Academic literature on the topic 'Gauge theorie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gauge theorie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gauge theorie"
Reshetnyak, Alexander. "On gauge independence for gauge models with soft breaking of BRST symmetry." International Journal of Modern Physics A 29, no. 30 (December 8, 2014): 1450184. http://dx.doi.org/10.1142/s0217751x1450184x.
Full textLAVELLE, MARTIN, and DAVID MCMULLAN. "GAUGE FIXING, UNITARITY AND PHASE SPACE PATH INTEGRALS." International Journal of Modern Physics A 07, no. 21 (August 20, 1992): 5245–79. http://dx.doi.org/10.1142/s0217751x92002404.
Full textCLARK, T. E., C. H. LEE, and S. T. LOVE. "SUPERSYMMETRIC TENSOR GAUGE THEORIES." Modern Physics Letters A 04, no. 14 (July 20, 1989): 1343–53. http://dx.doi.org/10.1142/s0217732389001532.
Full textKogan, Ian I., Alex Lewis, and Oleg A. Soloviev. "Gauge Dressing of 2D Field Theories." International Journal of Modern Physics A 12, no. 13 (May 20, 1997): 2425–36. http://dx.doi.org/10.1142/s0217751x97001419.
Full textNakkagawa, Hisao, Akira Niégawa, and Bernard Pire. "Gauge (in)dependence of the fermion damping rate in hot gauge theories." Canadian Journal of Physics 71, no. 5-6 (May 1, 1993): 269–75. http://dx.doi.org/10.1139/p93-043.
Full textKobes, R., G. Kunstatter, and K. Mak. "Damping of fermions in hot gauge theories." Canadian Journal of Physics 71, no. 5-6 (May 1, 1993): 252–55. http://dx.doi.org/10.1139/p93-040.
Full textWess, Julius. "Gauge Theories beyond Gauge Theories." Fortschritte der Physik 49, no. 4-6 (May 2001): 377–85. http://dx.doi.org/10.1002/1521-3978(200105)49:4/6<377::aid-prop377>3.0.co;2-2.
Full textWess, Julius. "Gauge Theories beyond Gauge Theories." Fortschritte der Physik 49, no. 4-6 (May 2001): 377. http://dx.doi.org/10.1002/1521-3978(200105)49:4/6<377::aid-prop377>3.3.co;2-u.
Full textMasood, Syed, Mushtaq B. Shah, and Prince A. Ganai. "Spontaneous symmetry breaking in Lorentz violating background." International Journal of Geometric Methods in Modern Physics 15, no. 02 (January 24, 2018): 1850021. http://dx.doi.org/10.1142/s0219887818500214.
Full textLitim, Daniel F., and Jan M. Pawlowski. "Renormalisation group flows for gauge theories in axial gauges." Journal of High Energy Physics 2002, no. 09 (September 23, 2002): 049. http://dx.doi.org/10.1088/1126-6708/2002/09/049.
Full textDissertations / Theses on the topic "Gauge theorie"
LEONI, MARTA. "SCATTERING AMPLITUDES IN SUPERCONFORMAL GAUGE THEORIES." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/259356.
Full textMaas, Axel Torsten. "The high-temperature phase of Yang-Mills theory in Landau gauge." Phd thesis, [S.l. : s.n.], 2004. http://elib.tu-darmstadt.de/diss/000504.
Full textBERATTO, EMANUELE. "Infrared properties of three dimensional gauge theories via supersymmetric indices." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402369.
Full textThe thesis focuses on the study of various supersymmetric three-dimensional gauge theories, mainly with at least N = 3 supersymmetry. We range between very different theories and discuss several different aspects with the aim of validate our assumptions. Therefore, the leitmotiv of this work resides not so much in the topics we cover, but rather in the method that we use to obtain such results. This, in fact, consists in analysing the gauge invariant operators of the theory forming the so-called chiral ring. By having access to the chiral ring structure of the theory and to the operators forming it, we gain insight to the properties that needed to confirm or debunk our hypothesis. We will essentially use two different tools for counting and studying such chiral operators: the Hilbert series and the three-dimensional superconformal index. Thanks to the Hilbert series, we propose a quiver description for the mirror theories of the circle reduction of four-dimensional twisted χ(a2N) theories of class S. These mirrors are, in fact, described by "almost" star-shaped quivers containing both unitary and orthosymplectic gauge groups, along with hypermultiplets in the fundamental representation. On the other hand, by means of the superconformal index, we investigate the N = 2 preserving exactly marginal operators of the so called S-fold theories. In particular, we focus on two families of such theories, constructed by gauging the diagonal flavour symmetry of the T(U(N)) and T[2,12][2,12 ](SU(4)) theories. In addition, we also examine in detail the zero-form and one-form global symmetries of the Aharony-Bergman-Jafferis theories, with at least N = 6 supersymmetry, and with both orthosymplectic and unitary gauge groups. A number of dualities among all these theories are discovered and studied using the aforementioned tools.
COCCIA, LORENZO. "On the planar limit of 3d T_rho^sigma[SU(N)] theories." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364338.
Full textIn this thesis we discuss a limit of 3d T^sigma _rho[SU(N)] quiver gauge theories in which the number of nodes is large and the ranks scale quadratically with the length of the quiver. The sphere free energies and topologically twisted indices are obtained using supersymmetric localization. Both scale quartically with the length of the quiver and quadratically with $N$, with trilogarithm functions depending on the quiver data as coefficients. Previously discussed theories with $N^2 \ln N$ scaling arise as limiting cases. The IR SCFTs have well-behaved supergravity duals in Type IIB: the free energies match precisely with holographic results and the indices, in case of a universal twist, correctly reproduce the entropy of an universal black hole which can be embedded in the holographically dual solutions. Each balanced 3d quiver theory is linked to a 5d parent, whose matrix model is related and dominated by the same saddle point, leading to close relations between BPS observables. In particular, we compute the expectation value of Wilson loops in antisymmetric representations, finding perfect agreement with the gravity side in a particular example.
Sundin, Per. "Perturbative quantization of superstring theory in Anti de-Sitter spaces." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16320.
Full textIn this thesis we study superstring theory on AdS$_5\, \times\,$S$^5$, AdS$_3\,\times\,$S$^3$ and $\adsfour$. A shared feature of each theory is that their corresponding symmetry algebras allows for a decomposition under a $\mathbb{Z}_4$ grading. The grading can be realized through an automorphism which allows for a convenient construction of the string Lagrangians directly in terms of graded components. We adopt a uniform light-cone gauge and expand in a near plane wave limit, or equivalently, an expansion in transverse string coordinates. With a main focus on the two critical string theories, we perform a perturbative quantization up to quartic order in the number of fields. Each string theory is, through holographic descriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures imply that the conformal dimensions of single trace operators in gauge theory should be equal to the energy of string states. What is more, through the use of integrable methods, one can write down a set of Bethe equations whose solutions encode the full spectral problem. One main theme of this thesis is to match the predictions of these equations, written in a language suitable for the light-cone gauge we employ, against explicit string theory calculations. We do this for a large class of string states and the perfect agreement we find lends strong support for the validity of the conjectures.
Chimento, S. "BLACK HOLE DYNAMICS IN GENUINE AND FAKE GAUGED SUPERGRAVITY." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/259452.
Full textMetzger, Steffen. "Supersymmetric Gauge Theories from String Theory." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00011979.
Full textDans une première partie nous étudions la construction d'une théorie Yang-Mills supersymétrique, couplée à un superchamp chiral dans la représentation adjointe, à partir de la théorie des cordes de type IIB sur une variété Calabi-Yau non compacte, avec des D-branes qui enroulent certaines sousvariétés. Les propriétés de
la théorie de jauge sont alors reflétées dans la structure
géométrique de la variété Calabi-Yau. En particulier, on peut calculer en principe le superpotentiel effectif de basse énergie qui décrit la structure des vides de la théorie de jauge en utilisant la théorie des cordes (topologiques). Malheureusement, en pratique, ceci n'est pas faisable. Il est remarquable qu'on puisse cependant montrer que la dynamique de basse énergie de la
théorie de jauge est codée par la géométrie d'une autre variété Calabi-Yau non compacte, reliée à la première par une transition géométrique. La théorie des cordes de type IIB sur cette deuxième variété, dans laquelle sont allumés des flux de fond appropriés, génère une théorie de jauge en quatre dimensions, qui n'est d'autre que la théorie effective de basse énergie de la théorie de
jauge originale. Ainsi, pour obtenir le superpotentiel effectif de basse énergie il suffit simplement de calculer certaines intégrales dans la deuxième géométrie Calabi-Yau, ce qui est faisable, au moins perturbativement. On trouve alors que le problème extrêmement difficile d'étudier la dynamique de basse
énergie d'une théorie de jauge non Abelienne a été réduit à celui de calculer certaines intégrales dans une géométrie connue. On peut démontrer que ces intégrales sont intimement reliées à certaines quantités dans un modèle de matrices holomorphes, et on peut alors calculer le superpotentiel effectif comme fonction de
certaines expressions du model de matrices. Il est remarquable que la série perturbative du modèle de matrices calcule alors le superpotentiel effectif non-perturbatif.
Ces relations étonnantes ont été découvertes et élaborée par plusieurs auteurs au cours des dernières années. Les résultats originaux de cette thèse comprennent la forme précise des relations de la ``géométrie spéciale" sur une variété Calabi-Yau
non compacte. Nous étudions en détail comment ces intégrales géométriques dépendent du cut-off, et leur relation à l'énergie libre du modèle de matrices. En particulier, sur une variété Calabi-Yau non compacte nous proposons une forme bilineaire sur le
produit direct de l'espace des formes avec l'espace des cycles, qui élimine toutes les divergences, sauf la divergence logarithmique. Notre analyse détaillée du modèle de matrices holomorphes clarifie aussi plusieurs aspects reliés à la méthode du col de ce modèle de matrices. Nous montrons en particulier qu'exiger une densité spectrale réelle restreint la forme de la
courbe Riemannienne qui apparaît dans la limite planaire du modèle de matrices. Çela nous donne des contraintes sur la forme du contour sur lequel les valeurs propres sont intégrées. Tous ces
résultats sont utilisés pour calculer explicitement l'énergie libre planaire d'un modèle de matrices avec un potentiel cubique.
La deuxième partie de cette thèse concerne la génération de théories de jauge supersymétriques en quatre dimensions comportant des aspects caractéristiques du modèle standard à partir de
compactifications de la supergravité en onze dimensions sur une variété G_2. Si cette variété contient une singularité conique, des fermions chiraux apparaissent dans la théorie de jauge en quatre dimensions ce qui conduit potentiellement à des anomalies. Nous montrons que, localement à chaque singularité, les anomalies
correspondantes sont annulées par une non-invariance de l'action classique au singularités (``anomaly inflow"). Malheureusement, aucune métrique d'une variété G_2 compacte n'est connue explicitement. Nous construisons ici des familles de métriques sur des variétés compactes faiblement G_2, qui contiennent deux singularités coniques. Les variétés faiblement G_2 ont des propriétés semblables aux propriétés des variétés G_2, et alors ces exemples explicites pourraient être utiles pour mieux comprendre la situation générique. Finalement, nous regardons la
relation entre la supergravité en onze dimensions et la théorie des cordes hétérotiques E_8\times E_8. Nous étudions en détail les anomalies qui apparaissent si la supergravité est formulée sur le produit d'un espace de dix dimensions et un intervalle. Encore une fois nous trouvons que les anomalies s'annulent localement sur
chaque bord de l'intervalle si on modifie l'action classique d'une façon appropriée.
Wong, Jin-Mann. "Gauge theories and geometry in non-perturbative string theory." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/gauge-theories-and-geometry-in-nonperturbative-string-theory(4820d230-9e36-4b13-8ba9-13856b90b858).html.
Full textEDALATI, AHMADSARAEI MOHAMMAD. "TOPICS IN SUPERSYMMETRIC GAUGE THEORIES AND THE GAUGE-GRAVITY DUALITY." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1184947984.
Full textLowe, A. P. "Lattice gauge-Higgs theories." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378268.
Full textBooks on the topic "Gauge theorie"
Fatibene, Lorenzo. Natural and gauge natural formalism for classical field theorie[s]: A geometric perspective including spinors and gauge theories. Dordrecht: Kluwer Academic, 2002.
Find full textFatibene, Lorenzo, and Mauro Francaviglia. Natural and Gauge Natural Formalism for Classical Field Theorie. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8.
Full text1950-, Müller Berndt, ed. Gauge theory of weak interactions. 4th ed. Heidelberg: Springer, 2009.
Find full textPokorski, Stefan. Gauge field theories. Cambridge: Cambridge University Press, 1987.
Find full textFrampton, Paul H. Gauge field theories. Menlo Park, Calif: Benjamin/Cummings, 1987.
Find full textPokorski, Stefan. Gauge field theories. Cambridge: Cambridge University Press, 1987.
Find full textGauge field theories. 2nd ed. New York: Wiley, 2000.
Find full textGauge field theories. 2nd ed. Cambridge, U.K: Cambridge University Press, 2000.
Find full textGauge field theories. 3rd ed. Weinheim: Wiley-VCH, 2008.
Find full textA, Shifman Mikhail, ed. Instantons in gauge theories. Singapore: World Scientific, 1994.
Find full textBook chapters on the topic "Gauge theorie"
Fatibene, Lorenzo, and Mauro Francaviglia. "Gauge Natural Theories." In Natural and Gauge Natural Formalism for Classical Field Theorie, 269–91. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_8.
Full textFatibene, Lorenzo, and Mauro Francaviglia. "Gauge Natural Bundles." In Natural and Gauge Natural Formalism for Classical Field Theorie, 125–42. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_5.
Full textFatibene, Lorenzo, and Mauro Francaviglia. "Spinor Theories." In Natural and Gauge Natural Formalism for Classical Field Theorie, 325–47. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_10.
Full textFatibene, Lorenzo, and Mauro Francaviglia. "Natural Theories." In Natural and Gauge Natural Formalism for Classical Field Theorie, 219–68. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_7.
Full textFatibene, Lorenzo, and Mauro Francaviglia. "Fiber Bundles." In Natural and Gauge Natural Formalism for Classical Field Theorie, 9–51. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_1.
Full textFatibene, Lorenzo, and Mauro Francaviglia. "Final word." In Natural and Gauge Natural Formalism for Classical Field Theorie, 349–52. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_11.
Full textFatibene, Lorenzo, and Mauro Francaviglia. "Jet Bundles." In Natural and Gauge Natural Formalism for Classical Field Theorie, 53–78. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_2.
Full textFatibene, Lorenzo, and Mauro Francaviglia. "Principal Bundles and Connections." In Natural and Gauge Natural Formalism for Classical Field Theorie, 79–112. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_3.
Full textFatibene, Lorenzo, and Mauro Francaviglia. "Natural Bundles." In Natural and Gauge Natural Formalism for Classical Field Theorie, 113–24. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_4.
Full textFatibene, Lorenzo, and Mauro Francaviglia. "The Lagrangian Formalism." In Natural and Gauge Natural Formalism for Classical Field Theorie, 151–217. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_6.
Full textConference papers on the topic "Gauge theorie"
KIM, SEYONG. "LATTICE GAUGE THEORY OF GAUGED NAMBU–JONA-LASINIO MODEL." In Proceedings of the Fourth International Workshop on Particle Physics and the Early Universe. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799678_0038.
Full textJurčo, B. "Noncommutative gauge theories and Kontsevich’s formality theorem." In NEW DEVELOPMENTS IN FUNDAMENTAL INTERACTION THEORIES: 37th Karpacz Winter School of Theoretical Physics. AIP, 2001. http://dx.doi.org/10.1063/1.1419331.
Full textBicudo, Pedro, Daniele Binosi, Nuno Cardoso, Orlando Oliveira, and Paulo Silva. "Gauge fixing and the gluon propagator in renormalizable xi gauges." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0317.
Full textTeper, Michael J. "Lattice Field Theory and SU(N) Gauge Theories." In Proceedings of the International School of Subnuclear Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812796653_0001.
Full textHILLER, JOHN R. "NONPERTURBATIVE SOLUTION OF YUKAWA THEORY AND GAUGE THEORIES." In Proceedings of the Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702326_0044.
Full textSvetitsky, Benjamin. "Conformal or confining -- results from lattice gauge theory for higher-representation gauge theories." In Xth Quark Confinement and the Hadron Spectrum. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.171.0271.
Full textNEKRASOV, NIKITA A. "Localizing gauge theories." In XIVth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812704016_0066.
Full textPetronzio, Roberto. "Lattice gauge theories." In Proceedings of the XXVI international conference on high energy physics. AIP, 1992. http://dx.doi.org/10.1063/1.43496.
Full textMaas, Axel, and Björn Hendrik Wellegehausen. "G2 gauge theories." In The 30th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.164.0080.
Full textGOLTERMAN, MAARTEN, and YIGAL SHAMIR. "LATTICE CHIRAL GAUGE THEORIES THROUGH GAUGE FIXING." In Proceedings of the 2002 International Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812795120_0021.
Full textReports on the topic "Gauge theorie"
Parke, Stephen J. Amplitudes in Gauge Theories. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1568838.
Full textAspinwall, Paul S., and Lukasz M. Fidkowski. Superpotentials for Quiver Gauge Theories. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/890443.
Full textParke, S. J. Hard amplitudes in gauge theories. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/6094053.
Full textTolksdorf, Jurgen. Gauge Theories with Spontaneously Broken Gauge Symmetry, Connections and Dirac Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-141-162.
Full textH. Qin, W. M. Tang, and W. W. Lee. Gyrocenter-gauge kinetic theory. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/759298.
Full textSchmaltz, Martin. New Constraints on Chiral Gauge Theories. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/10074.
Full textBrodsky, Stanley J. Gauge Theories on the Light-Front. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/812634.
Full textHellerman, Simeon. Lattice Gauge Theories Have Gravitational Duals. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/801802.
Full textBrodsky, Stanley J. Light-Front Quantization of Gauge Theories. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/812973.
Full textCraig, Nathaniel, Rouven Essig, Anson Hook, and Gonzalo Torroba. New Dualities in Supersymmetric Chiral Gauge Theories. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1022538.
Full text