Books on the topic 'Gaussian; Markov chain Monte Carlo methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 books for your research on the topic 'Gaussian; Markov chain Monte Carlo methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Liang, Faming, Chuanhai Liu, and Raymond J. Carroll. Advanced Markov Chain Monte Carlo Methods. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669723.
Full textJoseph, Anosh. Markov Chain Monte Carlo Methods in Quantum Field Theories. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46044-0.
Full textLiang, F. Advanced Markov chain Monte Carlo methods: Learning from past samples. Hoboken, NJ: Wiley, 2010.
Find full textWinkler, Gerhard. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55760-6.
Full textNeal, Radford M. Markov chain Monte Carlo methods based on "slicing" the density function. Toronto: University of Toronto, Dept. of Statistics, 1997.
Find full textGerhard, Winkler. Image analysis, random fields and Markov chain Monte Carlo methods: A mathematical introduction. 2nd ed. Berlin: Springer, 2003.
Find full text1946-, Winkler Gerhard, ed. Image analysis, random fields and Markov chain Monte Carlo methods: A mathematical introduction. 2nd ed. Berlin: Springer, 2003.
Find full textCheng, Russell. Finite Mixture Examples; MAPIS Details. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0018.
Full textCarroll, Raymond, Faming Liang, and Chuanhai Liu. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples. Wiley & Sons, Incorporated, John, 2011.
Find full textCarroll, Raymond, Faming Liang, and Chuanhai Liu. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples. Wiley & Sons, Incorporated, John, 2010.
Find full textCarroll, Raymond, Faming Liang, and Chuanhai Liu. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples. Wiley & Sons, Incorporated, John, 2011.
Find full textAllen, Michael P., and Dominic J. Tildesley. Monte Carlo methods. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0004.
Full textBoudreau, Joseph F., and Eric S. Swanson. Monte Carlo methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0007.
Full textJoseph, Anosh. Markov Chain Monte Carlo Methods in Quantum Field Theories: A Modern Primer. Springer, 2020.
Find full textWinkler, Gerhard. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction (Stochastic Modelling and Applied Probability). 2nd ed. Springer, 2006.
Find full textMartin, Andrew D. Bayesian Analysis. Edited by Janet M. Box-Steffensmeier, Henry E. Brady, and David Collier. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199286546.003.0021.
Full textGeweke, John, Gary Koop, and Herman Van Dijk, eds. The Oxford Handbook of Bayesian Econometrics. Oxford University Press, 2011. http://dx.doi.org/10.1093/oxfordhb/9780199559084.001.0001.
Full textHenderson, Daniel A., R. J. Boys, Carole J. Proctor, and Darren J. Wilkinson. Linking systems biology models to data: A stochastic kinetic model of p53 oscillations. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.7.
Full textCheng, Russell. Finite Mixture Models. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0017.
Full textCoolen, A. C. C., A. Annibale, and E. S. Roberts. Graphs with hard constraints: further applications and extensions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198709893.003.0007.
Full textLopes, Hedibert, and Nicholas Polson. Analysis of economic data with multiscale spatio-temporal models. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.12.
Full textQuintana, José Mario, Carlos Carvalho, James Scott, and Thomas Costigliola. Extracting S&P500 and NASDAQ Volatility: The Credit Crisis of 2007–2008. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.13.
Full textRubin, Donald, Xiaoqin Wang, Li Yin, and Elizabeth Zell. Bayesian causal inference: Approaches to estimating the effect of treating hospital type on cancer survival in Sweden using principal stratification. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.24.
Full textLaver, Michael, and Ernest Sergenti. Systematically Interrogating Agent-Based Models. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691139036.003.0004.
Full text