Dissertations / Theses on the topic 'Gaussian mixture models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Gaussian mixture models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kunkel, Deborah Elizabeth. "Anchored Bayesian Gaussian Mixture Models." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524134234501475.
Full textNkadimeng, Calvin. "Language identification using Gaussian mixture models." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4170.
Full textENGLISH ABSTRACT: The importance of Language Identification for African languages is seeing a dramatic increase due to the development of telecommunication infrastructure and, as a result, an increase in volumes of data and speech traffic in public networks. By automatically processing the raw speech data the vital assistance given to people in distress can be speeded up, by referring their calls to a person knowledgeable in that language. To this effect a speech corpus was developed and various algorithms were implemented and tested on raw telephone speech data. These algorithms entailed data preparation, signal processing, and statistical analysis aimed at discriminating between languages. The statistical model of Gaussian Mixture Models (GMMs) were chosen for this research due to their ability to represent an entire language with a single stochastic model that does not require phonetic transcription. Language Identification for African languages using GMMs is feasible, although there are some few challenges like proper classification and accurate study into the relationship of langauges that need to be overcome. Other methods that make use of phonetically transcribed data need to be explored and tested with the new corpus for the research to be more rigorous.
AFRIKAANSE OPSOMMING: Die belang van die Taal identifiseer vir Afrika-tale is sien ’n dramatiese toename te danke aan die ontwikkeling van telekommunikasie-infrastruktuur en as gevolg ’n toename in volumes van data en spraak verkeer in die openbaar netwerke.Deur outomaties verwerking van die ruwe toespraak gegee die noodsaaklike hulp verleen aan mense in nood kan word vinniger-up ”, deur te verwys hul oproepe na ’n persoon ingelichte in daardie taal. Tot hierdie effek van ’n toespraak corpus het ontwikkel en die verskillende algoritmes is gemplementeer en getoets op die ruwe telefoon toespraak gegee.Hierdie algoritmes behels die data voorbereiding, seinverwerking, en statistiese analise wat gerig is op onderskei tussen tale.Die statistiese model van Gauss Mengsel Modelle (GGM) was gekies is vir hierdie navorsing as gevolg van hul vermo te verteenwoordig ’n hele taal met’ n enkele stogastiese model wat nodig nie fonetiese tanscription nie. Taal identifiseer vir die Afrikatale gebruik GGM haalbaar is, alhoewel daar enkele paar uitdagings soos behoorlike klassifikasie en akkurate ondersoek na die verhouding van TALE wat moet oorkom moet word.Ander metodes wat gebruik maak van foneties getranskribeerde data nodig om ondersoek te word en getoets word met die nuwe corpus vir die ondersoek te word strenger.
Gundersen, Terje. "Voice Transformation based on Gaussian mixture models." Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10878.
Full textIn this thesis, a probabilistic model for transforming a voice to sound like another specific voice is tested. The model is fully automatic and only requires some 100 training sentences from both speakers with the same acoustic content. The classical source-filter decomposition allows prosodic and spectral transformation to be performed independently. The transformations are based on a Gaussian mixture model and a transformation function suggested by Y. Stylianou. Feature vectors of the same content from the source and target speaker, aligned in time by dynamic time warping, are fitted to a GMM. The short time spectra, represented as cepstral coefficients and derived from LPC, and the pitch periods, represented as fundamental frequency estimated from the RAPT algorithm, are transformed with the same probabilistic transformation function. Several techniques of spectrum and pitch transformation were assessed in addition to some novel smoothing techniques of the fundamental frequency contour. The pitch transform was implemented on the excitation signal from the inverse LP filtering by time domain PSOLA. The transformed spectrum parameters were used in the synthesis filter with the transformed excitation as input to yield the transformed voice. A listening test was performed with the best setup from objective tests and the results indicate that it is possible to recognise the transformed voice as the target speaker with a 72 % probability. However, the synthesised voice was affected by a muffling effect due to incorrect frequency transformation and the prosody sounded somewhat robotic.
Subramaniam, Anand D. "Gaussian mixture models in compression and communication /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3112847.
Full textCilliers, Francois Dirk. "Tree-based Gaussian mixture models for speaker verification." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019.1/1639.
Full textLu, Liang. "Subspace Gaussian mixture models for automatic speech recognition." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8065.
Full textPinto, Rafael Coimbra. "Continuous reinforcement learning with incremental Gaussian mixture models." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/157591.
Full textThis thesis’ original contribution is a novel algorithm which integrates a data-efficient function approximator with reinforcement learning in continuous state spaces. The complete research includes the development of a scalable online and incremental algorithm capable of learning from a single pass through data. This algorithm, called Fast Incremental Gaussian Mixture Network (FIGMN), was employed as a sample-efficient function approximator for the state space of continuous reinforcement learning tasks, which, combined with linear Q-learning, results in competitive performance. Then, this same function approximator was employed to model the joint state and Q-values space, all in a single FIGMN, resulting in a concise and data-efficient algorithm, i.e., a reinforcement learning algorithm that learns from very few interactions with the environment. A single episode is enough to learn the investigated tasks in most trials. Results are analysed in order to explain the properties of the obtained algorithm, and it is observed that the use of the FIGMN function approximator brings some important advantages to reinforcement learning in relation to conventional neural networks.
Chockalingam, Prakash. "Non-rigid multi-modal object tracking using Gaussian mixture models." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1252937467/.
Full textContains additional supplemental files. Title from first page of PDF file. Document formatted into pages; contains vii, 54 p. ; also includes color graphics.
Wang, Bo Yu. "Deterministic annealing EM algorithm for robust learning of Gaussian mixture models." Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2493309.
Full textPlasse, Joshua H. "The EM Algorithm in Multivariate Gaussian Mixture Models using Anderson Acceleration." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/290.
Full textMENDES, EDUARDO FONSECA. "MODELING NONLINEAR TIME SERIES WITH A TREE-STRUCTURED MIXTURE OF GAUSSIAN MODELS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9689@1.
Full textNeste trabalho um novo modelo de mistura de distribuições é proposto, onde a estrutura da mistura é determinada por uma árvore de decisão com transição suave. Modelos baseados em mistura de distribuições são úteis para aproximar distribuições condicionais desconhecidas de dados multivariados. A estrutura em árvore leva a um modelo que é mais simples, e em alguns casos mais interpretável, do que os propostos anteriormente na literatura. Baseando-se no algoritmo de Esperança- Maximização (EM), foi derivado um estimador de quasi- máxima verossimilhança. Além disso, suas propriedades assintóticas são derivadas sob condições de regularidades. Uma estratégia de crescimento da árvore, do especifico para o geral, é também proposta para evitar possíveis problemas de identificação. Tanto a estimação quanto a estratégia de crescimento são avaliados em um experimento Monte Carlo, mostrando que a teoria ainda funciona para pequenas amostras. A habilidade de aproximação universal é ainda analisada em experimentos de simulação. Para concluir, duas aplicações com bases de dados reais são apresentadas.
In this work a new model of mixture of distributions is proposed, where the mixing structure is determined by a smooth transition tree architecture. Models based on mixture of distributions are useful in order to approximate unknown conditional distributions of multivariate data. The tree structure yields a model that is simpler, and in some cases more interpretable, than previous proposals in the literature. Based on the Expectation-Maximization (EM) algorithm a quasi-maximum likelihood estimator is derived and its asymptotic properties are derived under mild regularity conditions. In addition, a specific-to-general model building strategy is proposed in order to avoid possible identification problems. Both the estimation procedure and the model building strategy are evaluated in a Monte Carlo experiment, which give strong support for the theorydeveloped in small samples. The approximation capabilities of the model is also analyzed in a simulation experiment. Finally, two applications with real datasets are considered.
Sondergaard, Thomas S. M. Massachusetts Institute of Technology. "Data assimilation with Gaussian mixture models using the dynamically orthogonal field equations." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68954.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 177-180).
Data assimilation, as presented in this thesis, is the statistical merging of sparse observational data with computational models so as to optimally improve the probabilistic description of the field of interest, thereby reducing uncertainties. The centerpiece of this thesis is the introduction of a novel such scheme that overcomes prior shortcomings observed within the community. Adopting techniques prevalent in Machine Learning and Pattern Recognition, and building on the foundations of classical assimilation schemes, we introduce the GMM-DO filter: Data Assimilation with Gaussian mixture models using the Dynamically Orthogonal field equations. We combine the use of Gaussian mixture models, the EM algorithm and the Bayesian Information Criterion to accurately approximate distributions based on Monte Carlo data in a framework that allows for efficient Bayesian inference. We give detailed descriptions of each of these techniques, supporting their application by recent literature. One novelty of the GMM-DO filter lies in coupling these concepts with an efficient representation of the evolving probabilistic description of the uncertain dynamical field: the Dynamically Orthogonal field equations. By limiting our attention to a dominant evolving stochastic subspace of the total state space, we bridge an important gap previously identified in the literature caused by the dimensionality of the state space. We successfully apply the GMM-DO filter to two test cases: (1) the Double Well Diffusion Experiment and (2) the Sudden Expansion fluid flow. With the former, we prove the validity of utilizing Gaussian mixture models, the EM algorithm and the Bayesian Information Criterion in a dynamical systems setting. With the application of the GMM-DO filter to the two-dimensional Sudden Expansion fluid flow, we further show its applicability to realistic test cases of non-trivial dimensionality. The GMMDO filter is shown to consistently capture and retain the far-from-Gaussian statistics that arise, both prior and posterior to the assimilation of data, resulting in its superior performance over contemporary filters. We present the GMM-DO filter as an efficient, data-driven assimilation scheme, focused on a dominant evolving stochastic subspace of the total state space, that respects nonlinear dynamics and captures non-Gaussian statistics, obviating the use of heuristic arguments.
by Thomas Sondergaard.
S.M.
Stewart, Michael Ian. "Asymptotic methods for tests of homogeneity for finite mixture models." Thesis, The University of Sydney, 2002. http://hdl.handle.net/2123/855.
Full textStewart, Michael Ian. "Asymptotic methods for tests of homogeneity for finite mixture models." University of Sydney. Mathematics and Statistics, 2002. http://hdl.handle.net/2123/855.
Full textDiaz, Jorge Cristhian Chamby. "An incremental gaussian mixture network for data stream classification in non-stationary environments." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/174484.
Full textData stream classification poses many challenges for the data mining community when the environment is non-stationary. The greatest challenge in learning classifiers from data stream relates to adaptation to the concept drifts, which occur as a result of changes in the underlying concepts. Two main ways to develop adaptive approaches are ensemble methods and incremental algorithms. Ensemble method plays an important role due to its modularity, which provides a natural way of adapting to change. Incremental algorithms are faster and have better anti-noise capacity than ensemble algorithms, but have more restrictions on concept drifting data streams. Thus, it is a challenge to combine the flexibility and adaptation of an ensemble classifier in the presence of concept drift, with the simplicity of use found in a single classifier with incremental learning. With this motivation, in this dissertation we propose an incremental, online and probabilistic algorithm for classification as an effort of tackling concept drifting. The algorithm is called IGMN-NSE and is an adaptation of the IGMN algorithm. The two main contributions of IGMN-NSE in relation to the IGMN are: predictive power improvement for classification tasks and adaptation to achieve a good performance in non-stationary environments. Extensive studies on both synthetic and real-world data demonstrate that the proposed algorithm can track the changing environments very closely, regardless of the type of concept drift.
Stewart, Michael. "Asymptotic methods for tests of homogeneity for finite mixture models." Connect to full text, 2002. http://hdl.handle.net/2123/855.
Full textTitle from title screen (viewed Apr. 28, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Mathematics and Statistics, Faculty of Science. Includes bibliography. Also available in print form.
Fernandes, maligo Artur otavio. "Unsupervised Gaussian mixture models for the classification of outdoor environments using 3D terrestrial lidar data." Thesis, Toulouse, INSA, 2016. http://www.theses.fr/2016ISAT0053/document.
Full textThe processing of 3D lidar point clouds enable terrestrial autonomous mobile robots to build semantic models of the outdoor environments in which they operate. Such models are interesting because they encode qualitative information, and thus provide to a robot the ability to reason at a higher level of abstraction. At the core of a semantic modelling system, lies the capacity to classify the sensor observations. We propose a two-layer classi- fication model which strongly relies on unsupervised learning. The first, intermediary layer consists of a Gaussian mixture model. This model is determined in a training step in an unsupervised manner, and defines a set of intermediary classes which is a fine-partitioned representation of the environment. The second, final layer consists of a grouping of the intermediary classes into final classes that are interpretable in a considered target task. This grouping is determined by an expert during the training step, in a process which is supervised, yet guided by the intermediary classes. The evaluation is done for two datasets acquired with different lidars and possessing different characteristics. It is done quantitatively using one of the datasets, and qualitatively using another. The system is designed following the standard learning procedure, based on a training, a validation and a test steps. The operation follows a standard classification pipeline. The system is simple, with no requirement of pre-processing or post-processing stages
Tomashenko, Natalia. "Speaker adaptation of deep neural network acoustic models using Gaussian mixture model framework in automatic speech recognition systems." Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1040/document.
Full textDifferences between training and testing conditions may significantly degrade recognition accuracy in automatic speech recognition (ASR) systems. Adaptation is an efficient way to reduce the mismatch between models and data from a particular speaker or channel. There are two dominant types of acoustic models (AMs) used in ASR: Gaussian mixture models (GMMs) and deep neural networks (DNNs). The GMM hidden Markov model (GMM-HMM) approach has been one of the most common technique in ASR systems for many decades. Speaker adaptation is very effective for these AMs and various adaptation techniques have been developed for them. On the other hand, DNN-HMM AMs have recently achieved big advances and outperformed GMM-HMM models for various ASR tasks. However, speaker adaptation is still very challenging for these AMs. Many adaptation algorithms that work well for GMMs systems cannot be easily applied to DNNs because of the different nature of these models. The main purpose of this thesis is to develop a method for efficient transfer of adaptation algorithms from the GMM framework to DNN models. A novel approach for speaker adaptation of DNN AMs is proposed and investigated. The idea of this approach is based on using so-called GMM-derived features as input to a DNN. The proposed technique provides a general framework for transferring adaptation algorithms, developed for GMMs, to DNN adaptation. It is explored for various state-of-the-art ASR systems and is shown to be effective in comparison with other speaker adaptation techniques and complementary to them
Safont, Armero Gonzalo. "New Insights in Prediction and Dynamic Modeling from Non-Gaussian Mixture Processing Methods." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/53913.
Full text[ES] Esta tesis considera nuevas aplicaciones de las mezclas no Gaussianas dentro del marco de trabajo del procesado estadístico de señal y del reconocimiento de patrones. Las mezclas no Gaussianas fueron implementadas mediante mezclas de analizadores de componentes independientes (ICA). La hipótesis fundamental de ICA es que las señales observadas pueden expresarse como una transformación lineal de un grupo de variables ocultas, normalmente llamadas fuentes, que son estadísticamente independientes. Esta independencia permite factorizar la función de densidad de probabilidad (PDF) original M-dimensional de los datos como un producto de densidades unidimensionales, simplificando ampliamente el modelado de los datos. Los modelos de mezclas ICA (ICAMM) aportan una mayor flexibilidad al relajar el requisito de independencia de ICA, permitiendo que el modelo obtenga proyecciones locales de los datos sin comprometer su capacidad de generalización. Aquí se exploran nuevas posibilidades de ICAMM para los propósitos de estimación y clasificación de señales. La tesis realiza varias contribuciones a la investigación en mezclas no Gaussianas: (i) un método de estimación de datos faltantes por máxima verosimilitud, basado en la maximización de la PDF de los datos dado el ICAMM; (ii) un método de estimación Bayesiana de datos faltantes que minimiza el error cuadrático medio y puede obtener el intervalo de confianza de la predicción; (iii) una generalización del modelo de dependencia secuencial de ICAMM para aprendizaje supervisado o semi-supervisado y múltiples cadenas de dependencia, permitiendo así el uso de datos multimodales; y (iv) introducción de ICAMM en varias aplicaciones novedosas, tanto para estimación como para clasificación. Los métodos desarrollados fueron validados mediante un número extenso de simulaciones que cubrieron múltiples escenarios. Éstos comprobaron la sensibilidad de los métodos propuestos con respecto a los siguientes parámetros: número de valores a estimar; tipo de distribuciones de las fuentes; correspondencia de los datos con respecto a las suposiciones del modelo; número de clases en el modelo de mezclas; y aprendizaje supervisado, semi-supervisado y no supervisado. El rendimiento de los métodos propuestos fue evaluado usando varias figuras de mérito, y comparado con el rendimiento de múltiples técnicas clásicas y del estado del arte para estimación y clasificación. Además de las simulaciones, los métodos también fueron probados sobre varios grupos de datos de diferente tipo: datos de estudios de exploración sísmica; exploraciones por radar de penetración terrestre; y datos biomédicos. Estos datos corresponden a las siguientes aplicaciones: reconstrucción de datos dañados o faltantes de exploraciones de radar de penetración terrestre de muros históricos; reconstrucción de datos dañados o faltantes de un estudio de exploración sísmica; reconstrucción de datos electroencefalográficos (EEG) dañados o artefactados; diagnóstico de desórdenes del sueño; modelado de la respuesta del cerebro durante tareas de memoria; y exploración de datos EEG de sujetos durante la realización de una batería de pruebas neuropsicológicas. Los resultados obtenidos demuestran la capacidad de los métodos propuestos para trabajar en problemas con datos reales. Además, los métodos propuestos son de propósito general y pueden utilizarse en muchos campos del procesado de señal.
[CAT] Aquesta tesi considera noves aplicacions de barreges no Gaussianes dins del marc de treball del processament estadístic de senyal i del reconeixement de patrons. Les barreges no Gaussianes van ser implementades mitjançant barreges d'analitzadors de components independents (ICA). La hipòtesi fonamental d'ICA és que els senyals observats poden ser expressats com una transformació lineal d'un grup de variables ocultes, comunament anomenades fonts, que són estadísticament independents. Aquesta independència permet factoritzar la funció de densitat de probabilitat (PDF) original M-dimensional de les dades com un producte de densitats de probabilitat unidimensionals, simplificant àmpliament la modelització de les dades. Els models de barreges ICA (ICAMM) aporten una major flexibilitat en alleugerar el requeriment d'independència d'ICA, permetent així que el model obtinga projeccions locals de les dades sense comprometre la seva capacitat de generalització. Ací s'exploren noves possibilitats d'ICAMM pels propòsits d'estimació i classificació de senyals. Aquesta tesi aporta diverses contribucions a la recerca en barreges no Gaussianes: (i) un mètode d'estimació de dades faltants per màxima versemblança, basat en la maximització de la PDF de les dades donat l'ICAMM; (ii) un mètode d'estimació Bayesiana de dades faltants que minimitza l'error quadràtic mitjà i pot obtenir l'interval de confiança de la predicció; (iii) una generalització del model de dependència seqüencial d'ICAMM per entrenament supervisat o semi-supervisat i múltiples cadenes de dependència, permetent així l'ús de dades multimodals; i (iv) introducció d'ICAMM en diverses noves aplicacions, tant per a estimació com per a classificació. Els mètodes desenvolupats van ser validats mitjançant una extensa quantitat de simulacions que cobriren múltiples situacions. Aquestes van verificar la sensibilitat dels mètodes proposats amb respecte als següents paràmetres: nombre de valors per estimar; mena de distribucions de les fonts; correspondència de les dades amb respecte a les suposicions del model; nombre de classes del model de barreges; i aprenentatge supervisat, semi-supervisat i no-supervisat. El rendiment dels mètodes proposats va ser avaluat mitjançant diverses figures de mèrit, i comparat amb el rendiments de múltiples tècniques clàssiques i de l'estat de l'art per a estimació i classificació. A banda de les simulacions, els mètodes van ser verificats també sobre diversos grups de dades reals de diferents tipus: dades d'estudis d'exploració sísmica; exploracions de radars de penetració de terra; i dades biomèdiques. Aquestes dades corresponen a les següents aplicacions: reconstrucció de dades danyades o faltants d'estudis d'exploracions de radar de penetració de terra sobre murs històrics; reconstrucció de dades danyades o faltants en un estudi d'exploració sísmica; reconstrucció de dades electroencefalogràfiques (EEG) artefactuades o faltants; diagnosi de desordres de la son; modelització de la resposta del cervell durant tasques de memòria; i exploració de dades EEG de subjectes realitzant una bateria de tests neuropsicològics. Els resultats obtinguts han demostrat la capacitat dels mètodes proposats per treballar en problemes amb dades reals. A més, els mètodes proposats són de propòsit general i poden fer-se servir en molts camps del processament de senyal.
Safont Armero, G. (2015). New Insights in Prediction and Dynamic Modeling from Non-Gaussian Mixture Processing Methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53913
TESIS
Abbi, Revlin. "A Paitent Length of Stay Grouping and Predicting methodology incorporating Gaussian mixture Models and Classification Algorithms." Thesis, University of Westminster, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500554.
Full textAvila, Anderson Raymundo. "A comparative analysis of gaussian mixture models and i-vector for speaker verification under mismatched conditions." reponame:Repositório Institucional da UFABC, 2014.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, 2014.
Most speaker verifcation systems are based on Gaussian mixture models and more recently on the so-called i-vector. These two methods are affected in mismatched testtrain conditions, which might be caused by vocal-efort variability, different speakingstyles or channel efects. In this work, we compared the impact of speech rate variation and room reverberation on both methods. We found that performance degradation due to variation on speech rate can be mitigated by adding fast speech samples into the training set, which decreased equal error rates for Gaussian mixture models and i-vector, respectively. Regarding reverberation, we investigated the achievements of both methods when three diferent reverberation compensation techniques are applied in order to overcome performance degradation. The results showed that having reverberant background models separated by diferent levels of reverberation can bene t both methods, with the i-vector providing the best performance in that scenario. Finally, the performance of two auditory-inspired features, mel-frequency cepstral coe ficients and the so-called modulation spectrum features, are compared in presence of room reverberation. For the speaker verifcation system considered in this work, modulation spectrum features are equally afected by reverberation time and have their performance degraded as the level of reverberation increases.
Webb, Grayson. "A Gaussian Mixture Model based Level Set Method for Volume Segmentation in Medical Images." Thesis, Linköpings universitet, Beräkningsmatematik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148548.
Full textKaba, Djibril. "Computational models for stuctural analysis of retinal images." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/10387.
Full textZhou, Linfei [Verfasser], and Christian [Akademischer Betreuer] Böhm. "Indexing and knowledge discovery of gaussian mixture models and multiple-instance learning / Linfei Zhou ; Betreuer: Christian Böhm." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1152210807/34.
Full textKullmann, Emelie. "Speech to Text for Swedish using KALDI." Thesis, KTH, Optimeringslära och systemteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189890.
Full textDe senaste åren har olika tillämpningar inom människa-dator interaktion och främst taligenkänning hittat sig ut på den allmänna marknaden. Många system och tekniska produkter stöder idag tjänsterna att transkribera tal och diktera text. Detta gäller dock främst de större språken och sällan finns samma stöd för mindre språk som exempelvis svenskan. I detta examensprojekt har en modell för taligenkänning på svenska ut- vecklas. Det är genomfört på uppdrag av Sveriges Radio som skulle ha stor nytta av en fungerande taligenkänningsmodell på svenska. Modellen är utvecklad i ramverket Kaldi. Två tillvägagångssätt för den akustiska träningen av modellen är implementerade och prestandan för dessa två är evaluerade och jämförda. Först tränas en modell med användningen av Hidden Markov Models och Gaussian Mixture Models och slutligen en modell där Hidden Markov Models och Deep Neural Networks an- vänds, det visar sig att den senare uppnår ett bättre resultat i form av måttet Word Error Rate.
Van, Eeden Willem Daniel. "Human and animal classification using Doppler radar." Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/66252.
Full textDissertation (MEng)--University of Pretoria, 2017.
Electrical, Electronic and Computer Engineering
MEng
Unrestricted
Nikša, Jakovljević. "Primena retke reprezentacije na modelima Gausovih mešavina koji se koriste za automatsko prepoznavanje govora." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2014. http://dx.doi.org/10.2298/NS20131218JAKOVLJEVIC.
Full textThis thesis proposes a model which approximates full covariance matrices inGaussian mixture models with a reduced number of parameters andcomputations required for likelihood evaluations. In the proposed modelinverse covariance (precision) matrices are approximated using sparselyrepresented eigenvectors. A maximum likelihood algorithm for parameterestimation and its practical implementation are presented. Experimentalresults on a speech recognition task show that while keeping the word errorrate close to the one obtained by GMMs with full covariance matrices, theproposed model can reduce the number of parameters by 45%.
Wood, John. "Statistical Background Models with Shadow Detection for Video Based Tracking." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8667.
Full textA common problem when using background models to segment moving objects from video sequences is that objects cast shadow usually significantly differ from the background and therefore get detected as foreground. This causes several problems when extracting and labeling objects, such as object shape distortion and several objects merging together. The purpose of this thesis is to explore various possibilities to handle this problem.
Three methods for statistical background modeling are reviewed. All methods work on a per pixel basis, the first is based on approximating the median, the next on using Gaussian mixture models, and the last one is based on channel representation. It is concluded that all methods detect cast shadows as foreground.
A study of existing methods to handle cast shadows has been carried out in order to gain knowledge on the subject and get ideas. A common approach is to transform the RGB-color representation into a representation that separates color into intensity and chromatic components in order to determine whether or not newly sampled pixel-values are related to the background. The color spaces HSV, IHSL, CIELAB, YCbCr, and a color model proposed in the literature (Horprasert et al.) are discussed and compared for the purpose of shadow detection. It is concluded that Horprasert's color model is the most suitable for this purpose.
The thesis ends with a proposal of a method to combine background modeling using Gaussian mixture models with shadow detection using Horprasert's color model. It is concluded that, while not perfect, such a combination can be very helpful in segmenting objects and detecting their cast shadow.
Liu, Peng. "Adaptive Mixture Estimation and Subsampling PCA." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1220644686.
Full textMadsen, Christopher. "Clustering of the Stockholm County housing market." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252301.
Full textI denna uppsats har en klustring av Stockholms läns bostadsmarknad genomförts med olika klustringsmetoder. Data har bearbetats och olika geografiska begränsningar har använts. DeSO (Demografiska Statistiska Områden), som utvecklats av SCB, har använts för att dela in bostadsmarknaden i mindre regioner för vilka områdesattribut har beräknats. Hierarkiska klustringsmetoder, SKATER och Gaussian mixture models har tillämpats. Metoder som använder olika typer av geografiska begränsningar har också tillämpats i ett försök att skapa mer geografiskt sammanhängande kluster. De olika metoderna jämförs sedan med avseende på kvalitet och stabilitet. Den bästa metoden, med avseende på kvalitet, är en Gaussian mixture model kallad EII, även känd som K-means. Den mest stabila metoden är ClustGeo-metoden.
DApuzzo, Daniele. "It Is Better to Be Upside Than Sharpe!" BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6705.
Full textChassagnol, Bastien. "Application of Multivariate Gaussian Convolution and Mixture Models for Identifying Key Biomarkers Underlying Variability in Transcriptomic Profiles and the Diversity of Therapeutic Responses." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS512.pdf.
Full textThe diversity of phenotypes and conditions observed within the human species is driven by multiple intertwined biological processes. However, in the context of personalized medicine and the treatment of increasingly complex, systemic, and heterogeneous diseases, it is crucial to develop approaches that comprehensively capture the complexity of the biological mechanisms underlying the variability in biological profiles. This spans from the individual level to the cellular level, encompassing tissues and organs. Such granularity and precision are essential for clinicians, biologists, and statisticians to understand the underlying causes of the diversity in responses to clinical treatments and predict potential adverse effects. This manuscript primarily focuses on two biological entities of interest, namely transcriptome profiles and immune cell populations, for dissecting the diversity of disease outcomes and responses to treatment observed across individuals. The introductory section provides a comprehensive overview on the intertwined mechanisms controlling the activity and abundance of these inputs, and subsequently details standard physical methods for quantifying them in real-world conditions. To comprehensively address the intricate multi-layered organization of biological systems, we considered two distinct resolution scopes in this manuscript. At the lowest level of granularity, referred to in this manuscript as an "endotype" we examine variations in the overall bulk expression profiles across individuals. To account for the unexplained variability observed among patients sharing the same disease, we introduce an underlying latent discrete factor. To identify the unobserved subgroups characterized by this hidden variable, we employ a mixture model-based approach, assuming that each individual transcriptomic profile is sampled from a multivariate Gaussian distribution. Subsequently, we delve into a bigger layer of complexity, by integrating the cellular composition of heterogeneous tissues. Specifically, we discuss various deconvolution techniques designed to estimate the ratios of cellular populations, contributing in unknown proportions to the total observed bulk transcriptome. We then introduce an independent deconvolution algorithm, "DeCovarT", which demonstrates improved accuracy in delineating highly correlated cell types by explicitly incorporating the co-expression network structures of each purified cell type
Idvall, Patrik, and Conny Jonsson. "Algorithmic Trading : Hidden Markov Models on Foreign Exchange Data." Thesis, Linköping University, Department of Mathematics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10719.
Full textIn this master's thesis, hidden Markov models (HMM) are evaluated as a tool for forecasting movements in a currency cross. With an ever increasing electronic market, making way for more automated trading, or so called algorithmic trading, there is constantly a need for new trading strategies trying to find alpha, the excess return, in the market.
HMMs are based on the well-known theories of Markov chains, but where the states are assumed hidden, governing some observable output. HMMs have mainly been used for speech recognition and communication systems, but have lately also been utilized on financial time series with encouraging results. Both discrete and continuous versions of the model will be tested, as well as single- and multivariate input data.
In addition to the basic framework, two extensions are implemented in the belief that they will further improve the prediction capabilities of the HMM. The first is a Gaussian mixture model (GMM), where one for each state assign a set of single Gaussians that are weighted together to replicate the density function of the stochastic process. This opens up for modeling non-normal distributions, which is often assumed for foreign exchange data. The second is an exponentially weighted expectation maximization (EWEM) algorithm, which takes time attenuation in consideration when re-estimating the parameters of the model. This allows for keeping old trends in mind while more recent patterns at the same time are given more attention.
Empirical results shows that the HMM using continuous emission probabilities can, for some model settings, generate acceptable returns with Sharpe ratios well over one, whilst the discrete in general performs poorly. The GMM therefore seems to be an highly needed complement to the HMM for functionality. The EWEM however does not improve results as one might have expected. Our general impression is that the predictor using HMMs that we have developed and tested is too unstable to be taken in as a trading tool on foreign exchange data, with too many factors influencing the results. More research and development is called for.
Sehili, Mohamed el Amine. "Reconnaissance des sons de l’environnement dans un contexte domotique." Thesis, Evry, Institut national des télécommunications, 2013. http://www.theses.fr/2013TELE0014/document.
Full textIn many countries around the world, the number of elderly people living alone has been increasing. In the last few years, a significant number of research projects on elderly people monitoring have been launched. Most of them make use of several modalities such as video streams, sound, fall detection and so on, in order to monitor the activities of an elderly person, to supply them with a natural way to communicate with their “smart-home”, and to render assistance in case of an emergency. This work is part of the Industrial Research ANR VERSO project, Sweet-Home. The goals of the project are to propose a domotic system that enables a natural interaction (using touch and voice command) between an elderly person and their house and to provide them a higher safety level through the detection of distress situations. Thus, the goal of this work is to come up with solutions for sound recognition of daily life in a realistic context. Sound recognition will run prior to an Automatic Speech Recognition system. Therefore, the speech recognition’s performances rely on the reliability of the speech/non-speech separation. Furthermore, a good recognition of a few kinds of sounds, complemented by other sources of information (presence detection, fall detection, etc.) could allow for a better monitoring of the person's activities that leads to a better detection of dangerous situations. We first had been interested in methods from the Speaker Recognition and Verification field. As part of this, we have experimented methods based on GMM and SVM. We had particularly tested a Sequence Discriminant SVM kernel called SVM-GSL (SVM GMM Super Vector Linear Kernel). SVM-GSL is a combination of GMM and SVM whose basic idea is to map a sequence of vectors of an arbitrary length into one high dimensional vector called a Super Vector and used as an input of an SVM. Experiments had been carried out using a locally created sound database (containing 18 sound classes for over 1000 records), then using the Sweet-Home project's corpus. Our daily sounds recognition system was integrated into a more complete system that also performs a multi-channel sound detection and speech recognition. These first experiments had all been performed using one kind of acoustical coefficients, MFCC coefficients. Thereafter, we focused on the study of other families of acoustical coefficients. The aim of this study was to assess the usability of other acoustical coefficients for environmental sounds recognition. Our motivation was to find a few representations that are simpler and/or more effective than the MFCC coefficients. Using 15 different acoustical coefficients families, we have also experimented two approaches to map a sequence of vectors into one vector, usable with a linear SVM. The first approach consists of computing a set of a fixed number of statistical coefficients and use them instead of the whole sequence. The second one, which is one of the novel contributions of this work, makes use of a discretization method to find, for each feature within an acoustical vector, the best cut points that associates a given class with one or many intervals of values. The likelihood of the sequence is estimated for each interval. The obtained likelihood values are used to build one single vector that replaces the sequence of acoustical vectors. The obtained results show that a few families of coefficients are actually more appropriate to the recognition of some sound classes. For most sound classes, we noticed that the best recognition performances were obtained with one or many families other than MFCC. Moreover, a number of these families are less complex than MFCC. They are actually a one-feature per frame acoustical families, whereas MFCC coefficients contain 16 features per frame
Hansson, Agnes. "Understanding people movement and detecting anomalies using probabilistic generative models." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288496.
Full textAllt eftersom att intelligenta åtkomstlösningar tar över i samhället, så är det nödvändigt att ägna de statistiska inlärnings-metoderna bakom dessa tillräckligt med uppmärksamhet, eftersom det inte finns något självklart svar på hur en algoritm ska kunna lära sig och förutspå människors exakta rörelsemönster.Det här projektet har som mål att, med hjälp av oövervakad inlärning, undersöka huruvida det är möjligt att urskilja anomalier från normala iakttagelser, och om den låscylinder med högst sannolikhet att en användare väljer att försöka låsa upp går att beräknda.Givet för att genomföra detta projekt är en datamängd där händelser från ett åtkomstsystem finns, tillsammans med tillhörande åtkomstkonfig-urationer. Algoritmerna som användes i projektet har bestått av en auto-encoder och en probabilistisk generativ modell.Auto-encodern lyckades, med tillfredsställande resultat, att koda det hög-dimensionella datat till ett annat med betydligt lägre dimension, och den probabilistiska generativa modellen, som valdes till en Gaussisk mixtur-modell, lyckades identifiera kluster i datat och med att tilldela varje observation ett mått på dess otrolighet.Till slut så användes den probabilistiska generativa modellen för att beräkna en villkorad sannolikhet, för vilken användaren, given alla attribut för en händelse utom just vilken låscylinder som denna försökte öppna, skulle välja.Resultatet av dessa var en korrekt gissning i 65,7 % av fallen, vilket kan ses som en tillfredställande siffra för något som härrör från ett oövervakat problem.
Torres, Lianet Sepúlveda. "Representações hierárquicas de vocábulos de línguas indígenas brasileiras: modelos baseados em mistura de Gaussianas." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-22122010-154505/.
Full textAlthough there exists a large diversity of indigenous languages in Brazil, there are few researches on these languages and their relationships. Numerous efforts have been dedicated to search for similarities among words of indigenous languages to classify them into families. Following the most accepted classification of Brazilian indigenous languages, this research proposes to compare words of 10 Brazilian indigenous languages. The words of the indigenous languages are considered speech signals and the Probability Distribution Function (PDF) of each word was estimated using the Gaussian Mixture Models (GMM). This estimation was considered a model to represent each word. The models were compared using distance measures to construct hierarchical structures that illustrate possible relationships among words. The hypothesis in this research is that the estimation of the PDF, based on GMM can characterize the words of indigenous languages, allowing the use of distance measures between the PDFs to establish relationships among the words and confirm some of the classifications. The Expectation Maximization algorithm (EM) was implemented to estimate the parameters that describe the GMM. The Kullback Leibler (KL) divergence was used to measure similarities between two PDFs. This divergence is the basis to establish the hierarchical structures that show the relationships among the models. The PDF estimation, based on GMM was tested using simulated signals, allowing confirming the useful approximation of the original parameters. Several distance measures were implemented to prove that the similarities among the models depended on the model of each word, and not on the distance measure adopted in this study. The results of all measures were similar, however, as the clustering results of the C2 distances showed some differences from the other clusters, C2 distance was proposed to complement the KL divergence. The results suggest that the relationships between models depend on their characteristics, and not on the distance measures selected in this study, and the PDFs based on GMM can properly characterize the words. In general, relations among languages that belong to the same linguistic branch were illustrated, showing a tendency to include isolated languages in groups of languages that belong to the same linguistic branches. As the GMM of some language families presents a standard behavior, it allows identifying each family. Although the results of the words of indigenous languages are inconclusive, this study is considered very useful to increase the knowledge of these types of languages and to propose new research lines directed to analyze this type of signals.
Westerlund, Annie M. "Computational Study of Calmodulin’s Ca2+-dependent Conformational Ensembles." Licentiate thesis, KTH, Biofysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234888.
Full textQC 20180912
Dahl, Oskar, and Fredrik Johansson. "Understanding usage of Volvo trucks." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-40826.
Full textThis thesis was later conducted as a scientific paper and was submit- ted to the conference of ICIMP, 2020. The publication was accepted the 23th of September (2019), and will be presented in January, 2020.
McLaren, Mitchell Leigh. "Improving automatic speaker verification using SVM techniques." Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/32063/1/Mitchell_McLaren_Thesis.pdf.
Full textRuan, Lingyan. "Statistical analysis of high dimensional data." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37135.
Full textAlMutairi, Bandar Saud. "Statistical Models for Characterizing and Reducing Uncertainty in Seasonal Rainfall Pattern Forecasts to Inform Decision Making." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/940.
Full textMolin, Joel. "Foreground Segmentation of Moving Objects." Thesis, Linköping University, Department of Electrical Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-52544.
Full textForeground segmentation is a common first step in tracking and surveillance applications. The purpose of foreground segmentation is to provide later stages of image processing with an indication of where interesting data can be found. This thesis is an investigation of how foreground segmentation can be performed in two contexts: as a pre-step to trajectory tracking and as a pre-step in indoor surveillance applications.
Three methods are selected and detailed: a single Gaussian method, a Gaussian mixture model method, and a codebook method. Experiments are then performed on typical input video using the methods. It is concluded that the Gaussian mixture model produces the output which yields the best trajectories when used as input to the trajectory tracker. An extension is proposed to the Gaussian mixture model which reduces shadow, improving the performance of foreground segmentation in the surveillance context.
Carvalho, Edigleison Francelino. "Probabilistic incremental learning for image recognition : modelling the density of high-dimensional data." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/90429.
Full textNowadays several sensory systems provide data in ows and these measured observations are frequently high-dimensional, i.e., the number of measured variables is large, and the observations are arriving in a sequence. This is in particular the case of robot vision systems. Unsupervised and supervised learning with such data streams is challenging, because the algorithm should be capable of learning from each observation and then discard it before considering the next one, but several methods require the whole dataset in order to estimate their parameters and, therefore, are not suitable for online learning. Furthermore, many approaches su er with the so called curse of dimensionality (BELLMAN, 1961) and can not handle high-dimensional input data. To overcome the problems described above, this work proposes a new probabilistic and incremental neural network model, called Local Projection Incremental Gaussian Mixture Network (LP-IGMN), which is capable to perform life-long learning with high-dimensional data, i.e., it can continuously learn considering the stability of the current model's parameters and automatically adjust its topology taking into account the subspace's boundary found by each hidden neuron. The proposed method can nd the intrinsic subspace where the data lie, which is called the principal subspace. Orthogonal to the principal subspace, there are the dimensions that are noisy or carry little information, i.e., with small variance, and they are described by a single estimated parameter. Therefore, LP-IGMN is robust to di erent sources of data and can deal with large number of noise and/or irrelevant variables in the measured data. To evaluate LP-IGMN we conducted several experiments using simulated and real datasets. We also demonstrated several applications of our method in image recognition tasks. The results have shown that the LP-IGMN performance is competitive, and usually superior, with other stateof- the-art approaches, and it can be successfully used in applications that require life-long learning in high-dimensional spaces.
Fossà, Alberto. "Propagation multi-fidélité d’incertitude orbitale en présence d’accélérations stochastiques." Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0009.
Full textThe problem of nonlinear uncertainty propagation (UP) is crucial in astrodynamics since all systems of practical interest, ranging from navigation to orbit determination (OD) and target tracking, involve nonlinearities in their dynamics and measurement models. One topic of interest is the accurate propagation of uncertainty through the nonlinear orbital dynamics, a fundamental requirement in several applications such as space surveillance and tracking (SST), space traffic management (STM), and end-of-life (EOL) disposal. Given a finite-dimensional representation of the probability density function (pdf) of the initial state, the main goal is to obtain a similar representation of the state pdf at any future time. This problem has been historically tackled with either linearized methods or Monte Carlo (MC) simulations, both of which are unsuitable to satisfy the demand of a rapidly growing number of applications. Linearized methods are light on computational resources, but cannot handle strong nonlinearities or long propagation windows due to the local validity of the linearization. In contrast, MC methods can handle any kind of nonlinearity, but are too computationally expensive for any task that requires the propagation of several pdfs. Instead, this thesis leverages multifidelity methods and differential algebra (DA) techniques to develop computationally efficient methods for the accurate propagation of uncertainties through nonlinear dynamical systems. The first method, named low-order automatic domain splitting (LOADS), represents the uncertainty with a set of second-order Taylor polynomials and leverages a DA-based measure of nonlinearity to adjust their number based on the local dynamics and the required accuracy. An adaptive Gaussian mixture model (GMM) method is then developed by associating each polynomial to a weighted Gaussian kernel, thus obtaining an analytical representation of the state pdf. Going further, a multifidelity method is proposed to reduce the computational cost of the former algorithms while retaining a similar accuracy. The adaptive GMM method is in this case run on a low-fidelity dynamical model, and only the expected values of the kernels are propagated point-wise in high-fidelity dynamics to compute a posteriori correction of the low-fidelity state pdf. If the former methods deal with the propagation of an initial uncertainty through a deterministic dynamical model, the effects of mismodeled or unmodeled forces are finally considered to further enhance the realism of the propagated statistics. In this case, the multifidelity GMM method is used at first to propagate the initial uncertainty through a low-fidelity, deterministic dynamical model. The point-wise propagations are then replaced with a DA-based algorithm to efficiently propagate a polynomial representation of the moments of the pdf in a stochastic dynamical system. These moments model the effects of stochastic accelerations on the deterministic kernels’ means, and coupled with the former GMM provide a description of the propagated state pdf that accounts for both the uncertainty in the initial state and the effects of neglected forces. The proposed methods are applied to the problem of orbit UP, and their performance is assessed in different orbital regimes. The results demonstrate the effectiveness of these methods in accurately propagating the initial uncertainty and the effects of process noise at a fraction of the computational cost of high-fidelity MC simulations. The LOADS method is then employed to solve the initial orbit determination (IOD) problem by exploiting the information on measurement uncertainty and to develop a preprocessing scheme aimed at improving the robustness of batch OD algorithms. These tools are finally validated on a set of real observations for an object in geostationary transfer orbit (GTO)
Fang, Zaili. "Some Advanced Model Selection Topics for Nonparametric/Semiparametric Models with High-Dimensional Data." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/40090.
Full textPh. D.
Wu, Jingwen. "Model-based clustering and model selection for binned data." Thesis, Supélec, 2014. http://www.theses.fr/2014SUPL0005/document.
Full textThis thesis studies the Gaussian mixture model-based clustering approaches and the criteria of model selection for binned data clustering. Fourteen binned-EM algorithms and fourteen bin-EM-CEM algorithms are developed for fourteen parsimonious Gaussian mixture models. These new algorithms combine the advantages in computation time reduction of binning data and the advantages in parameters estimation simplification of parsimonious Gaussian mixture models. The complexities of the binned-EM and the bin-EM-CEM algorithms are calculated and compared to the complexities of the EM and the CEM algorithms respectively. In order to select the right model which fits well the data and satisfies the clustering precision requirements with a reasonable computation time, AIC, BIC, ICL, NEC, and AWE criteria, are extended to binned data clustering when the proposed binned-EM and bin-EM-CEM algorithms are used. The advantages of the different proposed methods are illustrated through experimental studies
Akhtar, Mahmood Electrical Engineering & Telecommunications Faculty of Engineering UNSW. "Genomic sequence processing: gene finding in eukaryotes." Publisher:University of New South Wales. Electrical Engineering & Telecommunications, 2008. http://handle.unsw.edu.au/1959.4/40912.
Full textSwathanthira, Kumar Murali Murugavel M. "Magnetic Resonance Image segmentation using Pulse Coupled Neural Networks." Digital WPI, 2009. https://digitalcommons.wpi.edu/etd-dissertations/280.
Full textGurrapu, Chaitanya. "Human Action Recognition In Video Data For Surveillance Applications." Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/15878/1/Chaitanya_Gurrapu_Thesis.pdf.
Full textGurrapu, Chaitanya. "Human Action Recognition In Video Data For Surveillance Applications." Queensland University of Technology, 2004. http://eprints.qut.edu.au/15878/.
Full text