Academic literature on the topic 'Gas viscosity measurement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas viscosity measurement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gas viscosity measurement"
Perez, M., L. Salvo, M. Suéry, Y. Bréchet, and M. Papoular. "Contactless viscosity measurement by oscillations of gas-levitated drops." Physical Review E 61, no. 3 (March 1, 2000): 2669–75. http://dx.doi.org/10.1103/physreve.61.2669.
Full textYoshimura, Kosuke, Temujin Uehara, Kan'ei Shinzato, Tatsuya Hisatsugu, Naoya Sakoda, Masamichi Kohno, and Yasuyuki Takata. "Development of Gas Viscosity Measurement System with Vibrating Wire Method." Netsu Bussei 28, no. 1 (2015): 15–21. http://dx.doi.org/10.2963/jjtp.28.15.
Full textPerez, M., J. C. Barbé, C. Patroix, Y. Bréchet, L. Salvo, M. Suéry, and M. Papoular. "Contactless viscosity measurement by a gas film levitated droplet technique." Matériaux & Techniques 88, no. 9-10 (2000): 19–24. http://dx.doi.org/10.1051/mattech/200088090019.
Full textKOBAYASHI, Yohei, Akira KUROKAWA, and Masaru HIRATA. "Viscosity Measurement of Hydrogen-Methane Mixed Gas for Future Energy Systems." Journal of Thermal Science and Technology 2, no. 2 (2007): 236–44. http://dx.doi.org/10.1299/jtst.2.236.
Full textSahu, Abhishek, and Saurabh Kumar. "Alternative Method for Measurement of Apparent Viscosity of Gas Solid Fluidized Bed." Research Journal of Engineering and Technology 8, no. 3 (2017): 174. http://dx.doi.org/10.5958/2321-581x.2017.00028.9.
Full textShimokawa, Y., Y. Matsuura, T. Hirano, and K. Sakai. "Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system." Review of Scientific Instruments 87, no. 12 (December 2016): 125105. http://dx.doi.org/10.1063/1.4968026.
Full textYusibani, E., P. L. Woodfield, K. Shinzato, Y. Takata, and M. Kohno. "A compact curved vibrating wire technique for measurement of hydrogen gas viscosity." Experimental Thermal and Fluid Science 47 (May 2013): 1–5. http://dx.doi.org/10.1016/j.expthermflusci.2012.11.008.
Full textStanimirovic, Andrej, Emila Zivkovic, Divna Majstorovic, and Mirjana Kijevcanin. "Transport properties of binary liquid mixtures - candidate solvents for optimized flue gas cleaning processes." Journal of the Serbian Chemical Society 81, no. 12 (2016): 1427–39. http://dx.doi.org/10.2298/jsc160623083s.
Full textXie, Wei-Qi, and Xin-Sheng Chai. "Measurement of Viscosity in Polymer Solutions by a Tracer-based Gas Chromatographic Technique." Chemistry Letters 46, no. 8 (August 5, 2017): 1161–64. http://dx.doi.org/10.1246/cl.170320.
Full textBaba, Archibong-Eso, Aliyu, Ribeiro, Lao, and Yeung. "Slug Translational Velocity for Highly Viscous Oil and Gas Flows in Horizontal Pipes." Fluids 4, no. 3 (September 12, 2019): 170. http://dx.doi.org/10.3390/fluids4030170.
Full textDissertations / Theses on the topic "Gas viscosity measurement"
Hunter, Ian Norman. "The viscosity of gaseous mixtures." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253386.
Full textBentz, Julie A. "Measurements of viscosity, velocity slip coefficients and tangential momentum accommodation coefficients for gas mixtures using a spinning rotor gauge /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9946244.
Full textHumberg, Kai [Verfasser], Roland [Gutachter] Span, and Markus [Gutachter] Richter. "Viscosity measurements of binary gas mixtures and analysis of approaches for the modeling of mixture viscosities / Kai Humberg ; Gutachter: Roland Span, Markus Richter ; Fakultät für Maschinenbau." Bochum : Ruhr-Universität Bochum, 2020. http://d-nb.info/1223176126/34.
Full textDias, Rosana Maria Alves. "Micro-g MEMS accelerometer based on time measurement." Doctoral thesis, 2013. http://hdl.handle.net/1822/24893.
Full textThe MEMS sensor market has experienced an amazing growth on the last decades, with accelerometers being one of the pioneers pushing the technology into widespread use with its applications on automotive industry. Since then, accelerometers have been gradually replacing conventional sensors due mainly to its lower cost. As the performance of MEMS accelerometers improves, the applications range where they replace conventional accelerometers increases. Nowadays, there is still a large range of applications for which suitable MEMS accelerometers are yet to be developed. This work focuses on the development of a high performance accelerometer taking advantage of the high sensitivity of a non-linear phenomenon that occurs in electrostatically actuated movable capacitive microdevices: electrostatic pull-in. Although the pull-in effect has been known for more than 40 years, it is usually avoided when dealing with movable microstructures as it leads to a region of instability, where the position of movable parts cannot be fully controlled. In the last decade, the pull-in displacement profile of 1-DOF parallel-plates devices has been the subject of research that revealed the presence of a so-called meta-stability. This meta-stability occurs in specific damping and voltage actuation conditions and translates as a non-linear displacement profile, rather than simple time-of-flight. This feature makes the pull-in time duration significantly longer, and it happens to be extremely sensitive to intervenient forces, such as external acceleration. Basically, measuring the pull-in time of specifically designed microstructures (while maintaining the other parameters constant) allows the measurement of the external acceleration that acts on the system. Using a pull-in time measurement rather than direct capacitance/displacement/acceleration transduction presents several advantages. The most important is the fact that time can be measured very accurately with technology readily available. For instance, if one uses a 100MHz clock on the time counting mechanism, which corresponds to a time measurement resolution of 100 ns, given the 0.26 μs/μg sensitivity of the accelerometer developed in this work, an acceleration resolution of 0.38 μg could be achieved. One of the main challenges of the time based accelerometer development is the damper design, as damping is of outmost importance in defining the accelerometer performance parameters, namely sensitivity and noise. A new squeeze-film damper geometry design has been presented and studied. It consists of flow channels implemented on the parallel-plates that relieve the squeeze-film damping pressures generated when the device is moving. This geometry has proved to be very effective in increasing the capacitance/damping ratio in parallel-plates, which was up to now a great challenge of in-plane parallel-plates design. This work reports the development of an open-loop accelerometer with 0.26 μs/μg sensitivity and 2.7 μg /√Hz noise performance. The MEMS structures used for its experimental implementation were fabricated using a commercially available SOI micromachining process. The main drawbacks of this accelerometer were the low system bandwidth and non-linearity. Closed-loop approaches using electrostatic feedback were explored in this work in order to overcome these limitations, and the dynamic range was successfully extended to 109 dB along with improvements on the linearity. From the thorough damping study performed in this work, a new application for the pullin time using the same microstructures was developed. It consists of a gas viscosity sensing application. At the low frequencies operated, damping is directly proportional to the viscosity of the gas medium. The experimental results obtained with gases with viscosities ranging from 8 μP to 18 μP have shown a sensitivity of 2 ms/μP, making the pull-in time viscosity sensor a very promising approach.
Nas últimas décadas assistiu-se a um imenso crescimento no mercado de sensors MEMS, tendo os acelerómetros sido uma das maiores forças impulsionadoras desse crescimento devido às suas aplicações na indústria automóvel. Desde então, a gama de aplicações destes sensores expandiu-se multidirecionalmente, novas aplicações emergiram e acelerómetros convencionais em aplicações já existentes foram substituídos por acelerómetros MEMS. Isto deve-se essencialmente ao seu baixo custo e pequenas dimensões. Há no entanto, aplicações para as quais o desempenho dos acelerómetros MEMS ainda não é suficiente. O objectivo deste trabalho é desenvolver um acelerómetro de elevado desempenho tirando partido da elevada sensibilidade do efeito de pull-in a forças externas tais como a aceleração. O efeito de pull-in, descrito pela primeira vez há mais de 40 anos, ocorre em dispositivos capacitivos com partes móveis. Este é um efeito não-linear geralmente evitado/indesejado, uma vez que se traduz numa instabilidade que dificulta o controlo da posição das partes móveis. Na última década foi dedicada alguma investigaçao científica a este fenómeno, tendo sido descoberta a existência de um perfil de deslocamento particular, denominado meta-estabilidade, em determinadas condições de amortecimento e de actuação electrostática. Esta característica do pull-in torna a sua duração extremamente sensível a variações nas forças intervenientes, incluindo aceleração externa. Assim sendo, a medição do tempo de pull-in de micro-estruturas especificamente concebidas para o efeito pode ser utilizada para medir aceleração. Esta abordagem apresenta vantagens significativas em comparação com a transdução direta de capacidade para aceleração (caso da generalidade dos acelerómetros capacitivos). Nomeadamente, a variável tempo pode ser medida com elevada precisão com relativa facilidade e sem necessidade de desenvolvimentos tecnológicos (o que não é o caso da medição de capacidade). Por exemplo, o uso de uma frequência de relógio de 100 MHz no mecanismo de contagem de tempo permite uma resolução de 100 ns na medição de tempo, o que corresponde, considerando a sensibilidade de 0.26 μs/μg do acelerómetro desenvolvido neste trabalho, a uma resolução na medição de acceleração de 0.38μg. Um dos maiores desafios do desenvolvimento de um acelerómetro baseado no tempo de pull-in é o desenho do amortecedor, pois a sensibilidade e o ruído/resolução do sensor final dependem do nível de amortecimento. Uma nova geometria para o amortecedor (estabelecido por um mecanismo de squeeze-film) é apresentada e estudada neste trabalho. Esta consiste em abrir canais nas placas paralelas facilitando assim o fluxo de ar quando as placas se movem. Ficou provado que esta geometria é eficaz na redução da razão capacidade/amortecimento, o que constituía um problema recorrente no desenho de dispositivos de placas paralelas in-plane. Neste trabalho é descrito o desenvolvimento de um acelerómetro em malha aberta com uma sensibilidade de 0.26 μs/μg e 2.7 μg /√Hz de ruído. As estruturas MEMS utilizadas na sua implementação foram fabricadas num processo de microfabrico SOI comercial. As principais desvantagens desta abordagem são pequena gama dinâmica devido à não-linearidade da resposta. Neste trabalho foram exploradas abordagens em malha fechada, usando feedback electrostático, de modo a ultrapassar estas limitações, tendo sido alcançado um aumento da gama dinâmica para 109 dB, com grandes melhoria na linearidade. Uma nova aplicação para o tempo de pull-in foi também desenvolvida: medição de viscosidade de gases. Uma vez que as microstruturas utilizadas são operadas a baixas frequências, o amortecimento é proporcional à viscosidade. O estudo efectuado mostra que o tempo de pull-in é muito sensível ao amortecimento e portanto a variações de viscosidade. Os resultados experimentais obtidos com gases e misturas de gases com viscosidades entre 8 μP e 18 μP mostraram uma sensibilidade de 2 ms/μP, confirmando o potencial da utilização de tempo de pull-in na medição de viscosidade.
The author, Rosana Maria Alves Dias, was supported by Portuguese Foundation for Science and Technology (SFRH/BD/46030/2008).
Books on the topic "Gas viscosity measurement"
Singh, Jag J. Measurement of viscosity of gaseous mixtures at atmospheric pressure. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Find full textCenter, Lewis Research, ed. Measurement of xenon viscosity as a function of low temperature and pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textCenter, Lewis Research, ed. Measurement of xenon viscosity as a function of low temperature and pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textBook chapters on the topic "Gas viscosity measurement"
Giri, B. R., P. Blais, and R. A. Marriott. "Viscosity and Density Measurements for Sour Gas Fluids at High Temperatures and Pressures." In Carbon Dioxide Sequestration and Related Technologies, 23–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118175552.ch3.
Full textMagee, Patrick, and Mark Tooley. "Behaviour of Fluids (Liquids and Gases, Flow and Pressure)." In The Physics, Clinical Measurement and Equipment of Anaesthetic Practice for the FRCA. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199595150.003.0011.
Full textDrickamer, H. G. "Pressure-Tuning Spectroscopy: A Tool for Investigating Molecular Interactions." In High Pressure Effects in Molecular Biophysics and Enzymology. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195097221.003.0005.
Full text"Scott and Tabibi Fig. 16 High-speed disperser. (From Ref. 22.) ity. Hence, the high-speed disperser does its best job of deagglomerating particles when the viscosity is between 10,000 and 20,000 centipoise. If the shear rate is calculated in a fashion similar to the method used for a rotor/stator, it is found to be very low, since the "gap" between the disperser blade (rotor) and the vessel bottom (stator) is usually around 30 cm. For a disperser with a 30 cm blade running at 2000 rpm located 30 cm off the bottom of a vessel dv/dx = (7t) (30)(2000)/(30)(60) = 104 sec (6) where dv = velocity difference between the moving impeller and the stationary object (bottom of the vessel); and dx = distance between moving impeller and stationary object. Clearly, the maximum shear rates are higher than this in the vicinity of the blade tip, but there has not been much research into the velocity gradients set up by high-speed dispersers. Much of this lack of research is no doubt because the bulk of the commercial applications for the disperser deal with viscous liquids that are completely opaque, making the measurement of the various velocities difficult. However, there has." In Pharmaceutical Dosage Forms, 342–44. CRC Press, 1998. http://dx.doi.org/10.1201/9781420000955-43.
Full textConference papers on the topic "Gas viscosity measurement"
Gao, R. K., S. L. Sheehe, J. Kurtz, and S. O’Byrne. "Measurement of gas viscosity using photonic crystal fiber." In 30TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD 30. Author(s), 2016. http://dx.doi.org/10.1063/1.4967601.
Full textLing, K., C. Teodoriu, E. Davani, and G. Falcone. "Measurement of Gas Viscosity at High Pressures and High Temperatures." In IPTC 2009: International Petroleum Technology Conference. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609-pdb.151.iptc13528.
Full textLing, Kegang, William D. McCain, Ehsan Davani, and Gioia Falcone. "Measurement of Gas Viscosity at High Pressures and High Temperatures." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2009. http://dx.doi.org/10.2523/iptc-13528-ms.
Full textBadarlis, A., A. Kalfas, and A. Pfau. "B6.3 - Gas Density and Viscosity Measurement Using Micro- Cantilever Sensor." In AMA Conferences 2015. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2015. http://dx.doi.org/10.5162/sensor2015/b6.3.
Full textUehara, Temujin, Kosuke Yoshimura, Elin Yusibani, Kan’ei Shinzato, Masamichi Kohno, and Yasuyuki Takata. "Hydrogen Viscosity Measurements With Capillary Tube Under High Pressure." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73139.
Full textFunes-Gallanzi, M. "A Novel Fluids Research Technique: Three-State Anemometry." In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-305.
Full textMacLeod, J. D., and W. Grabe. "Comparison of Coriolis and Turbine Type Flow Meters for Fuel Measurement in Gas Turbine Testing." In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-070.
Full textKesana, N. R., S. A. Grubb, B. S. McLaury, and S. A. Shirazi. "Ultrasonic Measurement of Multiphase Flow Erosion Patterns in a Standard Elbow." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72237.
Full textFung, Lok, and Masahiro Kawaji. "Measurement of Liquid Film Thickness in Slug Flow of Air and Viscous Liquid in a Microchannel." In ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icnmm2015-48663.
Full textLei, Shu-Ye. "Experimental Study of Water and Air Based Permeabilities of Washed and Screened Sands." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79667.
Full textReports on the topic "Gas viscosity measurement"
Cavestri, R. C., and J. Munk. Measurement of viscosity, density and gas solubility of refrigerant blends. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/6486382.
Full textCavestri, R. C. Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Final report. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/82433.
Full textCavestri, R. C., and J. Munk. Measurement of viscosity, density and gas solubility of refrigerant blends. Quarterly progress report, 1 January 1993--31 March 1993. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10155186.
Full textCavestri, R. C. Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Quarterly report, January 1--March 31, 1994. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10144557.
Full textCavestri, R. C. Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Quarterly report, October 1--December 30, 1993. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10131388.
Full textCavestri, R. C. Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Quarterly report, March 1--June 30, 1993. Office of Scientific and Technical Information (OSTI), July 1993. http://dx.doi.org/10.2172/10177100.
Full textCavestri, R. C. Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Quarterly report, July 1 to September 30, 1993. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10195409.
Full text