Dissertations / Theses on the topic 'Gaussian; Markov chain Monte Carlo methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Gaussian; Markov chain Monte Carlo methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Manrique, Garcia Aurora. "Econometric analysis of limited dependent time series." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389797.
Full textVaičiulytė, Ingrida. "Study and application of Markov chain Monte Carlo method." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141209_112440-55390.
Full textDisertacijoje nagrinėjami Markovo grandinės Monte-Karlo (MCMC) adaptavimo metodai, skirti efektyviems skaitiniams duomenų analizės sprendimų priėmimo su iš anksto nustatytu patikimumu algoritmams sudaryti. Suformuluoti ir išspręsti hierarchiniu būdu sudarytų daugiamačių skirstinių (asimetrinio t skirstinio, Puasono-Gauso modelio, stabiliojo simetrinio vektoriaus dėsnio) parametrų vertinimo uždaviniai. Adaptuotai MCMC procedūrai sukurti yra pritaikytas nuoseklaus Monte-Karlo imčių generavimo metodas, įvedant statistinį stabdymo kriterijų ir imties tūrio reguliavimą. Statistiniai uždaviniai išspręsti šiuo metodu leidžia atskleisti aktualias MCMC metodų skaitmeninimo problemų ypatybes. MCMC algoritmų efektyvumas tiriamas pasinaudojant disertacijoje sudarytu statistinio modeliavimo metodu. Atlikti eksperimentai su sportininkų duomenimis ir sveikatos industrijai priklausančių įmonių finansiniais duomenimis patvirtino, kad metodo skaitinės savybės atitinka teorinį modelį. Taip pat sukurti metodai ir algoritmai pritaikyti sociologinių duomenų analizės modeliui sudaryti. Atlikti tyrimai parodė, kad adaptuotas MCMC algoritmas leidžia gauti nagrinėjamų skirstinių parametrų įvertinius per mažesnį grandžių skaičių ir maždaug du kartus sumažinti skaičiavimų apimtį. Disertacijoje sukonstruoti algoritmai gali būti pritaikyti stochastinio pobūdžio sistemų tyrimui ir kitiems statistikos uždaviniams spręsti MCMC metodu.
Lopez, lopera Andres Felipe. "Gaussian Process Modelling under Inequality Constraints." Thesis, Lyon, 2019. https://tel.archives-ouvertes.fr/tel-02863891.
Full textConditioning Gaussian processes (GPs) by inequality constraints gives more realistic models. This thesis focuses on the finite-dimensional approximation of GP models proposed by Maatouk (2015), which satisfies the constraints everywhere in the input space. Several contributions are provided. First, we study the use of Markov chain Monte Carlo methods for truncated multinormals. They result in efficient sampling for linear inequality constraints. Second, we explore the extension of the model, previously limited up tothree-dimensional spaces, to higher dimensions. The introduction of a noise effect allows us to go up to dimension five. We propose a sequential algorithm based on knot insertion, which concentrates the computational budget on the most active dimensions. We also explore the Delaunay triangulation as an alternative to tensorisation. Finally, we study the case of additive models in this context, theoretically and on problems involving hundreds of input variables. Third, we give theoretical results on inference under inequality constraints. The asymptotic consistency and normality of maximum likelihood estimators are established. The main methods throughout this manuscript are implemented in R language programming.They are applied to risk assessment problems in nuclear safety and coastal flooding, accounting for positivity and monotonicity constraints. As a by-product, we also show that the proposed GP approach provides an original framework for modelling Poisson processes with stochastic intensities
Dahlin, Johan. "Accelerating Monte Carlo methods for Bayesian inference in dynamical models." Doctoral thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125992.
Full textBorde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Vaičiulytė, Ingrida. "Markovo grandinės Monte-Karlo metodo tyrimas ir taikymas." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141209_112429-75205.
Full textMarkov chain Monte Carlo adaptive methods by creating computationally effective algorithms for decision-making of data analysis with the given accuracy are analyzed in this dissertation. The tasks for estimation of parameters of the multivariate distributions which are constructed in hierarchical way (skew t distribution, Poisson-Gaussian model, stable symmetric vector law) are described and solved in this research. To create the adaptive MCMC procedure, the sequential generating method is applied for Monte Carlo samples, introducing rules for statistical termination and for sample size regulation of Markov chains. Statistical tasks, solved by this method, reveal characteristics of relevant computational problems including MCMC method. Effectiveness of the MCMC algorithms is analyzed by statistical modeling method, constructed in the dissertation. Tests made with sportsmen data and financial data of enterprises, belonging to health-care industry, confirmed that numerical properties of the method correspond to the theoretical model. The methods and algorithms created also are applied to construct the model for sociological data analysis. Tests of algorithms have shown that adaptive MCMC algorithm allows to obtain estimators of examined distribution parameters in lower number of chains, and reducing the volume of calculations approximately two times. The algorithms created in this dissertation can be used to test the systems of stochastic type and to solve other statistical... [to full text]
Puengnim, Anchalee. "Classification de modulations linéaires et non-linéaires à l'aide de méthodes bayésiennes." Toulouse, INPT, 2008. http://ethesis.inp-toulouse.fr/archive/00000676/.
Full textThis thesis studies classification of digital linear and nonlinear modulations using Bayesian methods. Modulation recognition consists of identifying, at the receiver, the type of modulation signals used by the transmitter. It is important in many communication scenarios, for example, to secure transmissions by detecting unauthorized users, or to determine which transmitter interferes the others. The received signal is generally affected by a number of impairments. We propose several classification methods that can mitigate the effects related to imperfections in transmission channels. More specifically, we study three techniques to estimate the posterior probabilities of the received signals conditionally to each modulation
Fang, Youhan. "Efficient Markov Chain Monte Carlo Methods." Thesis, Purdue University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10809188.
Full textGenerating random samples from a prescribed distribution is one of the most important and challenging problems in machine learning, Bayesian statistics, and the simulation of materials. Markov Chain Monte Carlo (MCMC) methods are usually the required tool for this task, if the desired distribution is known only up to a multiplicative constant. Samples produced by an MCMC method are real values in N-dimensional space, called the configuration space. The distribution of such samples converges to the target distribution in the limit. However, existing MCMC methods still face many challenges that are not well resolved. Difficulties for sampling by using MCMC methods include, but not exclusively, dealing with high dimensional and multimodal problems, high computation cost due to extremely large datasets in Bayesian machine learning models, and lack of reliable indicators for detecting convergence and measuring the accuracy of sampling. This dissertation focuses on new theory and methodology for efficient MCMC methods that aim to overcome the aforementioned difficulties.
One contribution of this dissertation is generalizations of hybrid Monte Carlo (HMC). An HMC method combines a discretized dynamical system in an extended space, called the state space, and an acceptance test based on the Metropolis criterion. The discretized dynamical system used in HMC is volume preserving—meaning that in the state space, the absolute Jacobian of a map from one point on the trajectory to another is 1. Volume preservation is, however, not necessary for the general purpose of sampling. A general theory allowing the use of non-volume preserving dynamics for proposing MCMC moves is proposed. Examples including isokinetic dynamics and variable mass Hamiltonian dynamics with an explicit integrator, are all designed with fewer restrictions based on the general theory. Experiments show improvement in efficiency for sampling high dimensional multimodal problems. A second contribution is stochastic gradient samplers with reduced bias. An in-depth analysis of the noise introduced by the stochastic gradient is provided. Two methods to reduce the bias in the distribution of samples are proposed. One is to correct the dynamics by using an estimated noise based on subsampled data, and the other is to introduce additional variables and corresponding dynamics to adaptively reduce the bias. Extensive experiments show that both methods outperform existing methods. A third contribution is quasi-reliable estimates of effective sample size. Proposed is a more reliable indicator—the longest integrated autocorrelation time over all functions in the state space—for detecting the convergence and measuring the accuracy of MCMC methods. The superiority of the new indicator is supported by experiments on both synthetic and real problems.
Minor contributions include a general framework of changing variables, and a numerical integrator for the Hamiltonian dynamics with fourth order accuracy. The idea of changing variables is to transform the potential energy function as a function of the original variable to a function of the new variable, such that undesired properties can be removed. Two examples are provided and preliminary experimental results are obtained for supporting this idea. The fourth order integrator is constructed by combining the idea of the simplified Takahashi-Imada method and a two-stage Hessian-based integrator. The proposed method, called two-stage simplified Takahashi-Imada method, shows outstanding performance over existing methods in high-dimensional sampling problems.
Murray, Iain Andrew. "Advances in Markov chain Monte Carlo methods." Thesis, University College London (University of London), 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487199.
Full textGraham, Matthew McKenzie. "Auxiliary variable Markov chain Monte Carlo methods." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28962.
Full textXu, Jason Qian. "Markov Chain Monte Carlo and Non-Reversible Methods." Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/244823.
Full textPereira, Fernanda Chaves. "Bayesian Markov chain Monte Carlo methods in general insurance." Thesis, City University London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342720.
Full textCheal, Ryan. "Markov Chain Monte Carlo methods for simulation in pedigrees." Thesis, University of Bath, 1996. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362254.
Full textDurmus, Alain. "High dimensional Markov chain Monte Carlo methods : theory, methods and applications." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLT001/document.
Full textThe subject of this thesis is the analysis of Markov Chain Monte Carlo (MCMC) methods and the development of new methodologies to sample from a high dimensional distribution. Our work is divided into three main topics. The first problem addressed in this manuscript is the convergence of Markov chains in Wasserstein distance. Geometric and sub-geometric convergence with explicit constants, are derived under appropriate conditions. These results are then applied to thestudy of MCMC algorithms. The first analyzed algorithm is an alternative scheme to the Metropolis Adjusted Langevin algorithm for which explicit geometric convergence bounds are established. The second method is the pre-Conditioned Crank-Nicolson algorithm. It is shown that under mild assumption, the Markov chain associated with thisalgorithm is sub-geometrically ergodic in an appropriated Wasserstein distance. The second topic of this thesis is the study of the Unadjusted Langevin algorithm (ULA). We are first interested in explicit convergence bounds in total variation under different kinds of assumption on the potential associated with the target distribution. In particular, we pay attention to the dependence of the algorithm on the dimension of the state space. The case of fixed step sizes as well as the case of nonincreasing sequences of step sizes are dealt with. When the target density is strongly log-concave, explicit bounds in Wasserstein distance are established. These results are then used to derived new bounds in the total variation distance which improve the one previously derived under weaker conditions on the target density.The last part tackles new optimal scaling results for Metropolis-Hastings type algorithms. First, we extend the pioneer result on the optimal scaling of the random walk Metropolis algorithm to target densities which are differentiable in Lp mean for p ≥ 2. Then, we derive new Metropolis-Hastings type algorithms which have a better optimal scaling compared the MALA algorithm. Finally, the stability and the convergence in total variation of these new algorithms are studied
Wu, Miaodan. "Markov chain Monte Carlo methods applied to Bayesian data analysis." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625087.
Full textPaul, Rajib. "Theoretical And Algorithmic Developments In Markov Chain Monte Carlo." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218184168.
Full textPitt, Michael K. "Bayesian inference for non-Gaussian state space model using simulation." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389211.
Full textKhedri, Shiler. "Markov chain Monte Carlo methods for exact tests in contingency tables." Thesis, Durham University, 2012. http://etheses.dur.ac.uk/5579/.
Full textIbrahim, Adriana Irawati Nur. "New methods for mode jumping in Markov chain Monte Carlo algorithms." Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500720.
Full textBarata, Teresa Cordeiro Ferreira Nunes. "Two examples of curve estimation using Markov Chain Monte Carlo methods." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612139.
Full textNemirovsky, Danil. "Monte Carlo methods and Markov chain based approaches for PageRank computation." Nice, 2010. http://www.theses.fr/2010NICE4018.
Full textNiederberger, Theresa. "Markov chain Monte Carlo methods for parameter identification in systems biology models." Diss., Ludwig-Maximilians-Universität München, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-157798.
Full textGausland, Eivind Blomholm. "Parameter Estimation in Extreme Value Models with Markov Chain Monte Carlo Methods." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10032.
Full textIn this thesis I have studied how to estimate parameters in an extreme value model with Markov Chain Monte Carlo (MCMC) given a data set. This is done with synthetic Gaussian time series generated by spectral densities, called spectrums, with a "box" shape. Three different spectrums have been used. In the acceptance probability in the MCMC algorithm, the likelihood have been built up by dividing the time series into blocks consisting of a constant number of points. In each block, only the maximum value, i.e. the extreme value, have been used. Each extreme value will then be interpreted as independent. Since the time series analysed are generated the way they are, there exists theoretical values for the parameters in the extreme value model. When the MCMC algorithm is tested to fit a model to the generated data, the true parameter values are already known. For the first and widest spectrum, the method is unable to find estimates matching the true values for the parameters in the extreme value model. For the two other spectrums, I obtained good estimates for some block lengths, others block lengths gave poor estimates compared to the true values. Finally, it looked like an increasing block length gave more accurate estimates as the spectrum became more narrow banded. A final simulation on a time series generated by a narrow banded spectrum, disproved this hypothesis.
Xu, Xiaojin. "Methods in Hypothesis Testing, Markov Chain Monte Carlo and Neuroimaging Data Analysis." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10927.
Full textStatistics
Demiris, Nikolaos. "Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods." Thesis, University of Nottingham, 2004. http://eprints.nottingham.ac.uk/10078/.
Full textLi, Yuanzhi. "Bayesian Models for Repeated Measures Data Using Markov Chain Monte Carlo Methods." DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/6997.
Full textSpade, David Allen. "Investigating Convergence of Markov Chain Monte Carlo Methods for Bayesian Phylogenetic Inference." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1372173121.
Full textVeitch, John D. "Applications of Markov Chain Monte Carlo methods to continuous gravitational wave data analysis." Thesis, Connect to e-thesis to view abstract. Move to record for print version, 2007. http://theses.gla.ac.uk/35/.
Full textPh.D. thesis submitted to Information and Mathematical Sciences Faculty, Department of Mathematics, University of Glasgow, 2007. Includes bibliographical references. Print version also available.
Browne, William J. "Applying MCMC methods to multi-level models." Thesis, University of Bath, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268210.
Full textWalker, Neil Rawlinson. "A Bayesian approach to the job search model and its application to unemployment durations using MCMC methods." Thesis, University of Newcastle Upon Tyne, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299053.
Full textOlvera, Astivia Oscar Lorenzo. "On the estimation of the polychoric correlation coefficient via Markov Chain Monte Carlo methods." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44349.
Full textWitte, Hugh Douglas. "Markov chain Monte Carlo and data augmentation methods for continuous-time stochastic volatility models." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/283976.
Full textBray, Isabelle Cella. "Modelling the prevalence of Down syndrome with applications of Markov chain Monte Carlo methods." Thesis, University of Plymouth, 1998. http://hdl.handle.net/10026.1/2408.
Full textOlsen, Andrew Nolan. "When Infinity is Too Long to Wait: On the Convergence of Markov Chain Monte Carlo Methods." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1433770406.
Full textNiederberger, Theresa [Verfasser], and Patrick [Akademischer Betreuer] Cramer. "Markov chain Monte Carlo methods for parameter identification in systems biology models / Theresa Niederberger. Betreuer: Patrick Cramer." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/1036101029/34.
Full textYang, Chao. "ON PARTICLE METHODS FOR UNCERTAINTY QUANTIFICATION IN COMPLEX SYSTEMS." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1511967797285962.
Full textLewis, John Robert. "Bayesian Restricted Likelihood Methods." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1407505392.
Full textWalker, Matthew James. "Methods for Bayesian inversion of seismic data." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10504.
Full textAllchin, Lorraine Doreen May. "Statistical methods for mapping complex traits." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:65f392ba-1b64-4b00-8871-7cee98809ce1.
Full textDhulipala, Lakshmi Narasimha Somayajulu. "Bayesian Methods for Intensity Measure and Ground Motion Selection in Performance-Based Earthquake Engineering." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/88493.
Full textDoctor of Philosophy
Earthquake ground shaking is a complex phenomenon since there is no unique way to assess its strength. Yet, the strength of ground motion (shaking) becomes an integral part for predicting the future earthquake performance of buildings using the Performance-Based Earthquake Engineering (PBEE) framework. The PBEE framework predicts building performance in terms of expected financial losses, possible downtime, the potential of the building to collapse under a future earthquake. Much prior research has shown that the predictions made by the PBEE framework are heavily dependent upon how the strength of a future earthquake ground motion is characterized. This dependency leads to uncertainty in the predicted building performance and hence its seismic design. The goal of this dissertation therefore is to employ Bayesian reasoning, which takes into account the alternative explanations or perspectives of a research problem, and propose robust quantitative methods that aid IM selection and ground motion selection in PBEE The fact that the local intensity of an earthquake can be characterized in multiple ways using Intensity Measures (IM; e.g., peak ground acceleration) is problematic for PBEE because it leads to different PBEE results for different choices of the IM. While formal procedures for selecting an optimal IM exist, they may be considered as being subjective and have multiple criteria making their use difficult and inconclusive. Bayes rule provides a mechanism called change of perspective using which a problem that is difficult to solve from one perspective could be tackled from a different perspective. This change of perspective mechanism is used to propose a quantitative, unified metric for rating alternative IMs. The immediate application of this metric is aiding the selection of the best IM that would predict the building earthquake performance with least bias. Structural analysis for performance assessment in PBEE is conducted by selecting ground motions which match a target response spectrum (a representation of future ground motions). The definition of a target response spectrum lacks general consensus and is dependent on the analysts’ preferences. To encompass all these preferences and requirements of analysts, a Bayesian target response spectrum which is general and flexible is proposed. While the generality of this Bayesian target response spectrum allow analysts select those ground motions to which their structures are the most sensitive, its flexibility permits the incorporation of additional information (preferences) into the target response spectrum development. This dissertation addresses four critical questions in PBEE: (1) how can we best define ground motion at a site?; (2) if ground motion can only be defined by multiple metrics, how can we easily derive the probability of such shaking at a site?; (3) how do we use these multiple metrics to select a set of ground motion records that best capture the site’s unique seismicity; (4) when those records are used to analyze the response of a structure, how can we be sure that a standard linear regression technique accurately captures the uncertainty in structural response at low and high levels of shaking?
Matsumoto, Nobuyuki. "Geometry of configuration space in Markov chain Monte Carlo methods and the worldvolume approach to the tempered Lefschetz thimble method." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263464.
Full textBӑrbos, Andrei-Cristian. "Efficient high-dimension gaussian sampling based on matrix splitting : application to bayesian Inversion." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0002/document.
Full textThe thesis deals with the problem of high-dimensional Gaussian sampling.Such a problem arises for example in Bayesian inverse problems in imaging where the number of variables easily reaches an order of 106_109. The complexity of the sampling problem is inherently linked to the structure of the covariance matrix. Different solutions to tackle this problem have already been proposed among which we emphasizethe Hogwild algorithm which runs local Gibbs sampling updates in parallel with periodic global synchronisation.Our algorithm makes use of the connection between a class of iterative samplers and iterative solvers for systems of linear equations. It does not target the required Gaussian distribution, instead it targets an approximate distribution. However, we are able to control how far off the approximate distribution is with respect to the required one by means of asingle tuning parameter.We first compare the proposed sampling algorithm with the Gibbs and Hogwild algorithms on moderately sized problems for different target distributions. Our algorithm manages to out perform the Gibbs and Hogwild algorithms in most of the cases. Let us note that the performances of our algorithm are dependent on the tuning parameter.We then compare the proposed algorithm with the Hogwild algorithm on a large scalereal application, namely image deconvolution-interpolation. The proposed algorithm enables us to obtain good results, whereas the Hogwild algorithm fails to converge. Let us note that for small values of the tuning parameter our algorithm fails to converge as well.Not with standing, a suitably chosen value for the tuning parameter enables our proposed sampler to converge and to deliver good results
Haber, René. "Transition Matrix Monte Carlo Methods for Density of States Prediction." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-146873.
Full textHeng, Jeremy. "On the use of transport and optimal control methods for Monte Carlo simulation." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:6cbc7690-ac54-4a6a-b235-57fa62e5b2fc.
Full textPapež, Milan. "Monte Carlo identifikační strategie pro stavové modely." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400416.
Full textSchmidl, Daniel [Verfasser], Fabian J. [Akademischer Betreuer] Theis, Achim [Akademischer Betreuer] Tresch, and Claudia [Akademischer Betreuer] Czado. "Bayesian model inference in dynamic biological systems using Markov Chain Monte Carlo methods / Daniel Schmidl. Gutachter: Achim Tresch ; Claudia Czado. Betreuer: Fabian J. Theis." München : Universitätsbibliothek der TU München, 2012. http://d-nb.info/1030099774/34.
Full textFrühwirth-Schnatter, Sylvia. "MCMC Estimation of Classical and Dynamic Switching and Mixture Models." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1998. http://epub.wu.ac.at/698/1/document.pdf.
Full textSeries: Forschungsberichte / Institut für Statistik
Al-Saadony, Muhannad. "Bayesian stochastic differential equation modelling with application to finance." Thesis, University of Plymouth, 2013. http://hdl.handle.net/10026.1/1530.
Full textCrespo, Cuaresma Jesus, and Philipp Piribauer. "Bayesian Variable Selection in Spatial Autoregressive Models." WU Vienna University of Economics and Business, 2015. http://epub.wu.ac.at/4584/1/wp199.pdf.
Full textSeries: Department of Economics Working Paper Series
Thouvenin, Pierre-Antoine. "Modeling spatial and temporal variabilities in hyperspectral image unmixing." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19258/1/THOUVENIN_PierreAntoine.pdf.
Full textLi, Qianqiu. "Bayesian inference on dynamics of individual and population hepatotoxicity via state space models." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124297874.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiv, 155 p.; also includes graphics (some col.). Includes bibliographical references (p. 147-155). Available online via OhioLINK's ETD Center