict stresses and deformations. But these calculations usually neglect that deformations modify gear meshing conditions, and therefore also load conditions can be very different from the theoretical ones. In order to realize models that simulate the contact between the actual tooth surfaces, taking into account the actual gear meshing conditions, we first need to know the gear tooth flank microgeometry. Also the experimental development phase of gear pairs could take advantage from a theoretical prediction of gear tooth flank micro-geometry, in order to minimize the necessary trials to set up the grinding machine. In this paper, a method and a software to compute the actual micro-geometry of ground tooth flank surfaces of helical gears is presented. In particular the grinding process by means of disk shaped tools has been studied. The effects of the choice of various parameters (especially the angle between the gear and the tool axis) have been investigated. The effects of tool plunging during its motion along the gear face have also been considered in order to appreciate the undesired modifications of tooth transverse and normal sections, caused by the particular shape of the instantaneous contact lines between the grinding wheel and the gear tooth flank being ground. The introduction of a new component of the tool relative velocity with respect to the gear, in fact, modifies the meshing conditions between the gear and the tool. The modification of the tool axis orientation, during the grinding operation, reduces this undesired effect. As a result of these calculations, the exact theoretical surface for more realistic meshing simulation is available, and, furthermore, the run of some simulations can give some helpful hints to set up the grinding machine and to design the grinding wheel.
APA, Harvard, Vancouver, ISO, and other styles
7

Mayer, John E., Angie H. Price, Ganesh K. Purushothaman, and Sanjay V. Gopalakrishnan. "Specific Grinding Energy Causing Thermal Damage in Precision Gear Steels." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0703.

Full text
Abstract:
Abstract Thermal damage (burn) in carburized and hardened precision gear steels caused by grinding was investigated. Excessive grinding temperatures cause grinding bum and result in excessive scrappage. AISI 9310 and X53 gear steels, used in helicopters and tilt-rotor aircraft, respectively, were prepared and heat-treated by a production partner. Grinding tests were conducted on these steels. Nital etching was used to detect grinding burn. Models were established to predict onset of thermal damage for AISI 9310 and X53 steels based on specific grinding energy determined from grinding force measurements. The models were compared to results published for other steels.
APA, Harvard, Vancouver, ISO, and other styles
8

Guo, Hui, Ning Zhao, and Shuyan Zhang. "Generation Simulation and Grinding Experiment of Face-Gear Based on Single Index Generating Method." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12566.

Full text
Abstract:
A mathmatical model of generating face-gear by grinding disk is developed. The influence of all kinds of errors of alignment and profile on face-gear flank deviation is considered and investigated in this model, such as offset error and pressure angle error of grinding disk, location error of virtual pinion axis. A optimization method for decreasing flank deviation is proposed. The corresponding correction parameters of machine which can be used for manufacturing face gear can be computed by this optimization method. In this method, the square sum of tooth surface deviation is taken to be the objective function. A grinding experiment of face-gear is performed on a CNC grinding machine with five degrees of freedom, and the tooth flank deviation is measured on gear measuring center. The flank deviation is very large due to some alignment errors in the beginning. When the grinding machine is adjusted by optimization computation results mentioned above, the measurement results show that the deviation of grinded face-gear flank is reduced substantially. The benefit is to improve the grinding quality of face-gear by this method.
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Jinyuan, Changjiang Zhou, and Changde Wu. "Studies on FEM Geometrical Model of Gear Machined by Pre-Grinding Hob With Protuberance." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34914.

Full text
Abstract:
Conjugate curves are cut by the different parts of a pre-grinding hob with protuberance, appearing in subsection nonlinearly, which makes the combined fillet curves difficult to describe with explicit equations and makes the tooth profile complex. Due to the complex tooth profile, the general CAD/CAE methods of geometrical modeling and structure analysis are rarely applied in the strength calculation and transmission performance study. Based on the generating principle, conjugate curve equations of the gear, cut by the pre-grinding hob, are derived. These conjugate curves cut by the different parts of the hob are solved, compressed, linked and synthesized numerically, and then the shape of complex tooth profile are calculated exactly. Combined by strong numeric calculating performance of MATLAB and the facility of ANSYS’S APDL, compositely modeling program with MATLAB full-text data files and APDL is developed based, then FEM (Finite Element Method) geometrical model of tooth profile machined by pre-grinding hob accurately established. According to the built gear model, the relations of bending strength to grinding allowance are researched. The studies show that the grinding allowance of the optimum bending strength is not in allowance value recommended by the pre-grinding JB/T Standard 7968.1-95. The surface quality of gear ignored, less pre-grinding allowance usually leads to more optimal bending strength.
APA, Harvard, Vancouver, ISO, and other styles
10

Shu, Q. Y., Q. Y. Qiu, P. E. Feng, and L. Cao. "A Novel Error Detection and Compensation Method of Hourglass Worm Gear Hob." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88644.

Full text
Abstract:
The double enveloping hourglass worm gear pair is a type of transmission, which has many traits, such as more teeth in mesh for transmission, higher contact quality, better lubrication condition and so on. Therefore, it has higher efficiency of transmission, stronger bearing capacity and longer work life. But the manufacturing difficulty of the worm gear hob has limited its popularization and application. Unlike the traditional worm gear hob which can use the principle of optical projection to detect the hob shaft section and compare with its mathematical model, currently, there is no standard mathematical model to detect the shaft section of hourglass worm gear hob. Hence, the accuracy of hourglass worm gear hob can’t be guaranteed during manufacturing process, and the accuracy of hourglass worm gear can’t be guaranteed too. Thus, the transmission performance of the manufactured double enveloping hourglass worm gear pair will be affected. The paper puts forward a novel detection method for hourglass worm gear hob on the basis of the detecting method for traditional worm gear hob and established the mathematical model of the shaft section of hourglass worm gear hob. The manufacturing error of hourglass worm gear hob can be obtained through such detection. The paper also points out that the error is mainly produced during the grinding of hob teeth, because the grinding wheel is worn out and the blank hob is thermally deformed. At last, a method for error compensation is advanced during the process of hob grinding. The paper presents a test to verify the feasibility of this method and the test result shows that the manufacturing error of hourglass worm gear hob is reduced from 30.15μm to 10.3μm.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography