Academic literature on the topic 'Gaussian approximation potentials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gaussian approximation potentials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gaussian approximation potentials"
Bartók, Albert P., and Gábor Csányi. "Gaussian approximation potentials: A brief tutorial introduction." International Journal of Quantum Chemistry 115, no. 16 (April 27, 2015): 1051–57. http://dx.doi.org/10.1002/qua.24927.
Full textKlawohn, Sascha, James R. Kermode, and Albert P. Bartók. "Massively parallel fitting of Gaussian approximation potentials." Machine Learning: Science and Technology 4, no. 1 (February 16, 2023): 015020. http://dx.doi.org/10.1088/2632-2153/aca743.
Full textBartók, Albert P., and Gábor Csányi. "Erratum: Gaussian approximation potentials: A brief tutorial introduction." International Journal of Quantum Chemistry 116, no. 13 (April 21, 2016): 1049. http://dx.doi.org/10.1002/qua.25140.
Full textHiroshima, Fumio. "A Scaling Limit of a Hamiltonian of Many Nonrelativistic Particles Interacting with a Quantized Radiation Field." Reviews in Mathematical Physics 09, no. 02 (February 1997): 201–25. http://dx.doi.org/10.1142/s0129055x97000075.
Full textJohn, S. T., and Gábor Csányi. "Many-Body Coarse-Grained Interactions Using Gaussian Approximation Potentials." Journal of Physical Chemistry B 121, no. 48 (November 29, 2017): 10934–49. http://dx.doi.org/10.1021/acs.jpcb.7b09636.
Full textFUKUKAWA, K., Y. FUJIWARA, and Y. SUZUKI. "GAUSSIAN NONLOCAL POTENTIALS FOR THE QUARK-MODEL BARYON–BARYON INTERACTIONS." Modern Physics Letters A 24, no. 11n13 (April 30, 2009): 1035–38. http://dx.doi.org/10.1142/s021773230900053x.
Full textSÉNÉCHAL, DAVID. "CHAOS IN THE HERMITIAN ONE-MATRIX MODEL." International Journal of Modern Physics A 07, no. 07 (March 20, 1992): 1491–506. http://dx.doi.org/10.1142/s0217751x9200065x.
Full textDemiroğlu, İlker, Yenal Karaaslan, Tuğbey Kocabaş, Murat Keçeli, Álvaro Vázquez-Mayagoitia, and Cem Sevik. "Computation of the Thermal Expansion Coefficient of Graphene with Gaussian Approximation Potentials." Journal of Physical Chemistry C 125, no. 26 (June 24, 2021): 14409–15. http://dx.doi.org/10.1021/acs.jpcc.1c01888.
Full textExl, Lukas, Norbert J. Mauser, and Yong Zhang. "Accurate and efficient computation of nonlocal potentials based on Gaussian-sum approximation." Journal of Computational Physics 327 (December 2016): 629–42. http://dx.doi.org/10.1016/j.jcp.2016.09.045.
Full textOLSEN, R. A., and F. RAVNDAL. "EFFECTIVE POTENTIALS FOR ϕ4-THEORY IN 2+1 DIMENSIONS." Modern Physics Letters A 09, no. 28 (September 14, 1994): 2623–35. http://dx.doi.org/10.1142/s021773239400246x.
Full textDissertations / Theses on the topic "Gaussian approximation potentials"
DRAGONI, DANIELE. "Energetics and thermodynamics of α-iron from first-principles and machine-learning potentials." Doctoral thesis, École Polytechnique Fédérale de Lausanne, 2016. http://hdl.handle.net/10281/231122.
Full textMorgan, David C. "A Gaussian approximation to the effective potential." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26500.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Bartók-Pártay, Albert. "Gaussian approximation potential : an interatomic potential derived from first principles Quantum Mechanics." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608570.
Full textBooks on the topic "Gaussian approximation potentials"
Bartόk-Pártay, Albert. The Gaussian Approximation Potential. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9.
Full textThe Gaussian approximation potential: An interatomic potential derived from first principles quantum mechanics. Heidelberg: Springer, c2010., 2010.
Find full textBartók-Pártay, Albert. The Gaussian Approximation Potential: An Interatomic Potential Derived from First Principles Quantum Mechanics. Springer, 2012.
Find full textBartók-Pártay, Albert. The Gaussian Approximation Potential: An Interatomic Potential Derived from First Principles Quantum Mechanics. Springer, 2011.
Find full textAkemann, Gernot. Random matrix theory and quantum chromodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0005.
Full textBook chapters on the topic "Gaussian approximation potentials"
Bartók-Pártay, Albert. "Interatomic Potentials." In The Gaussian Approximation Potential, 33–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9_4.
Full textBartók-Pártay, Albert. "Introduction." In The Gaussian Approximation Potential, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9_1.
Full textBartók-Pártay, Albert. "Representation of Atomic Environments." In The Gaussian Approximation Potential, 5–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9_2.
Full textBartók-Pártay, Albert. "Gaussian Process." In The Gaussian Approximation Potential, 23–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9_3.
Full textBartók-Pártay, Albert. "Computational Methods." In The Gaussian Approximation Potential, 51–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9_5.
Full textBartók-Pártay, Albert. "Results." In The Gaussian Approximation Potential, 57–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9_6.
Full textBartók-Pártay, Albert. "Conclusion and Further Work." In The Gaussian Approximation Potential, 83–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9_7.
Full textBartók-Pártay, Albert. "Appendices." In The Gaussian Approximation Potential, 85–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14067-9_8.
Full textBarker, James, Johannes Bulin, Jan Hamaekers, and Sonja Mathias. "LC-GAP: Localized Coulomb Descriptors for the Gaussian Approximation Potential." In Scientific Computing and Algorithms in Industrial Simulations, 25–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62458-7_2.
Full textWudka, José. "Gaussian Approximations and Renormalization of Effective Potentials in 1+1 vs Higher Dimensions." In Variational Calculations In Quantum Field Theory, 120–26. WORLD SCIENTIFIC, 1988. http://dx.doi.org/10.1142/9789814390187_0011.
Full textConference papers on the topic "Gaussian approximation potentials"
Drühl, Kai J. "Solutions of the Raman wave equation for focused pump beams." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.tua7.
Full textFedorov, M. V., and J. Peatross. "Strong-Field Dipole Emission of an Ionized Electron in the Vicinity of a Coulomb Potential." In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.mc9.
Full textMaignan, Aude, and Tony Scott. "Quantum Clustering Analysis: Minima of the Potential Energy Function." In 9th International Conference on Signal, Image Processing and Pattern Recognition (SPPR 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101914.
Full textGallatin, Gregg M., and Phil Gould. "Laser focusing of atomic beams." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.thbb4.
Full textKocák, Tomáš, and Aurélien Garivier. "Epsilon Best Arm Identification in Spectral Bandits." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/363.
Full textWang, B. X., and C. Y. Zhao. "Polarized Radiative Transfer in Anisotropic Disordered Media With Short-Range Order." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-5051.
Full text