Academic literature on the topic 'Gaussian; Markov chain Monte Carlo methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gaussian; Markov chain Monte Carlo methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gaussian; Markov chain Monte Carlo methods"
Wang, Zheng, Shanxiang Lyu, and Ling Liu. "Learnable Markov Chain Monte Carlo Sampling Methods for Lattice Gaussian Distribution." IEEE Access 7 (2019): 87494–503. http://dx.doi.org/10.1109/access.2019.2925530.
Full textAhmadian, Yashar, Jonathan W. Pillow, and Liam Paninski. "Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains." Neural Computation 23, no. 1 (January 2011): 46–96. http://dx.doi.org/10.1162/neco_a_00059.
Full textWang, Zheng. "Markov Chain Monte Carlo Methods for Lattice Gaussian Sampling: Convergence Analysis and Enhancement." IEEE Transactions on Communications 67, no. 10 (October 2019): 6711–24. http://dx.doi.org/10.1109/tcomm.2019.2926470.
Full textWhiley, Matt, and Simon P. Wilson. "Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models." Statistics and Computing 14, no. 3 (August 2004): 171–79. http://dx.doi.org/10.1023/b:stco.0000035299.51541.5e.
Full textGeweke, John, and Hisashi Tanizaki. "On markov chain monte carlo methods for nonlinear and non-gaussian state-space models." Communications in Statistics - Simulation and Computation 28, no. 4 (January 1999): 867–94. http://dx.doi.org/10.1080/03610919908813583.
Full textJiao, Zhun, and Rong Zhang. "Improved Particle Filter for Integrated Navigation System." Applied Mechanics and Materials 543-547 (March 2014): 1278–81. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.1278.
Full textLu, Dan, Daniel Ricciuto, Anthony Walker, Cosmin Safta, and William Munger. "Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods." Biogeosciences 14, no. 18 (September 27, 2017): 4295–314. http://dx.doi.org/10.5194/bg-14-4295-2017.
Full textDurante, Daniele. "Conjugate Bayes for probit regression via unified skew-normal distributions." Biometrika 106, no. 4 (August 25, 2019): 765–79. http://dx.doi.org/10.1093/biomet/asz034.
Full textPeng, Li Feng, Guo Shao Su, and Wei Zhao. "Fast Analysis of Structural Reliability Using Gaussian Process Classification Based Dynamic Response Surface Method." Applied Mechanics and Materials 501-504 (January 2014): 1067–70. http://dx.doi.org/10.4028/www.scientific.net/amm.501-504.1067.
Full textTilmann, F. J., H. Sadeghisorkhani, and A. Mauerberger. "Another look at the treatment of data uncertainty in Markov chain Monte Carlo inversion and other probabilistic methods." Geophysical Journal International 222, no. 1 (May 6, 2020): 388–405. http://dx.doi.org/10.1093/gji/ggaa168.
Full textDissertations / Theses on the topic "Gaussian; Markov chain Monte Carlo methods"
Manrique, Garcia Aurora. "Econometric analysis of limited dependent time series." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389797.
Full textVaičiulytė, Ingrida. "Study and application of Markov chain Monte Carlo method." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141209_112440-55390.
Full textDisertacijoje nagrinėjami Markovo grandinės Monte-Karlo (MCMC) adaptavimo metodai, skirti efektyviems skaitiniams duomenų analizės sprendimų priėmimo su iš anksto nustatytu patikimumu algoritmams sudaryti. Suformuluoti ir išspręsti hierarchiniu būdu sudarytų daugiamačių skirstinių (asimetrinio t skirstinio, Puasono-Gauso modelio, stabiliojo simetrinio vektoriaus dėsnio) parametrų vertinimo uždaviniai. Adaptuotai MCMC procedūrai sukurti yra pritaikytas nuoseklaus Monte-Karlo imčių generavimo metodas, įvedant statistinį stabdymo kriterijų ir imties tūrio reguliavimą. Statistiniai uždaviniai išspręsti šiuo metodu leidžia atskleisti aktualias MCMC metodų skaitmeninimo problemų ypatybes. MCMC algoritmų efektyvumas tiriamas pasinaudojant disertacijoje sudarytu statistinio modeliavimo metodu. Atlikti eksperimentai su sportininkų duomenimis ir sveikatos industrijai priklausančių įmonių finansiniais duomenimis patvirtino, kad metodo skaitinės savybės atitinka teorinį modelį. Taip pat sukurti metodai ir algoritmai pritaikyti sociologinių duomenų analizės modeliui sudaryti. Atlikti tyrimai parodė, kad adaptuotas MCMC algoritmas leidžia gauti nagrinėjamų skirstinių parametrų įvertinius per mažesnį grandžių skaičių ir maždaug du kartus sumažinti skaičiavimų apimtį. Disertacijoje sukonstruoti algoritmai gali būti pritaikyti stochastinio pobūdžio sistemų tyrimui ir kitiems statistikos uždaviniams spręsti MCMC metodu.
Lopez, lopera Andres Felipe. "Gaussian Process Modelling under Inequality Constraints." Thesis, Lyon, 2019. https://tel.archives-ouvertes.fr/tel-02863891.
Full textConditioning Gaussian processes (GPs) by inequality constraints gives more realistic models. This thesis focuses on the finite-dimensional approximation of GP models proposed by Maatouk (2015), which satisfies the constraints everywhere in the input space. Several contributions are provided. First, we study the use of Markov chain Monte Carlo methods for truncated multinormals. They result in efficient sampling for linear inequality constraints. Second, we explore the extension of the model, previously limited up tothree-dimensional spaces, to higher dimensions. The introduction of a noise effect allows us to go up to dimension five. We propose a sequential algorithm based on knot insertion, which concentrates the computational budget on the most active dimensions. We also explore the Delaunay triangulation as an alternative to tensorisation. Finally, we study the case of additive models in this context, theoretically and on problems involving hundreds of input variables. Third, we give theoretical results on inference under inequality constraints. The asymptotic consistency and normality of maximum likelihood estimators are established. The main methods throughout this manuscript are implemented in R language programming.They are applied to risk assessment problems in nuclear safety and coastal flooding, accounting for positivity and monotonicity constraints. As a by-product, we also show that the proposed GP approach provides an original framework for modelling Poisson processes with stochastic intensities
Dahlin, Johan. "Accelerating Monte Carlo methods for Bayesian inference in dynamical models." Doctoral thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125992.
Full textBorde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Vaičiulytė, Ingrida. "Markovo grandinės Monte-Karlo metodo tyrimas ir taikymas." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141209_112429-75205.
Full textMarkov chain Monte Carlo adaptive methods by creating computationally effective algorithms for decision-making of data analysis with the given accuracy are analyzed in this dissertation. The tasks for estimation of parameters of the multivariate distributions which are constructed in hierarchical way (skew t distribution, Poisson-Gaussian model, stable symmetric vector law) are described and solved in this research. To create the adaptive MCMC procedure, the sequential generating method is applied for Monte Carlo samples, introducing rules for statistical termination and for sample size regulation of Markov chains. Statistical tasks, solved by this method, reveal characteristics of relevant computational problems including MCMC method. Effectiveness of the MCMC algorithms is analyzed by statistical modeling method, constructed in the dissertation. Tests made with sportsmen data and financial data of enterprises, belonging to health-care industry, confirmed that numerical properties of the method correspond to the theoretical model. The methods and algorithms created also are applied to construct the model for sociological data analysis. Tests of algorithms have shown that adaptive MCMC algorithm allows to obtain estimators of examined distribution parameters in lower number of chains, and reducing the volume of calculations approximately two times. The algorithms created in this dissertation can be used to test the systems of stochastic type and to solve other statistical... [to full text]
Puengnim, Anchalee. "Classification de modulations linéaires et non-linéaires à l'aide de méthodes bayésiennes." Toulouse, INPT, 2008. http://ethesis.inp-toulouse.fr/archive/00000676/.
Full textThis thesis studies classification of digital linear and nonlinear modulations using Bayesian methods. Modulation recognition consists of identifying, at the receiver, the type of modulation signals used by the transmitter. It is important in many communication scenarios, for example, to secure transmissions by detecting unauthorized users, or to determine which transmitter interferes the others. The received signal is generally affected by a number of impairments. We propose several classification methods that can mitigate the effects related to imperfections in transmission channels. More specifically, we study three techniques to estimate the posterior probabilities of the received signals conditionally to each modulation
Fang, Youhan. "Efficient Markov Chain Monte Carlo Methods." Thesis, Purdue University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10809188.
Full textGenerating random samples from a prescribed distribution is one of the most important and challenging problems in machine learning, Bayesian statistics, and the simulation of materials. Markov Chain Monte Carlo (MCMC) methods are usually the required tool for this task, if the desired distribution is known only up to a multiplicative constant. Samples produced by an MCMC method are real values in N-dimensional space, called the configuration space. The distribution of such samples converges to the target distribution in the limit. However, existing MCMC methods still face many challenges that are not well resolved. Difficulties for sampling by using MCMC methods include, but not exclusively, dealing with high dimensional and multimodal problems, high computation cost due to extremely large datasets in Bayesian machine learning models, and lack of reliable indicators for detecting convergence and measuring the accuracy of sampling. This dissertation focuses on new theory and methodology for efficient MCMC methods that aim to overcome the aforementioned difficulties.
One contribution of this dissertation is generalizations of hybrid Monte Carlo (HMC). An HMC method combines a discretized dynamical system in an extended space, called the state space, and an acceptance test based on the Metropolis criterion. The discretized dynamical system used in HMC is volume preserving—meaning that in the state space, the absolute Jacobian of a map from one point on the trajectory to another is 1. Volume preservation is, however, not necessary for the general purpose of sampling. A general theory allowing the use of non-volume preserving dynamics for proposing MCMC moves is proposed. Examples including isokinetic dynamics and variable mass Hamiltonian dynamics with an explicit integrator, are all designed with fewer restrictions based on the general theory. Experiments show improvement in efficiency for sampling high dimensional multimodal problems. A second contribution is stochastic gradient samplers with reduced bias. An in-depth analysis of the noise introduced by the stochastic gradient is provided. Two methods to reduce the bias in the distribution of samples are proposed. One is to correct the dynamics by using an estimated noise based on subsampled data, and the other is to introduce additional variables and corresponding dynamics to adaptively reduce the bias. Extensive experiments show that both methods outperform existing methods. A third contribution is quasi-reliable estimates of effective sample size. Proposed is a more reliable indicator—the longest integrated autocorrelation time over all functions in the state space—for detecting the convergence and measuring the accuracy of MCMC methods. The superiority of the new indicator is supported by experiments on both synthetic and real problems.
Minor contributions include a general framework of changing variables, and a numerical integrator for the Hamiltonian dynamics with fourth order accuracy. The idea of changing variables is to transform the potential energy function as a function of the original variable to a function of the new variable, such that undesired properties can be removed. Two examples are provided and preliminary experimental results are obtained for supporting this idea. The fourth order integrator is constructed by combining the idea of the simplified Takahashi-Imada method and a two-stage Hessian-based integrator. The proposed method, called two-stage simplified Takahashi-Imada method, shows outstanding performance over existing methods in high-dimensional sampling problems.
Murray, Iain Andrew. "Advances in Markov chain Monte Carlo methods." Thesis, University College London (University of London), 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487199.
Full textGraham, Matthew McKenzie. "Auxiliary variable Markov chain Monte Carlo methods." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28962.
Full textXu, Jason Qian. "Markov Chain Monte Carlo and Non-Reversible Methods." Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/244823.
Full textBooks on the topic "Gaussian; Markov chain Monte Carlo methods"
Liang, Faming, Chuanhai Liu, and Raymond J. Carroll. Advanced Markov Chain Monte Carlo Methods. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669723.
Full textJoseph, Anosh. Markov Chain Monte Carlo Methods in Quantum Field Theories. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46044-0.
Full textLiang, F. Advanced Markov chain Monte Carlo methods: Learning from past samples. Hoboken, NJ: Wiley, 2010.
Find full textWinkler, Gerhard. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55760-6.
Full textNeal, Radford M. Markov chain Monte Carlo methods based on "slicing" the density function. Toronto: University of Toronto, Dept. of Statistics, 1997.
Find full textGerhard, Winkler. Image analysis, random fields and Markov chain Monte Carlo methods: A mathematical introduction. 2nd ed. Berlin: Springer, 2003.
Find full text1946-, Winkler Gerhard, ed. Image analysis, random fields and Markov chain Monte Carlo methods: A mathematical introduction. 2nd ed. Berlin: Springer, 2003.
Find full textCheng, Russell. Finite Mixture Examples; MAPIS Details. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0018.
Full textCarroll, Raymond, Faming Liang, and Chuanhai Liu. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples. Wiley & Sons, Incorporated, John, 2011.
Find full textCarroll, Raymond, Faming Liang, and Chuanhai Liu. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples. Wiley & Sons, Incorporated, John, 2010.
Find full textBook chapters on the topic "Gaussian; Markov chain Monte Carlo methods"
Barbu, Adrian, and Song-Chun Zhu. "Markov Chain Monte Carlo: The Basics." In Monte Carlo Methods, 49–70. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2971-5_3.
Full textBarbu, Adrian, and Song-Chun Zhu. "Data Driven Markov Chain Monte Carlo." In Monte Carlo Methods, 211–80. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2971-5_8.
Full textRizzo, Maria L. "Markov Chain Monte Carlo Methods." In Statistical Computing with R, 297–336. Second edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192760-11.
Full textLange, Kenneth. "Markov Chain Monte Carlo Methods." In Mathematical and Statistical Methods for Genetic Analysis, 142–63. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4757-2739-5_9.
Full textAsmussen, Søren, and Peter W. Glynn. "Markov Chain Monte Carlo Methods." In Stochastic Modelling and Applied Probability, 350–80. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-69033-9_13.
Full textChib, Siddhartha. "Markov Chain Monte Carlo Methods." In The New Palgrave Dictionary of Economics, 1–11. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_2042-1.
Full textAlbert, Jim. "Markov Chain Monte Carlo Methods." In Bayesian Computation with R, 117–52. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-92298-0_6.
Full textHörmann, Wolfgang, Josef Leydold, and Gerhard Derflinger. "Markov Chain Monte Carlo Methods." In Automatic Nonuniform Random Variate Generation, 363–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05946-3_14.
Full textÓ Ruanaidh, Joseph J. K., and William J. Fitzgerald. "Markov Chain Monte Carlo Methods." In Numerical Bayesian Methods Applied to Signal Processing, 69–95. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0717-7_4.
Full textRobert, Christian P., and Sylvia Richardson. "Markov Chain Monte Carlo Methods." In Discretization and MCMC Convergence Assessment, 1–25. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1716-9_1.
Full textConference papers on the topic "Gaussian; Markov chain Monte Carlo methods"
Pandita, Piyush, Jesper Kristensen, and Liping Wang. "Towards Scalable Gaussian Process Modeling." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97010.
Full textKhalil, Mohammad, Abhijit Sarkar, and Dominique Poirel. "Application of Bayesian Inference to the Flutter Margin Method: New Developments." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30041.
Full textGang, Jinhyuk, Jooho Choi, Bonghee Lee, and Jinwon Joo. "Material Parameter Identification of Viscoplastic Model for Solder Alloy in Electronics Package Using Bayesian Calibration." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28603.
Full textRunnalls, A. "Monte Carlo Markov chain methods for tracking." In IEE Colloquium on `Algorithms for Target Tracking'. IEE, 1995. http://dx.doi.org/10.1049/ic:19950668.
Full textWang, Zheng, Cong Ling, and Guillaume Hanrot. "Markov chain Monte Carlo algorithms for lattice Gaussian sampling." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875081.
Full textWadsley, Andrew W. "Markov Chain Monte Carlo Methods for Reserves Estimation." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2005. http://dx.doi.org/10.2523/10065-ms.
Full textWadsley, Andrew W. "Markov Chain Monte Carlo Methods for Reserves Estimation." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2005. http://dx.doi.org/10.2523/iptc-10065-ms.
Full textSomersalo, Erkki, Jari P. Kaipio, Marko J. Vauhkonen, D. Baroudi, and S. Jaervenpaeae. "Impedance imaging and Markov chain Monte Carlo methods." In Optical Science, Engineering and Instrumentation '97, edited by Randall L. Barbour, Mark J. Carvlin, and Michael A. Fiddy. SPIE, 1997. http://dx.doi.org/10.1117/12.279723.
Full textGerencser, L., S. D. Hill, Z. Vago, and Z. Vincze. "Discrete optimization, SPSA and Markov chain Monte Carlo methods." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1384507.
Full textKhalil, Mohammad, Abhijit Sarkar, and Dominique Poirel. "Parameter Estimation of a Fluttering Aeroelastic System in the Transitional Reynolds Number Regime." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30047.
Full textReports on the topic "Gaussian; Markov chain Monte Carlo methods"
Doss, Hani. Statistical Inference for Coherent Systems from Partial Information and Markov Chain Monte Carlo Methods. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada305676.
Full textDoss, Hani. Studies in Reliability Theory and Survival Analysis and in Markov Chain Monte Carlo Methods. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada367895.
Full textDoss, Hani. Studies in Reliability Theory and Survival Analysis and in Markov Chain Monte Carlo Methods. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada379998.
Full textGlaser, R., G. Johannesson, S. Sengupta, B. Kosovic, S. Carle, G. Franz, R. Aines, et al. Stochastic Engine Final Report: Applying Markov Chain Monte Carlo Methods with Importance Sampling to Large-Scale Data-Driven Simulation. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/15009813.
Full text