Academic literature on the topic 'Gas Turbine Swirl Injectors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas Turbine Swirl Injectors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gas Turbine Swirl Injectors"

1

McGuirk, J. J. "The aerodynamic challenges of aeroengine gas-turbine combustion systems." Aeronautical Journal 118, no. 1204 (June 2014): 557–99. http://dx.doi.org/10.1017/s0001924000009386.

Full text
Abstract:
Abstract The components of an aeroengine gas-turbine combustor have to perform multiple tasks – control of external and internal air distribution, fuel injector feed, fuel/air atomisation, evaporation, and mixing, flame stabilisation, wall cooling, etc. The ‘rich-burn’ concept has achieved great success in optimising combustion efficiency, combustor life, and operational stability over the whole engine cycle. This paper first illustrates the crucial role of aerodynamic processes in achieving these performance goals. Next, the extra aerodynamic challenges of the ‘lean-burn’ injectors required to meet the ever more stringent NO x emissions regulations are introduced, demonstrating that a new multi-disciplinary and ‘whole system’ approach is required. For example, high swirl causes complex unsteady injector aerodynamics; the threat of thermo-acoustic instabilities means both aerodynamic and aeroacoustic characteristics of injectors and other air admission features must be considered; and high injector mass flow means potentially strong compressor/combustor and combustor/turbine coupling. The paper illustrates how research at Loughborough University, based on complementary use of advanced experimental and computational methods, and applied to both isolated sub-components and fully annular combustion systems, has improved understanding and identified novel ideas for combustion system design.
APA, Harvard, Vancouver, ISO, and other styles
2

Woo, Seongphil, Jungho Lee, Yeoungmin Han, and Youngbin Yoon. "Experimental Study of the Combustion Efficiency in Multi-Element Gas-Centered Swirl Coaxial Injectors." Energies 13, no. 22 (November 19, 2020): 6055. http://dx.doi.org/10.3390/en13226055.

Full text
Abstract:
The effects of the momentum-flux ratio of propellant upon the combustion efficiency of a gas-centered-swirl-coaxial (GCSC) injector used in the combustion chamber of a full-scale 9-tonf staged-combustion-cycle engine were studied experimentally. In the combustion experiment, liquid oxygen was used as an oxidizer, and kerosene was used as fuel. The liquid oxygen and kerosene burned in the preburner drive the turbine of the turbopump under the oxidizer-rich hot-gas condition before flowing into the GCSC injector of the combustion chamber. The oxidizer-rich hot gas is mixed with liquid kerosene passed through combustion chamber’s cooling channel at the injector outlet. This mixture has a dimensionless momentum-flux ratio that depends upon the dispensing speed of the two fluids. Combustion tests were performed under varying mixture ratios and combustion pressures for different injector shapes and numbers of injectors, and the characteristic velocities and performance efficiencies of the combustion were compared. It was found that, for 61 gas-centered swirl-coaxial injectors, as the moment flux ratio increased from 9 to 23, the combustion-characteristic velocity increased linearly and the performance efficiency increased from 0.904 to 0.938. In addition, excellent combustion efficiency was observed when the combustion chamber had a large number of injectors at the same momentum-flux ratio.
APA, Harvard, Vancouver, ISO, and other styles
3

So, Younseok, Yeoungmin Han, and Sejin Kwon. "Combustion Characteristics of Multi-Element Swirl Coaxial Jet Injectors under Varying Momentum Ratios." Energies 14, no. 13 (July 5, 2021): 4064. http://dx.doi.org/10.3390/en14134064.

Full text
Abstract:
The combustion characteristics of a staged combustion cycle engine with an oxidizer-rich preburner were experimentally studied at different momentum ratios of multi-element injectors. Propellants were simultaneously supplied as a liquid–liquid–liquid system, and an injector was designed in which a swirl coaxial jet is sprayed. The injector burned the propellants in the inner chamber which had a temperature greater than 2000 K. To cool the combustion gas, a liquid oxidizer was supplied to the cooling channel outside the injector. To prevent the turbine blades from melting, the temperature of the combustion gas was maintained below 700 K. To confirm the combustion characteristics at different momentum ratios of the high-temperature combustion gas inside the injector and the low-temperature liquid oxidizer outside the injector, three types of injectors were designed and manufactured with different momentum ratios: MR 3.0, MR 3.3, and MR 3.7. In this study, the results of the combustion test for each type were compared for 30 s. For ORPB-A, a combustion pressure of 18.5 MPaA, fuel mass flow rate of 0.26 kg/s, oxidizer mass flow rate of 15.3 kg/s, and turbine inlet temperature of 686 K were obtained in the combustion stability period of 29.0–29.5 s. The combustion efficiency was 98% for MR 3.0 (ORPB-A), which was superior to that for other momentum ratios. In addition, during the combustion test for MR 3.0, the fluctuations in the characteristic velocity, combustion pressure, and propellant mass flow rate were low, indicating that combustion was stable. The three types of combustion instability were all less than 0.8%, thus confirming that the combustion stability was excellent.
APA, Harvard, Vancouver, ISO, and other styles
4

Baba-Ahmadi, M. H., and G. R. Tabor. "Inlet Conditions for Large Eddy Simulation of Gas-Turbine Swirl Injectors." AIAA Journal 46, no. 7 (July 2008): 1782–90. http://dx.doi.org/10.2514/1.35259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pham, Vu Thanh Nam. "AN IMAGE PROCESSING APPROACH FOR DETERMINING THE SPRAY CONE ANGLE OF A PRESSURE SWIRL INJECTOR EQUIPPED IN A GAS-TURBINE ENGINE." Journal of Science and Technique 16, no. 2 (August 29, 2022): 33–47. http://dx.doi.org/10.56651/lqdtu.jst.v16.n02.265.

Full text
Abstract:
This paper adopts the directionality tool provided by the ImageJ package to determine the spray cone angle of a gas-turbine engine’s injector. An imaging experiment system has been developed in this study to image a spray of a practical gas-turbine injector under injection pressure conditions varying from 2 to 6 bars. The results show that the reliability of the measurement is achieved when analyzing at least 500 images. Preferably, using 1500 images shows the uncertainty of less than 0.5% (approximately corresponding with 0.2° of the angle). The average spray cone angle varies between 100° and 128.15° when the injection pressure increases from 2 to 6 bars. An accurate determination of the spray cone angle helps to improve the quality of research on micro and macro spray characteristics including the droplet concentration and distribution. The results could also be utilized to develop a diagnostic technique for gas-turbine injectors.
APA, Harvard, Vancouver, ISO, and other styles
6

Johnson, M. R., D. Littlejohn, W. A. Nazeer, K. O. Smith, and R. K. Cheng. "A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines." Proceedings of the Combustion Institute 30, no. 2 (January 2005): 2867–74. http://dx.doi.org/10.1016/j.proci.2004.07.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WANG, SHANWU, VIGOR YANG, GEORGE HSIAO, SHIH-YANG HSIEH, and HUKAM C. MONGIA. "Large-eddy simulations of gas-turbine swirl injector flow dynamics." Journal of Fluid Mechanics 583 (July 4, 2007): 99–122. http://dx.doi.org/10.1017/s0022112007006155.

Full text
Abstract:
A comprehensive study on confined swirling flows in an operational gas-turbine injector was performed by means of large-eddy simulations. The formulation was based on the Favre-filtered conservation equations and a modified Smagorinsky treatment of subgrid-scale motions. The model was then numerically solved by means of a preconditioned density-based finite-volume approach. Calculated mean velocities and turbulence properties show good agreement with experimental data obtained from the laser-Doppler velocimetry measurements. Various aspects of the swirling flow development (such as the central recirculating flow, precessing vortex core and Kelvin–Helmholtz instability) were explored in detail. Both co- and counter-rotating configurations were considered, and the effects of swirl direction on flow characteristics were examined. The flow evolution inside the injector is dictated mainly by the air delivered through the primary swirler. The impact of the secondary swirler appears to be limited.
APA, Harvard, Vancouver, ISO, and other styles
8

Vandervort, C. L. "9 ppm NOx/CO Combustion System for “F” Class Industrial Gas Turbines." Journal of Engineering for Gas Turbines and Power 123, no. 2 (January 1, 2001): 317–21. http://dx.doi.org/10.1115/1.1362661.

Full text
Abstract:
The Dry Low NOx (DLN) -2.6 combustion system has achieved emission rates of lower than 9 ppm NOx (dry, corrected to 15 percent O2) and CO from 50 to 100 percent load for the GE MS7001FA industrial gas turbine on natural gas. The system uses lean premixed combustion with fuel staging for low load stability. The first unit achieved commercial operation in March of 1996 with a firing temperature of 2350°F. As of September 9, 1999, it has accumulated over 11,800 hours of operation in peaking and base load service. Sixteen more units have since entered commercial service. Emissions data are shown for operation on natural gas. The DLN-2.6 system can operate on liquid fuel with water injection for NOx abatement. Power augmentation with steam injection is allowable while operating on natural gas. The premixed gas nozzles utilize swirl for flame stabilization. Aerodynamically shaped natural gas injectors are applied for flashback or flame-holding resistance.
APA, Harvard, Vancouver, ISO, and other styles
9

Lezsovits, Ferenc, Sándor Könczöl, and Krisztián Sztankó. "CO emission reduction of a HRSG duct burner." Thermal Science 14, no. 3 (2010): 845–54. http://dx.doi.org/10.2298/tsci1003845l.

Full text
Abstract:
A heat-recovery steam generator was erected after a gas-turbine with a duct burner into the district heat centre. After commissioning, the CO emissions were found to be above the acceptable level specified in the initial contract. The Department of Energy Engineering of the BME was asked for their expert contribution in solving the problem of reducing these CO emissions. This team investigated the factors that cause incomplete combustion: the flue-gas outlet of the gas-turbine has significant swirl and rotation, the diffuser in between the gas-turbine and heat-recovery steam generator is too short and has a large cone angle, the velocity of flue-gas entering the duct burner is greater than expected, and the outlet direction of the flammable mixture from the injector of the duct burner was not optimal. After reducing the flow swirl of flue-gas and modifying the nozzle of the duct burner as suggested by the Department of Energy Engineering of the BME, CO emissions have been reduced to an acceptable level. The method involves the application of CFD modeling and studying images of the flames which proved to be very informative.
APA, Harvard, Vancouver, ISO, and other styles
10

Correa, S. M., A. J. Dean, and I. Z. Hu. "Combustion Technology for Low-Emissions Gas-Turbines:Selected Phenomena Beyond NOx." Journal of Energy Resources Technology 118, no. 3 (September 1, 1996): 193–200. http://dx.doi.org/10.1115/1.2793862.

Full text
Abstract:
Since recent reviews cover the issues in NOx formation under gas-turbine canditions, and since regulations essentially dictate use of the premixed mode of combustion for minimum NOx, this review concentrates on phenomena that can arise in premixed combustion. Specifically, 1) the initial unmixedness in a fuel-air premixer has been shown to make overall lean mixtures autoignite sooner than might be expected based on the overall fuel-air ratio, because the richer portions of the mixture lead the process;2) combustion pressure oscillations caused by the interplay between acoustic waves and unsteady heat release in a one-dimensional system can be calculated in good accordance with measured data, and set the stage for multi-dimensional CFD;3) carbon deposition arising from the flow of liquid fuel over metal surfaces such as found in fuel injectors and swirl cups has been described as a function of temperature and of surface composition; and 4) quenching and subsequent emissions of carbon monoxide can be minimized by preservation of a boundary-layer rather than an impingement type of flow over combustor liners.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Gas Turbine Swirl Injectors"

1

Homitz, Joseph. "A Lean-Premixed Hydrogen Injector with Vane Driven Swirl for Application in Gas Turbines." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/36334.

Full text
Abstract:
Hydrogen, as an alternative to conventional aviation fuels, has the potential to increase the efficiency of a gas turbine as well as reduce emissions of greenhouse gases. In addition to significantly reducing the number of pollutants due to the absence of carbon, burning hydrogen at low equivalence ratios can significantly reduce emissions of oxides of nitrogen (NOx). Because hydrogen has a wide range of flammability limits, fuel lean combustion can take place at lower equivalence ratios than those with typical hydrocarbon fuels.

Numerous efforts have been made to develop gas turbine fuel injectors that premix methane/natural gas and air in fuel lean proportions prior to the reaction zone. Application of this technique to hydrogen combustion has been limited due to hydrogen's high flame rate and the concern of the reaction zone propagating into the premixing injector, commonly referred to as flashback. In this investigation, a lean-premixing hydrogen injector has been developed for application in small gas turbines. The performance of this injector was characterized and predictions about the injector's performance operating under combustor inlet conditions of a PT6-20 Turboprop have been made.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
2

Anning, Grant Hugh Gary. "The Effect of Fuel Injector Geometry on the Flow Structure of a Swirl Stabilized Gas Turbine Burner." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1024672199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cheng, Liangta. "Combined PIV/PLIF measurements in a high-swirl fuel injector flowfield." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/11936.

Full text
Abstract:
Current lean-premixed fuel injector designs have shown great potential in terms of reducing emissions of pollutants, but such designs are susceptible to combustion instabilities in which aerodynamic instability plays a major role and also has an effect on mixing of air and fuel. In comparison to prototype testing with combustors running in operating conditions, computational approaches such as Large Eddy Simulations (LES) offer a much more cost-effective alternative in the design stage. However, computational models employed by LES require validation by experimental data. This is one of the main motivations behind the present experimental study. Combined particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) instrumentation allowed simultaneous measurements of velocity vector and a conserved scalar introduced into the fuel stream. The results show that the inner swirl shear layer features two pairs of vortices, which draw high concentration fuel mixture from the central jet into the swirl stream and causes it to rotate in their wakes. Such periodic entrainment also occurs with the characteristic frequencies of the vortices. This has clear implications for temporal variations in fuel/air ratio in a combusting flow; these bursts of mixing, and hence heat release, could be a possible cause of mixing-induced pressure oscillation in combusting tests. For the first time in such a flow, all 3 components of the turbulent scalar flux were available for validation of LES-based predictions. A careful assessment of experimental errors, particularly the error associated with spatial filtering, was carried out. Comparison of LES predictions with experimental data showed very good agreement for both 1st and 2nd moment statistics, as well as spectra and scalar pdfs. It is particularly noteworthy that comparison between LES computed and measured scalar fluxes was very good; this represents successful validation of the simple (constant Schmidt number) SGS model used for this complex and practically important fuel injector flow. In addition to providing benchmark data for the validation of LES predictions, a new experimental technique has been developed that is capable of providing spatially resolved residence time data. Residence times of combustors have commonly been used to help understand NOx emissions and can also contribute to combustion instabilities. Both the time mean velocity and turbulence fields are important to the residence time, but determining the residence time via analysis of a measured velocity field is difficult due to the inherent unsteadiness and the three dimensional nature of a high-Re swirling flow. A more direct approach to measure residence time is reported here that examines the dynamic response of fuel concentration to a sudden cutoff in the fuel injection. Residence time measurement was mainly taken using a time-resolved PLIF technique, but a second camera for PIV was added to check that the step change does not alter the velocity field and the spectral content of the coherent structures. Characteristic timescales evaluated from the measurements are referred to as convection and half-life times: The former describes the time delay from a fuel injector exit reference point to a downstream point of interest, and the latter describes the rate of decay once the effect of the reduced scalar concentration at the injection source has been transported to the point of interest. Residence time is often defined as the time taken for a conserved scalar to reduce to half its initial value after injection is stopped: this is equivalent to the sum of the convection time and the half-life values. The technique was applied to a high-swirl fuel injector typical of that found in combustor applications. Two test cases have been studied: with central jet (with-jet) and without central jet (no-jet). It was found that the relatively unstable central recirculation zone of the no-jet case resulted in increased transport of fuel into the central region that is dominated by a precessing vortex core, where long half-life times are also found. Based on this, it was inferred that the no-jet case may be more prone to NOx production. The technique is described here for a single-phase isothermal flow field, but with consideration, it could be extended to studying reacting flows to provide more insight into important mixing phenomena and relevant timescales.
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmad, N. T. "Swirl stabilised gas turbine combustion." Thesis, University of Leeds, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Rui. "Fluidic devices as fuel injectors for natural gas engines." Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/13566.

Full text
Abstract:
A novel, fast switching, reliable, and economical fluidic gaseous fuel injector system designed for natural gas engines has been developed in this research. The system consists mainly of no-moving-part fluidic devices and piezo-electric controlling interfaces. The geometric parameters of a fluidic device seriously affect its performance. Traditionally, these parameters can only be optimised through "trial and error" exercise. In this research, a computer simulation model for the jet steady state attachment and dynamic switching has been developed. The good agreements between predicted results and experimental ones show that the model can not only explain the jet attaching and switching mechanism, but also optimise the design of geometric parameters of a fluidic device. The steady state and dynamic characteristics of the system were tested on a laboratory experimental rig. The results show that the system can handle the large gas volume flow rate required by natural gas engines and is capable of operating via pulse width modulation. A few typical commercial solenoid type gas injectors were also tested and the results were compared with those from the fluidic system. It was found that the fluidic gaseous fuel injector system has faster switching responses and smaller injection cycle-to-cycle variations.
APA, Harvard, Vancouver, ISO, and other styles
6

Mehdi, Ahad. "Effect of swirl distortion on gas turbine operability." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/12129.

Full text
Abstract:
The aerodynamic integration of an aero-engine intake system with the airframe can pose some notable challenges. This is particularly so for many military air- craft and is likely to become a more pressing issue for both new military systems with highly embedded engines as well as for novel civil aircraft configurations. During the late 1960s with the advent of turbo-fan engines, industry became in- creasingly aware of issues which arise due to inlet total pressure distortion. Since then, inlet-engine compatibility assessments have become a key aspect of any new development. In addition to total temperature and total pressure distortions, flow angularity and the associated swirl distortion are also known to be of notable con- cern. The importance of developing a rigorous methodology to understand the effects of swirl distortion on turbo-machinery has also become one of the major concerns of current design programmes. The goal of this doctoral research was to further the current knowledge on swirl distortion, and its adverse effects on engine performance, focusing on the turbo-machinery components (i.e. fans or compressors). This was achieved by looking into appropriate swirl flow descriptors and by correlating them against the compressor performance parameters (e.g loss in stability pressure ratios). To that end, a number of high-fidelity three-dimensional Computational Fluid Dynamics (CFD) models have been developed using two sets of transonic rotors (i.e. NASA Rotor 67 and 37), and a stator (NASA Stator 67B). For the numerical purpose, a boundary condition methodology for the definition of swirl distortion patterns at the inlet has been developed. Various swirl distortion numerical parametric studies have been performed using the modelled rotor configurations. Two types of swirl distortion pattern were investigated in the research, i.e. the pure bulk swirl and the tightly-wound vortex. Numerical simulations suggested that the vortex core location, polarity, size and strength greatly affect the compressor performance. The bulk swirl simula- tions also showed the dependency on swirl strength and polarity. This empha- sized the importance of quantifying these swirl components in the flow distortion descriptors. For this, a methodology have been developed for the inlet-engine compatibility assessment using different types of flow descriptors. A number of correlations have been proposed for the two types of swirl distortion investigated in the study.
APA, Harvard, Vancouver, ISO, and other styles
7

Moffat, Dominic Luke. "Modelling of atomization and vaporization in industrial gas turbine injectors." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/13579/.

Full text
Abstract:
In many industrial gas turbine combustors the injection of liquid fuel resembles the simple configuration of a jet in a rectangular channel with cross-flowing air, albeit with complex geometry both upstream and downstream from the channel. Therefore the detailed study of a jet in cross flow is an appropriate platform for the development of models for atomization and vaporization, both of which are key processes influencing efficiency and the emissions of pollutants from practical combustion devices. In the current study the breakup of a liquid jet and vaporization of droplets are modelled using an entirely Eulerian approach, where the liquid phase is treated analogously to a gas species in a multi-component reacting mixture. A novel boundary condition is proposed for the liquid surface area per unit mass at the jet inlet, and results are found to be insensitive to adjustments of the size parameter for this boundary condition. Validation is carried out in two stages: firstly turbulence closure via the Reynolds Averaged Navier-Stokes (RANS) approach with the standard constants is assessed for a gas-phase jet in cross flow with two different software packages; then predictions of the Sauter mean diameter of droplets are compared to measurements of a liquid jet in cross flow at 6 bar pressure. The turbulence model yields a reasonably accurate prediction of the flow field provided that the distribution of velocity across the jet inlet is specified. Droplet sizes agree well with the experiment except for a small region near the floor of the channel, where discrepancies can be attributed to the RANS closure. Application of the model is demonstrated for an industrial gas turbine combustor at its full load operating condition.
APA, Harvard, Vancouver, ISO, and other styles
8

Abdulsada, Mohammed. "Flashback and blowoff characteristics of gas turbine swirl combustor." Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/24193/.

Full text
Abstract:
Gas turbines are extensively used in combined cycle power systems. These form about 20% of global power generating capacity, normally being fired on natural gas, but this is expected in the future to move towards hydrogen enriched gaseous fuels to reduce CO2 emissions. Gas turbine combined cycles can give electrical power generation efficiencies of up to 60%, with the aim of increasing this to 70% in the next 10 to 15 years, whilst at the same time substantially reducing emissions of contaminants such as NOx. The gas turbine combustor is an essential and critical component here. These are universally stabilized with swirl flows, which give very wide blowoff limits, and with appropriate modification can be adjusted to give very low NOx and other emission. Lean premixed combustion is commonly used at pressures between 15 to 30 bar, these even out hot spots and minimise formation of thermal NOx. Problems arise because improving materials technology/improved cooling techniques allow higher turbine inlet temperatures, hence higher efficiencies, but with the drawback of potentially higher emissions and stability problems. This PhD study has widely investigated and analysed two different kinds of gas turbine swirl burners. The research has included experimental investigation and computational simulation. Mainly, the flashback and blowoff limits have been comprehensively analysed to investigate their effect upon swirl burner operation. The study was extended by using different gas mixtures, including either pure gas or a combination of more than one gas like natural gas, methane, hydrogen and carbon dioxide. The first combustor is a 100 kW tangential swirl combustor made of stainless steel that has been experimentally and theoretically analysed to study and mitigate the effect of flashback phenomena. The use of a central fuel injector, cylindrical confinement and exhaust sleeve are shown to give large benefits in terms of flashback resistance and acts to reduce and sometimes eliminate any coherent structures which may be located along the axis of symmetry. The Critical Boundary Velocity Gradient is used for characterisation of flashback, both via the original Lewis and von Elbe formula and via new analysis using CFD and investigation of boundary layer conditions just in front of the flame front. Conclusions are drawn as to mitigation technologies. It is recognized how isothermal conditions produce strong Precessing Vortex Cores that are fundamental in producing the ii final flow field, whilst the Central Recirculation Zones are dependent on pressure decay ratio inside the combustion chamber. Combustion conditions showed the high similarity between experiments and simulation. Flashback was demonstrated to be a factor highly related to the strength of the Central Recirculation Zone for those cases where a Combustion Induced Vortex Breakdown was allowed to enter the swirl chamber, whilst cases where a bluff body impeded its passage showed a considerable improvement to the resistance of the phenomenon. The use of nozzle constrictions also reduced flashback at high Reynolds number (Re). All these results were intended to contribute to better designs of future combustors. The second piece of work of this PhD research included comprehensive experimental work using a generic swirl burner (with three different blade inserts to give different swirl numbers) and has been used to examine the phenomena of flashback and blowoff in the swirl burner in the context of lean premixed combustion. Cylindrical and conical confinements have been set up and assembled with the original design of the generic swirl combustor. In addition to that, multi-fuel blends used during the experimental work include pure methane, pure hydrogen, hydrogen / methane mixture, carbon dioxide/ methane mixture and coke oven gas. The above investigational analysis has proved the flashback limits decrease when swirl numbers decrease for the fuel blends that contain 30% or less hydrogen. Confinements would improve the flashback limit as well. Blowoff limits improve with a lower swirl number and it is easier to recognise the gradual extinction of the flame under blowoff conditions. The use of exhaust confinement has created a considerable improvement in blowoff. Hydrogen enriched fuels can improve the blowoff limit in terms of increasing heat release, which is higher than heat release with natural gas. However, the confinements complicate the flashback, especially when the fuel contains a high percentage of hydrogen. The flashback propensity of the hydrogen/methane blends becomes quite strong. The most important features in gas turbines is the possibility of using different kinds of fuel. This matter has been discussed extensively in this project. By matching flashback/blowoff limits, it has been found that for fuels containing up to 30% of hydrogen, the designer would be able to switch the same gas turbine combustor to multifuels whilst producing the same power output.
APA, Harvard, Vancouver, ISO, and other styles
9

Runyon, Jon. "Gas turbine fuel flexibility : pressurized swirl flame stability, thermoacoustics, and emissions." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/100686/.

Full text
Abstract:
Power generation gas turbine manufacturers and operators are tasked increasingly with expanding operational flexibility due to volatility in global gaseous fuel supplies and increased renewable power generation capacity. Natural gas containing high levels of higher hydrocarbons (e.g. ethane and propane) is typical of liquefied natural gas and shale gas, two natural gas sources impacting gas turbine operations, particularly looking forward in the United Kingdom. In addition, hydrogen-blending into existing natural gas infrastructure represents a potential energy storage opportunity from excess renewable power generation, with associated combustion impacts not fully appreciated. This thesis aims to address the specific operational problems associated with the use of variable gaseous fuel compositions in gas turbine combustion through a combination of experimental and numerical techniques, with a focus on natural gas blends containing increased levels of higher hydrocarbons and hydrogen. Parametric experimental combustion studies of the selected fuel blends are conducted in a new fully premixed generic swirl burner at elevated ambient conditions of temperature and pressure to provide representative geometry and flow characteristics typical of a can-type industrial gas turbine combustor. New non-intrusive diagnostic facilities have been designed and installed at Cardiff University’s Gas Turbine Research Centre specifically for the characterization of the influence of fuel composition, burner geometry, and operating parameters on flame stability, flame structure, thermoacoustic response, and environmental emissions. Experimental measurements are supported through the use of numerical chemical kinetics and acoustic modelling. Results from this thesis provide an experimental validation database for chemical kinetic reactor network and CFD modelling efforts. In addition, it informs gas turbine manufacturers on potential burner design modifications for future fuel flexibility and provide enhanced empirical tools to power generation gas turbine operators for increased operational stability, reduced environmental impact, and increased utilization.
APA, Harvard, Vancouver, ISO, and other styles
10

Sharma, Anshu. "Numerical Investigation of a Swirl Induced Flameless Combustor for Gas Turbine Applications." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613731788158991.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Gas Turbine Swirl Injectors"

1

B, Kennedy J., Russell S, and United States. National Aeronautics and Space Administration., eds. Fuel-injector/air-swirl characterization. [Washington, DC: National Aeronautics and Space Administration, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

B, Kennedy J., Russell S, and United States. National Aeronautics and Space Administration., eds. Fuel-injector/air-swirl characterization. [Washington, DC: National Aeronautics and Space Administration, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

D, Cutler Andrew, and Langley Research Center, eds. Effects of jet swirl on mixing of a light gas jet in a supersonic airstream. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Experimental Results for a High Swirl, Ultra Compact Combustor for Gas Turbine Engines. Storming Media, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gas Turbine Swirl Injectors"

1

Ghose, Prakash, and A. Datta. "Effect of Inlet Swirl and Turbulence Levels on Combustion Performance in a Model Kerosene Spray Gas Turbine Combustor." In Lecture Notes in Mechanical Engineering, 493–504. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7831-1_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pandey, Rahul, and Krishnakant Agrawal. "Development of a Numerical Tool for Studying Turbulent Fuel–air Mixing in Swirl-Based Gas Turbine Combustion Chambers." In Lecture Notes in Mechanical Engineering, 199–211. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6490-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Flow And Flame Dynamics Of Lean Premixed Swirl Injectors." In Combustion Instabilities In Gas Turbine Engines, 213–76. Reston ,VA: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/5.9781600866807.0213.0276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Palm, R., S. Grundmann, M. Weismüller, S. Šarić, S. Jakirlić, and C. Tropea. "Experimental characterization and modelling of inflow conditions for a gas turbine swirl combustor." In Engineering Turbulence Modelling and Experiments 6, 835–44. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044544-1/50080-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Domingues, Rafael, and Francisco Brójo. "Conversion of Gas Turbine Combustors to Operate with a Hydrogen-Air Mixture: Modifications and Pollutant Emission Analysis." In Hydrogen Energy - New Insights [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106224.

Full text
Abstract:
In this work, an overview of the use of hydrogen in aviation, the modifications needed to adapt an existent gas turbine to use hydrogen, and a CFD simulation of an existent gas turbine burning hydrogen are performed. The CFD simulation was done in a CFM56-3 combustor burning hydrogen and Jet A. It was intended to evaluate the viability of conversion of existent gas turbines to hydrogen, in a combustion point of view, by analyzing the emissions while burning it through ICAO’s LTO cycle. The pollutant emissions (only NOx, since hydrogen combustion produce only water vapor and NOx) were evaluated through a detailed mechanism and the Ansys Fluent NOx model to get a better agreement with the ICAO’s values. For this assessment, several sensibility studies were made for hydrogen burn, for example, the analysis of the air flow with/without swirl in the primary zone and different inlet temperature and pressure for fuel. In the end, it was concluded that theoretically the CFM56-3 combustor can be converted to operate with hydrogen fuel with minor changes (related to injection system). The quantity of NOx produced for each power setting when burning hydrogen is expected to be almost twice the values for Jet A.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gas Turbine Swirl Injectors"

1

Nazeer, Waseem, Kenneth Smith, Patrick Sheppard, Robert Cheng, and David Littlejohn. "Full Scale Testing of a Low Swirl Fuel Injector Concept for Ultra-Low NOx Gas Turbine Combustion Systems." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90150.

Full text
Abstract:
The continued development of a low swirl injector for ultra-low NOx gas turbine applications is described. An injector prototype for natural gas operation has been designed, fabricated and tested. The target application is an annular gas turbine combustion system requiring twelve injectors. High pressure rig test results for a single injector prototype are presented. On natural gas, ultra-low NOx emissions were achieved along with low CO. A turndown of approximately 100°F in flame temperature was possible before CO emissions increased significantly. Subsequently, a set of injectors was evaluated at atmospheric pressure using a production annular combustor. Rig testing again demonstrated the ultra-low NOx capability of the injectors on natural gas. An engine test of the injectors will be required to establish the transient performance of the combustion system and to assess any combustor pressure oscillation issues.
APA, Harvard, Vancouver, ISO, and other styles
2

Hedman, Paul O., Thomas H. Fletcher, Stewart G. Graham, G. Wayne Timothy, Daniel V. Flores, and Jason K. Haslam. "Observations of Flame Behavior in a Laboratory-Scale Pre-Mixed Natural Gas/Air Gas Turbine Combustor From PLIF Measurements of OH." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30052.

Full text
Abstract:
The objective of this study was to obtain instantaneous planar laser induced fluorescence (PLIF) images of OH in a laboratory-scale, gas-turbine combustor (LSGTC) with a pre-mixed, swirl-stabilized, natural gas flame. Instantaneous PLIF images of OH were obtained at each of four operating conditions (high swirl and medium swirl at fuel equivalence ratios of 0.80 and 0.65). Comparison of the instantaneous images illustrates the stochastic nature of the flame structure. Pixel by pixel statistical analysis of each collection of images allowed both mean and standard deviation images to be generated, and analysis at selected locations has allowed probability density functions to be obtained in various regions of the flame structure. PLIF images of OH, along with visual photographs and video recordings, showed a wide variation in flame structure for the different operating conditions. The variations in flame shapes are primarily a result of the effect of the swirl intensity and fuel equivalence ratio. Changes in the airflow rate over an order of magnitude do not seem to affect the visual flame structure in this experiment. Operation at φ = 0.80 produced the most stable flames with both injectors. The flame with the high swirl injector was more coalesced and closer to the injector than with the medium swirl injector. At φ = 0.65, the flame was quite unstable for both swirl injectors. With the medium swirl injector, the flame would oscillate between two different flame structures, one that was more or less attached to the vortex funnel, and one that was lifted well above the vortex funnel. The MS case at φ = 0.65 was at the very edge of the lean flammability limit, and would on occasion extinguish.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, S., S. Y. Hsieh, and V. Yang. "Vortical dynamics and acoustic response in gas-turbine swirl-stabilized injectors." In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Littlejohn, David, Robert K. Cheng, D. R. Noble, and Tim Lieuwen. "Laboratory Investigations of Low-Swirl Injectors Operating With Syngases." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51298.

Full text
Abstract:
The low-swirl injector (LSI) is a lean premixed combustion technology that has the potential for adaptation to fuel-flexible gas turbines operating on a variety of fuels. The objective of this study is to gain a fundamental understanding of the effect of syngas on the LSI flame behavior, the emissions and the flowfield characteristics for its adaptation to the combustion turbines in IGCC clean coal power plants. The experiments were conducted in two facilities. Open laboratory flames generated by a full size (6.35 cm) LSI were used to investigate the lean-blow off limits, emissions, and the flowfield characteristics. Verification of syngas operation at elevated temperatures and pressures were performed with a reduced scale (2.54 cm) LSI in a small pressurized combustion channel. The results show that the basic LSI design is amenable to burning syngases with up to 60% H2. Syngases with high H2 concentration have lower lean blow-off limits. From PIV measurements, the flowfield similarity behavior and the turbulent flame speeds of syngases flames are consistent with those observed in hydrocarbon and pure or diluted hydrogen flames. The NOx emissions from syngas flames show log-linear dependency on the adiabatic flame temperature and are comparable to those reported for the gaseous fuels reported previously. Successful firing of the reduced-scale LSI at 330 < T < 446° F and 8 atm verified the operability of this concept at gas turbine conditions.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Shanwu, Shih-Yang Hsieh, and Vigor Yang. "Numerical simulation of gas turbine swirl-stabilized injector dynamics." In 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barker, A. G., and J. F. Carrotte. "The Impact of Representative Aerodynamic Flow Fields on Liquid Fuel Atomisation in Modern Gas Turbine Fuel Injectors." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26927.

Full text
Abstract:
In modern gas turbine engines swirl is typically imparted to the airflow as it enters the region of heat release to stabilize the flame. This swirling airstream is often highly turbulent and contains non-uniformities such as swirl vane wakes. However, it is within this environment that fuel atomization takes place. This paper is concerned with the potential effect of these airstream characteristics on the atomization process. Such a flow field is difficult to capture within simplified geometries and so measurements have been made within, and downstream of, injector representative geometries. This is experimentally challenging and required the application of a variety of techniques. The geometry considered is thought typical of an air-blast style injector, as may be used within current or future applications, whereby liquid fuel is introduced onto a pre-filming surface over which an airstream passes. Data is presented which characterizes the atomizing airstream presented to the pre-filming region. This includes significant flow field non-uniformities and turbulence characteristics that are mainly associated with the swirling flow along with the vanes used to impart this swirl. The subsequent development of these aerodynamic features over the pre-filming surface is also captured with, for example, swirl vane wakes being evident through the injector passage and into the downstream flow field. It is argued these characteristics will be common to many injector designs. Measurements with and without fuel indicate the effect of the liquid film, on the non-dimensional aerodynamic flow field upstream of the pre-filming region, is minimal. However, the amount of airflow passing through the pre-filming passage is affected. In addition to characterization of the airstream, its impact on the liquid fuel film and its development along the pre-filming surface is visualized. Furthermore, PDA measurements downstream of the fuel injector (i.e. the injector ‘far-field) are presented and the observed spray characteristics spatially correlated with the upstream aerodynamic atomizing flow field. Hence for the first time a series of experimental techniques have been used to capture and correlate both near and far field atomization characteristics within an engine representative aerodynamic flow field.
APA, Harvard, Vancouver, ISO, and other styles
7

Ajmani, Kumud, Hukam Mongia, Phil Lee, and Kathleen Tacina. "CFD-Led Designs of Pre-Filming Injectors for Gas-Turbine Combustors." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75329.

Full text
Abstract:
The National Combustion Code (OpenNCC) was used to perform parametric design and analysis for three iterations of pre-filming injector design for gas-turbine combustors. The CFD analysis had significant impact on the design, integration and fabrication of a third-generation Lean-Direct Injection (LDI-3) flame-tube assembly consisting of nineteen injection elements. The air passages of the three pilot elements and sixteen main injection elements consisted of CFD-optimized compound-angle discrete jets and dual axial-bladed swirl-venturi passages, respectively. The aerodynamic characteristics of the nineteen-element injection array were evaluated by performing non-reacting flow simulation using a Time-Filtered Navier-Stokes (TFNS) method. The pilot and main injection elements were fueled with conventional pressure-atomizers and newly designed pre-filming nozzles, respectively. Fuel-air mixing and combustion performance was evaluated with reacting-flow TFNS computations using a 14-species, 18-step reduced kinetics mechanism for Jet-A fuel, Lagrangian spray modeling and a PDF turbulent-chemistry interaction model. The TFNS reacting-flow simulations provided considerable insight into the correlation between aerodynamics, combustion and emissions performance of the newly-designed pilot and main injection elements for the LDI-3 combustor at simulated cruise conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

Kinoshita, Y., T. Oda, and J. Kitajima. "Low NOx Combustor Research for a Mach 3 Turbojet Concept Validation Test Results." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-153.

Full text
Abstract:
A unique idea of premixture jet swirl combustor (PJSC) was proposed for the ultra low NOx combustor of a Mach 3 turbojet. The combustor installed six simple premixing chambers which were arranged at certain angles to the center axis also to the circumference axis on the combustor dome. This arrangement formed large and strong recirculating flows necessary to stabilize flame at lean fuel air ratio conditions. The fuel mixing study revealed that the radial fuel injectors inserted in a premixing chamber exhibited a high degree of uniformity. Single can combustors of PJSC with three types of main fuel injectors were manufactured for the high temperature and high pressure combustion test program. All combustors performed stable combustion for a wide range of FAR and obtained combustion efficiency of 99.9 % at Mach 3 cruise conditions, namely inlet temperature of 1008 K, inlet pressure of 830 kPa and fuel air ratio of 0.0223. HTHPC-01 combustor, which installed the radial fuel injectors and had long mixing length, presented the best NOx emissions and achieved emission index of 2 g/kg fuel at that design condition. PJSC met the emission goal of HYPR project, and concept validation test was completed in success.
APA, Harvard, Vancouver, ISO, and other styles
9

Micklow, Gerald J., and Michael Benjamin. "Three Dimensional Analysis of Advanced Swirl Vane/Nozzle Assemblies." In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-226.

Full text
Abstract:
The performance of high shear axial inflow/radial outflow airblast fuel injectors for advanced gas turbine combustors is highly dependent on the design of the swirl vanes. Curved vanes usually exhibit lower losses but straight vanes are also used due to lower cost and ease of manufacture. These type of vanes often operate under highly stalled conditions with high total pressure loss and a highly non-uniform exit velocity profile. This may produce poor fuel atomization with a non-uniform combustor fuel distribution resulting in lowered combustor efficiency and increased pollutant emissions. Properly designed vanes result in a greatly reduced total pressure loss. The exit velocity distribution is more uniform and higher in magnitude which can result in improved fuel atomization and distribution in the combustor. The present study investigates two curved swirler/nozzle shroud configurations operating at 1 and 10 atmospheres pressure for the same inlet temperature of 293°K. The first configuration was a twisted curved vane with thickness where the turning angle varied non-linearly from hub to tip with a maximum turning at the tip of 70 degrees. The second configuration was a curved vane with a linear variation of turning with 70 degrees turning at the tip. The results from a three dimensional viscous numerical flow simulation of these configurations shows similar performance for all cases investigated. The non-linear twisted vane however, had an approximately 3% higher mass flow rate than the vane with the linear variation in turning for the same exit static pressure at the hub. One problem which existed for all the conditions analyzed was a high loss region near the vane tip. This was due to the interaction with the shroud. As the flow exits the vane row and progresses along the nozzle outer lip, the flow area increases. This condition along with the streamline curvature effect of the outer nozzle lip causes an adverse pressure gradient to be formed in this region. This adverse pressure gradient causes the flow to separate from the vane suction surface. The problem initiated in the region of 70% span and increased in magnitude to the vane tip.
APA, Harvard, Vancouver, ISO, and other styles
10

Lovett, Jeffery A., and Warren J. Mick. "Development of a Swirl and Bluff-Body Stabilized Burner for Low-NOx, Lean-Premixed Combustion." In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-166.

Full text
Abstract:
A burner configuration utilizing both swirl and bluff-body stabilization was developed and tested for dry low-NOx combustion of natural gas fuel. A multiple number of these burners can be used to make up a can combustor. The burner consisted of a central hub supporting an axial swirler and spoke-type fuel injectors mounted coaxially within a 100 mm diameter cylindrical tube. The swirl typically provided strong recirculation and mixing, while the flame was anchored physically to the center hub. Tests were conducted at typical heavy-duty gas turbine conditions of 620 K inlet temperature and 10 atmospheres pressure. Parametric studies were conducted with various configurations of the burner to determine the corresponding effects on fuel-air mixing, flame stability, and NOx and CO emissions. The results show that ultra-low NOx emissions can be obtained if the fuel injection is sufficiently well distributed. The compact flame produced by the highly mixed swirling flow results in very low CO emissions as well. The results suggest also that swirl-strength is reduced in an upstream swirler configuration.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gas Turbine Swirl Injectors"

1

Lightfoot, Malissa D., Stephen A. Danczyk, and Douglas G. Talley. Scaling of Gas-Centered Swirl-Coaxial Injectors. Fort Belvoir, VA: Defense Technical Information Center, October 2008. http://dx.doi.org/10.21236/ada502809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography