Dissertations / Theses on the topic 'Gas turbine flow efficiency'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Gas turbine flow efficiency.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Johnson, A. B. "The aerodynamic effects of nozzle guide vane shock wave and wake on a transonic turbine rotor." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329958.
Full textPlewacki, Nicholas. "Modeling High Temperature Deposition in Gas Turbines." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587714424017527.
Full textTemplalexis, I. K. "Gas turbine performance with distorted inlet flow." Thesis, Cranfield University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427101.
Full textBatt, J. J. M. "Three-dimensional unsteady gas turbine flow measurement." Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:3302ca8f-0618-4440-9e23-3bf99bc3705d.
Full textPalafox, Pepe. "Gas turbine tip leakage flow and heat transfer." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427699.
Full textStitzel, Sarah M. "Flow Field Computations of Combustor-Turbine Interactions in a Gas Turbine Engine." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/30992.
Full textMaster of Science
Hollis, David. "Particle image velocimetry in gas turbine combustor flow fields." Thesis, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/7640.
Full textAlhajeri, Hamad. "Heat removal in axial flow high pressure gas turbine." Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/11465.
Full textJanakiraman, S. V. "Fluid flow and heat transfer in transonic turbine cascades." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06112009-063614/.
Full textGhulam, Mohamad. "Characterization of Swirling Flow in a Gas Turbine Fuel Injector." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563877023803877.
Full textBlackburn, Robert John. "Maximising the thermal efficiency of a pressure gain combustion gas turbine." Thesis, University of Cambridge, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709490.
Full textVidlák, David. "Využití absorpčních systémů v teplárenství." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-378742.
Full textStorer, John Andrew. "Tip clearance flow in axial compressors." Thesis, University of Cambridge, 1991. https://www.repository.cam.ac.uk/handle/1810/251503.
Full textForsyth, Peter. "High temperature particle deposition with gas turbine applications." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:61556237-feed-43cb-9f4a-d0aed00ca3f8.
Full textTzannatos, E. "Stability of split flow fans." Thesis, Cranfield University, 1986. http://dspace.lib.cranfield.ac.uk/handle/1826/10520.
Full textBiesinger, Thomas Ernst. "Secondary flow reduction techniques in linear turbine cascades." Thesis, Durham University, 1993. http://etheses.dur.ac.uk/5626/.
Full textWilson, Alexander George. "Stall and surge in axial flow compressors." Thesis, Cranfield University, 1996. http://dspace.lib.cranfield.ac.uk/handle/1826/10432.
Full textWang, Liang. "Experimental and Computational Investigation of Thermal-Flow Characteristics of Gas Turbine Reverse-Flow Combustor." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1212.
Full textDale, Adrian Peter. "Radial, vaneless, turbocharger turbine performance." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/11363.
Full textSchulte, Volker Benno. "Unsteady separated boundary layers in axial-flow turbomachinery." Thesis, University of Cambridge, 1995. https://www.repository.cam.ac.uk/handle/1810/252035.
Full textGriffiths, Julian P. "Measurements of the flow field in a modern gas turbine combustor." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/12714.
Full textDaud, Harbi Ahmed. "Numerical and experimental study of flow in a gas turbine chamber." Thesis, Sheffield Hallam University, 2012. http://shura.shu.ac.uk/19535/.
Full textRice, Matthew Jason. "Simulation of Isothermal Combustion in Gas Turbines." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/9723.
Full textMaster of Science
Abou-Haidar, Nabil Ibrahim. "Compressible flow pressure losses in branched ducts." Thesis, University of Liverpool, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330238.
Full textJayasinghe, Prabodha. "Development of a tool for simulating performance of sub systems of a combined cycle power plant." Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99164.
Full textFarrall, Mark. "Numerical modelling of two-phase flow in a simplified bearing chamber." Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367991.
Full textVick, Michael J. "High efficiency recuperated ceramic gas turbine engines for small unmanned air vehicle propulsion." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10970.
Full textAlexiou, A. "Flow and heat transfer in gas turbine H.P. compressor internal air systems." Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402026.
Full textIeronymidis, Ioannis. "Flow and heat transfer measurements in a gas turbine wall cooling passage." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670199.
Full textMehdi, Ahad. "Effect of swirl distortion on gas turbine operability." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/12129.
Full textHilditch, Mary Anne. "Unsteady heat transfer measurements in a rotating gas turbine stage." Thesis, University of Oxford, 1989. http://ora.ox.ac.uk/objects/uuid:2d3e6d7a-1f55-4536-b863-e9ccc9a281eb.
Full textPretorius, Johannes Jacobus. "A network approach for the prediction of flow and flow splits within a gas turbine combustor." Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/26712.
Full textDissertation (MEng (Mechanical Engineering))--University of Pretoria, 2005.
Mechanical and Aeronautical Engineering
unrestricted
Slater, J. T. D. "Three-dimensional aerodynamic studies of a turbine stage in a transient flow facility." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358729.
Full textCleak, James Gilbert Edwin. "Validation of viscous, three-dimensional flow calculations in an axial turbine cascade." Thesis, Durham University, 1989. http://etheses.dur.ac.uk/6429/.
Full textGreen, T. "Effect of external flow on the sealing performance of rotor-stator rim seals." Thesis, University of Sussex, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358187.
Full textRahman, Faisal. "Numerical modelling of heat transfer and thermal stresses in gas turbine guide vanes." Pretoria : [s.n.], 2003. http://upetd.up.ac.za/thesis/available/etd-05302005-103404/.
Full textMiniscloux, Glenn. "Investigation of a Fluidic Device for Cooling Flow Modulation in Gas Turbine Engines." Thesis, University of Sussex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505903.
Full textLuff, John K. "Numerical prediction of flow, thermal and stress fields in gas turbine combustor components." Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/15458.
Full textCarmack, Andrew Cardin. "Heat Transfer and Flow Measurements in Gas Turbine Engine Can and Annular Combustors." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/32466.
Full textMaster of Science
Lyes, Peter A. "Low speed axial compressor design and evaluation : High speed representation and endwall flow control studies." Thesis, Cranfield University, 1999. http://hdl.handle.net/1826/4251.
Full textAlmutlaq, Ahmed N. "Density-based unstructured simulations of gas-turbine combustor flows." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/13892.
Full textMcDougall, Neil Malcolm. "Stall inception in axial compressors." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237803.
Full textGullia, Alessandro. "Thrust and Flow Prediction in Gas Turbine Engine Indoor Sea-Level Test Cell Facilities." Thesis, Cranfield University, 2006. http://dspace.lib.cranfield.ac.uk/handle/1826/7496.
Full textBrouwer, Silke [Verfasser]. "Research on the Accuracy of Flow Simulation in Gas Turbine Exhaust Diffusers / Silke Brouwer." Aachen : Shaker, 2018. http://d-nb.info/1186590777/34.
Full textAbraham, Santosh. "Heat Transfer and Flow Measurements on a One-Scale Gas Turbine Can Combustor Model." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/35177.
Full textMaster of Science
Petrov, Miroslav. "Biomass and Natural Gas Hybrid Combined Cycles." Licentiate thesis, KTH, Energy Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1660.
Full textBiomass is one of the main natural resources in Sweden.Increased utilisation of biomass for energy purposes incombined heat and power (CHP) plants can help the country meetits nuclear phase-out commitment. The present low-CO2 emissioncharacteristics of the Swedish electricity production system(governed by hydropower and nuclear power) can be retained onlyby expansion of biofuels in the CHP sector. Domestic Swedishbiomass resources are vast and renewable, but not infinite.They should be utilised as efficiently as possible in order tomeet the conditions for sustainability in the future.Application of efficient power generation cycles at low cost isessential for meeting this challenge. This applies also tomunicipal solid waste (MSW) incineration with energyextraction, which is to be preferred to landfilling.
Modern gas turbines and internal combustion engines firedwith natural gas have comparatively low installation costs,good efficiency characteristics and show reliable performancein power applications. Environmental and source-of-supplyfactors place natural gas at a disadvantage as compared tobiofuels. However, from a rational perspective, the use ofnatural gas (being the least polluting fossil fuel) togetherwith biofuels contributes to a diverse and more secure resourcemix. The question then arises if both these fuels can beutilised more efficiently if they are employed at the samelocation, in one combined cycle unit.
The work presented herein concentrates on the hybriddual-fuel combined cycle concept in cold-condensing and CHPmode, with a biofuel-fired bottoming steam cycle and naturalgas fired topping gas turbine or engine. Higher electricalefficiency attributable to both fuels is sought, while keepingthe impact on environment at a low level and incorporating onlyproven technology with standard components. The study attemptsto perform a generalized and systematic evaluation of thethermodynamic advantages of various hybrid configurations withthe help of computer simulations, comparing the efficiencyresults to clearly defined reference values.
Results show that the electrical efficiency of hybridconfigurations rises with up to 3-5 %-points in cold-condensingmode (up to 3 %-points in CHP mode), compared to the sum of twosingle-fuel reference units at the relevant scales, dependingon type of arrangement and type of bottoming fuel. Electricalefficiency of utilisation of the bottoming fuel (biomass orMSW) within the overall hybrid configuration can increase withup to 8-10 %-points, if all benefits from the thermalintegration are assigned to the bottoming cycle and effects ofscale on the reference electrical efficiency are accounted for.All fully-fired (windbox) configurations show advantages of upto 4 %-points in total efficiency in CHP mode with districtheating output, when flue gas condensation is applied. Theadvantages of parallel-powered configurations in terms of totalefficiency in CHP mode are only marginal. Emissions offossil-based CO2 can be reduced with 20 to 40 kg CO2/MWhel incold-condensing mode and with 5-8 kg CO2 per MWh total outputin CHP mode at the optimum performance points.
Keywords: Biomass, Municipal Solid Waste (MSW), Natural Gas,Simulation, Hybrid, Combined Cycle, Gas Turbine, InternalCombustion Engine, Utilization, Electrical Efficiency, TotalEfficiency, CHP.
Carrotte, Jonathan F. "The mixing characteristics of dilution jets issuing into a confined cross-flow." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/32627.
Full textCollin, Félix. "Modeling and numerical simulations of two-phase ignition in gas turbine." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0053.
Full textIn order to meet the new international environmental regulations while maintaining a strong economic competitiveness, innovative technologies of aeronautical combustion chambers are developed. These technologies must guarantee fast relight in case of extinction, which is one of the most critical and complex aspects of engine design. Control of this phase involves a thorough understanding of the physical phenomena involved. In this thesis the full two-phase ignition sequence of an aeronautical engine has been studied, from the breakdown of the spark plug to thepropagation of the flame in the complete engine. For this purpose, Large-Eddy Simulations (LES) using a detailed description of the liquid phase (Euler-Lagrange formalism) and of the combustion process (Analytically Reduced Chemistry) were performed. The results also led to the development of a simplified model for the prediction of ignition probability map, which is particularly useful for the design of combustion chambers
Scrittore, Joseph. "Experimental Study of the Effect of Dilution Jets on Film Cooling Flow in a Gas Turbine Combustor." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28171.
Full textPh. D.
Tse, David Gar Nile. "Flow and combustion characteristics of model annular and can-type combustors." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/8941.
Full text