To see the other types of publications on this topic, follow the link: Gas turbine flow efficiency.

Dissertations / Theses on the topic 'Gas turbine flow efficiency'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Gas turbine flow efficiency.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Johnson, A. B. "The aerodynamic effects of nozzle guide vane shock wave and wake on a transonic turbine rotor." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plewacki, Nicholas. "Modeling High Temperature Deposition in Gas Turbines." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587714424017527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Templalexis, I. K. "Gas turbine performance with distorted inlet flow." Thesis, Cranfield University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Batt, J. J. M. "Three-dimensional unsteady gas turbine flow measurement." Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:3302ca8f-0618-4440-9e23-3bf99bc3705d.

Full text
Abstract:
The high pressure turbine stage can be considered the most important component for the efficiency and longevity of a modern gas turbine. The flow field within this stage is highly complex and is both unsteady and three-dimensional. Understanding this flow field is essential if improvements are to be made to future engine designs. Increasingly designers are placing more emphasis on the use of Computational Fluid Dynamics (CFD) rather than experimental results. CFD methods can be more flexible and cost effective. However before these predictions can be used they must be validated against experim
APA, Harvard, Vancouver, ISO, and other styles
5

Palafox, Pepe. "Gas turbine tip leakage flow and heat transfer." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stitzel, Sarah M. "Flow Field Computations of Combustor-Turbine Interactions in a Gas Turbine Engine." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/30992.

Full text
Abstract:
The current demands for higher performance in gas turbine engines can be reached by raising combustion temperatures to increase thermal efficiency. Hot combustion temperatures create a harsh environment which leads to the consideration of the durability of the combustor and turbine sections. Improvements in durability can be achieved through understanding the interactions between the combustor and turbine. The flow field at a combustor exit shows non-uniformities in pressure, temperature, and velocity in the pitch and radial directions. This inlet profile to the turbine can have a considerable
APA, Harvard, Vancouver, ISO, and other styles
7

Hollis, David. "Particle image velocimetry in gas turbine combustor flow fields." Thesis, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/7640.

Full text
Abstract:
Current and future legislation demands ever decreasing levels of pollution from gas turbine engines, and with combustor performance playing a critical role in resultant emissions, a need exists to develop a greater appreciation of the fundamental causes of unsteadiness. Particle Image Velocimetry (PIV) provides a platform to enable such investigations. This thesis presents the development of PIV measurement methodologies for highly turbulent flows. An appraisal of these techniques applied to gas turbine combustors is then given, finally allowing a description of the increased understanding of
APA, Harvard, Vancouver, ISO, and other styles
8

Alhajeri, Hamad. "Heat removal in axial flow high pressure gas turbine." Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/11465.

Full text
Abstract:
The demand for high power in aircraft gas turbine engines as well as industrial gas turbine prime mover promotes increasing the turbine entry temperature, the mass flow rate and the overall pressure ratio. High turbine entry temperature is however the most convenient way to increase the thrust without requiring a large change in the engine size. This research is focused on improving the internal cooling of high pressure turbine blade by investigating a range of solutions that can contribute to the more effective removal of heat when compared with existing configuration. The role played by the
APA, Harvard, Vancouver, ISO, and other styles
9

Janakiraman, S. V. "Fluid flow and heat transfer in transonic turbine cascades." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06112009-063614/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghulam, Mohamad. "Characterization of Swirling Flow in a Gas Turbine Fuel Injector." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563877023803877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Blackburn, Robert John. "Maximising the thermal efficiency of a pressure gain combustion gas turbine." Thesis, University of Cambridge, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Vidlák, David. "Využití absorpčních systémů v teplárenství." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-378742.

Full text
Abstract:
Main goal of this work is familiarization with basic features of absorption heat pumps and it’s growing importance on the market. In the first part of the work there is a research for clarifying facts associated with such pumps. In the introduction there are descriptions of basic information from the field of heating industry and its connections to our systems. Next there is a brief analysis of price changes in electricity and heat in the last five years. Main part of the analytical section is a description of the used absorption system. Second part of the work is focused on the calculation of
APA, Harvard, Vancouver, ISO, and other styles
13

Storer, John Andrew. "Tip clearance flow in axial compressors." Thesis, University of Cambridge, 1991. https://www.repository.cam.ac.uk/handle/1810/251503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Forsyth, Peter. "High temperature particle deposition with gas turbine applications." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:61556237-feed-43cb-9f4a-d0aed00ca3f8.

Full text
Abstract:
This thesis describes validated improvements in the modelling of micron-sized particle deposition within gas turbine engine secondary air systems. The initial aim of the research was to employ appropriate models of instantaneous turbulent flow behaviour to RANS CFD simulations, allowing the trajectory of solid particulates in the flow to be accurately predicted. Following critical assessment of turbophoretic models, the continuous random walk (CRW) model was chosen to predict instantaneous fluid fluctuating velocities. Particle flow, characterised by non-dimensional deposition velocity and par
APA, Harvard, Vancouver, ISO, and other styles
15

Tzannatos, E. "Stability of split flow fans." Thesis, Cranfield University, 1986. http://dspace.lib.cranfield.ac.uk/handle/1826/10520.

Full text
Abstract:
The performance requirements of turbofan engines demands a stability and transient capability beyond that associated with the past generations of gas turbine engines. The axial flow fan unit is most vulnerable to loading limitations due to the primary problems associated with the compression process, its sensitivity to inlet distortion and the difficulty to design for an overall optimum blade duty in a machine of wide radial blade loading distribution. The development of mathematical models with some capability of predicting the stable operating range of an axial flow fan has to overcome the d
APA, Harvard, Vancouver, ISO, and other styles
16

Biesinger, Thomas Ernst. "Secondary flow reduction techniques in linear turbine cascades." Thesis, Durham University, 1993. http://etheses.dur.ac.uk/5626/.

Full text
Abstract:
This thesis investigates a novel secondary flow reduction method. The inlet boundary layer to a linear turbine cascade is skewed by injection of air through an upstream slot to oppose regular generated negative stream wise vorticity. Other methods from the pertinent literature are reviewed on a broad basis. Detailed measurements of the flowfield in the Durham Linear Cascade facility have shown that substantial reductions in secondary flows and losses are possible. If the kinetic energy required for the blowing is taken into account by means of an availability analysis, no net gain in loss is a
APA, Harvard, Vancouver, ISO, and other styles
17

Wilson, Alexander George. "Stall and surge in axial flow compressors." Thesis, Cranfield University, 1996. http://dspace.lib.cranfield.ac.uk/handle/1826/10432.

Full text
Abstract:
The objective of the work described in this thesis is twofold; to elucidate the nature of stall and surge in an axial flow aeroengine compressor, and to improve on current computational stall modelling techniques. Particular attention is paid to the initial stages of the stall/surge transient, and to the possibility of using active control techniques to prevent or delay the onset of stall/surge. A detailed analysis is presented of measurements of the stalling behaviour of a Rolls- Royce VIPER jet engine, showing a wide variety of stall inception and post-stall behaviour. Stall transients are
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Liang. "Experimental and Computational Investigation of Thermal-Flow Characteristics of Gas Turbine Reverse-Flow Combustor." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1212.

Full text
Abstract:
Reverse-flow combustors have been used in heavy land-based gas turbines for many decades. A sheath is typically installed to provide cooling at an expense of large pressure losses, through small jet impingement cooling and strong forced convention channel flow. With the modern advancement in metallurgy and thermal-barrier coating technologies, it may become possible to remove this sheath to recover the pressure losses without melting the combustor chamber. However, without the sheath, the flow inside the dump diffuser may exert nonuniform cooling on the combustion chamber. Therefore, the objec
APA, Harvard, Vancouver, ISO, and other styles
19

Dale, Adrian Peter. "Radial, vaneless, turbocharger turbine performance." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/11363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schulte, Volker Benno. "Unsteady separated boundary layers in axial-flow turbomachinery." Thesis, University of Cambridge, 1995. https://www.repository.cam.ac.uk/handle/1810/252035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Griffiths, Julian P. "Measurements of the flow field in a modern gas turbine combustor." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/12714.

Full text
Abstract:
A detailed investigation into the aerodynamics of a modern gas turbine combustor is reported in this thesis. The main objectives of this work were to examine the interactions between the various features of the internal flow field, and between the external and internal aerodynamics, and to obtain sufficient flow field data for validation of CFD codes. A new experimental facility was developed to allow optical access for high quality internal and external measurements of the isothermal flow field in a three sector segment of an annular gas turbine combustor whose geometry is typical of the comb
APA, Harvard, Vancouver, ISO, and other styles
22

Daud, Harbi Ahmed. "Numerical and experimental study of flow in a gas turbine chamber." Thesis, Sheffield Hallam University, 2012. http://shura.shu.ac.uk/19535/.

Full text
Abstract:
This thesis examines the cooling performance and the flow on a gas turbine blade. Numerical and experimental methods are described and implemented to assess the influence of film cooling effectiveness. A modem gas turbine blade geometry has been used. The blade is considered as a solid body with the blade cross section from hub to shroud varying with a degree of skewness. Computational Fluid Dynamics (CFD) is employed to assess blade film cooling effectiveness via simulation of the effect of varying blowing ratios (BR=1, 1.5 and 2), varying coolant fluid temperature (Tc=153 K and Tc=287.5 K),
APA, Harvard, Vancouver, ISO, and other styles
23

Rice, Matthew Jason. "Simulation of Isothermal Combustion in Gas Turbines." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/9723.

Full text
Abstract:
Current improvements in gas turbine engine performance have arisen primarily due to increases in turbine inlet temperature and compressor pressure ratios. However, a maximum possible turbine inlet temperature exits in the form of the adiabatic combustion temperature of the fuel. In addition, thermal limits of turbine blade materials also places an upper bound on turbine inlet temperatures. Thus, the current strategy for improving gas turbine efficiency is inherently limited. Introduction of a new gas turbine, based on an alternative work cycle utilizing isothermal combustion (i.e. combustion w
APA, Harvard, Vancouver, ISO, and other styles
24

Abou-Haidar, Nabil Ibrahim. "Compressible flow pressure losses in branched ducts." Thesis, University of Liverpool, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jayasinghe, Prabodha. "Development of a tool for simulating performance of sub systems of a combined cycle power plant." Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99164.

Full text
Abstract:
Abstract In Sri Lanka, around 50% of the electrical energy generation is done using thermal energy, and hence maintaining generation efficiencies of thermal power plants at an acceptable level is very important from a socio-economic perspective for the economic development of the country. Efficiency monitoring also plays a vital role as it lays the foundation for maintaining and improving of generation efficiency. Heat rate, which is the reciprocal of the efficiency, is used to measure the performance of thermal power plants. In combined cycle power plants, heat rate depends on ambient conditi
APA, Harvard, Vancouver, ISO, and other styles
26

Farrall, Mark. "Numerical modelling of two-phase flow in a simplified bearing chamber." Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Vick, Michael J. "High efficiency recuperated ceramic gas turbine engines for small unmanned air vehicle propulsion." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10970.

Full text
Abstract:
To perform long missions, small unmanned air vehicles (UAVs) need efficient, lightweight propulsion systems that can operate on energy dense fuels. Gas turbines offer better reliability, life, fuel flexibility, noise, and vibration than internal combustion (IC) engines, but they are uncompetitive due to fuel efficiencies around 6%. At this scale, conventional efficiency improvement approaches such as high pressure ratios and cooled metal turbines are impractical. Ceramic turbines could withstand high temperatures without cooling, but their life and reliability have been inadequate. This work e
APA, Harvard, Vancouver, ISO, and other styles
28

Alexiou, A. "Flow and heat transfer in gas turbine H.P. compressor internal air systems." Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ieronymidis, Ioannis. "Flow and heat transfer measurements in a gas turbine wall cooling passage." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mehdi, Ahad. "Effect of swirl distortion on gas turbine operability." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/12129.

Full text
Abstract:
The aerodynamic integration of an aero-engine intake system with the airframe can pose some notable challenges. This is particularly so for many military air- craft and is likely to become a more pressing issue for both new military systems with highly embedded engines as well as for novel civil aircraft configurations. During the late 1960s with the advent of turbo-fan engines, industry became in- creasingly aware of issues which arise due to inlet total pressure distortion. Since then, inlet-engine compatibility assessments have become a key aspect of any new development. In addition to tota
APA, Harvard, Vancouver, ISO, and other styles
31

Hilditch, Mary Anne. "Unsteady heat transfer measurements in a rotating gas turbine stage." Thesis, University of Oxford, 1989. http://ora.ox.ac.uk/objects/uuid:2d3e6d7a-1f55-4536-b863-e9ccc9a281eb.

Full text
Abstract:
As the performance required of high pressure turbines continues to increase, there is a need to investigate many details of the flow which occur in a gas turbine stage that were previously overlooked. These include the effects of rotation and three-dimensional flow as well as unsteady effects due to the relative motion of the blade rows. In order to obtain a better understanding of the turbine flowfield a new transient facility has been commissioned in which aerodynamic and heat transfer measurements can be undertaken in a full stage turbine at engine representative conditions. The previously
APA, Harvard, Vancouver, ISO, and other styles
32

Pretorius, Johannes Jacobus. "A network approach for the prediction of flow and flow splits within a gas turbine combustor." Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/26712.

Full text
Abstract:
The modern gas turbine engine industry needs a simpler and faster method to facilitate the design of gas turbine combustors due to the enormous costs of experimental test rigging and detailed computational fluid dynamics (CFD) simulations. Therefore, in the initial design phase, a couple of preliminary designs are conducted to establish initial values for combustor performance and geometric characteristics. In these preliminary designs, various one-dimensional models using analytical and empirical formulations may be used. One of the disadvantages of existing models is that they are typically
APA, Harvard, Vancouver, ISO, and other styles
33

Slater, J. T. D. "Three-dimensional aerodynamic studies of a turbine stage in a transient flow facility." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Cleak, James Gilbert Edwin. "Validation of viscous, three-dimensional flow calculations in an axial turbine cascade." Thesis, Durham University, 1989. http://etheses.dur.ac.uk/6429/.

Full text
Abstract:
This thesis presents a detailed investigation of the capability of a modern three-dimensional Navier-Stokes solver to predict the secondary flows and losses in a linear cascade of high turning turbine rotor blades. Three codes were initially tested, to permit selection of the best of the available numerical solvers for this case. This program was then tested in more detail. Results showed that although very accurate prediction of the effects of inviscid fluid mechanics is now possible, the Reynolds stress modelling can have profound effects upon the quality of the solutions obtained. Solutions
APA, Harvard, Vancouver, ISO, and other styles
35

Green, T. "Effect of external flow on the sealing performance of rotor-stator rim seals." Thesis, University of Sussex, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rahman, Faisal. "Numerical modelling of heat transfer and thermal stresses in gas turbine guide vanes." Pretoria : [s.n.], 2003. http://upetd.up.ac.za/thesis/available/etd-05302005-103404/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Miniscloux, Glenn. "Investigation of a Fluidic Device for Cooling Flow Modulation in Gas Turbine Engines." Thesis, University of Sussex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Luff, John K. "Numerical prediction of flow, thermal and stress fields in gas turbine combustor components." Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/15458.

Full text
Abstract:
In this work an integrated set of numerical methods is developed for the analysis of gas turbine combustors, which can predict the flow, temperature and stress fields in modern geometrically complex combustor walls. A key problem for accurate flow and temperature field prediction is the wide range of geometric length scales within modern combustor components. These components typically contain multiple small-scale cooling features such as pedestals and effusion cooling holes, which cannot be resolved by a computational mesh without incurring huge penalties in terms of computer processor and me
APA, Harvard, Vancouver, ISO, and other styles
39

Carmack, Andrew Cardin. "Heat Transfer and Flow Measurements in Gas Turbine Engine Can and Annular Combustors." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/32466.

Full text
Abstract:
A comparison study between axial and radial swirler performance in a gas turbine can combustor was conducted by investigating the correlation between combustor flow field geometry and convective heat transfer at cold flow conditions for Reynolds numbers of 50,000 and 80,000. Flow velocities were measured using Particle Image Velocimetry (PIV) along the center axial plane and radial cross sections of the flow. It was observed that both swirlers produced a strong rotating flow with a reverse flow core. The axial swirler induced larger recirculation zones at both the backside wall and the central
APA, Harvard, Vancouver, ISO, and other styles
40

Lyes, Peter A. "Low speed axial compressor design and evaluation : High speed representation and endwall flow control studies." Thesis, Cranfield University, 1999. http://hdl.handle.net/1826/4251.

Full text
Abstract:
This Thesis reports the design, build and test of two sets of blading for the Cranfield University low speed research compressor. The first of these was a datum low speed design based on the fourth stage of the DERA high speed research compressor C 147. The emphasis of this datum design was on the high-to-low speed transformation process and the evaluation of such a process through comparing detailed flow measurements from both compressors. Area traverse measurements in both the stationary and rotating frame of reference were taken at Cranfield along with overall performance, blade surface sta
APA, Harvard, Vancouver, ISO, and other styles
41

Almutlaq, Ahmed N. "Density-based unstructured simulations of gas-turbine combustor flows." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/13892.

Full text
Abstract:
The goal of the present work was to identify and implement modifications to a density-based unstructured RANS CFD algorithm, as typically used in turbomachinery flows (represented here via the RoIIs-Royce 'Hydra' code), for application to Iow Mach number gas-turbine combustor flows. The basic algorithm was modified to make it suitable for combustor relevant problems. Fixed velocity and centreline boundary conditions were added using a characteristic based method. Conserved scalar mean and variance transport equations were introduced to predict scalar mixing in reacting flows. Finally, a flarne
APA, Harvard, Vancouver, ISO, and other styles
42

McDougall, Neil Malcolm. "Stall inception in axial compressors." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gullia, Alessandro. "Thrust and Flow Prediction in Gas Turbine Engine Indoor Sea-Level Test Cell Facilities." Thesis, Cranfield University, 2006. http://dspace.lib.cranfield.ac.uk/handle/1826/7496.

Full text
Abstract:
The principal aim of this research was to provide a detailed understanding of the performance of gas turbine engines inside indoor sea-level test beds. In particular the evaluation of both thrust correction factors and the estimation of the mass flow entering the test cell were at the core of the research. The project has been fully sponsored by Rolls-Royce pIc. Initially, their principal objective was to assess the relevance and accuracy of CFD when applied to thrust measurement inside indoor test beds with an intended outcome of minimising the use of expensive experimental measurements. The
APA, Harvard, Vancouver, ISO, and other styles
44

Brouwer, Silke [Verfasser]. "Research on the Accuracy of Flow Simulation in Gas Turbine Exhaust Diffusers / Silke Brouwer." Aachen : Shaker, 2018. http://d-nb.info/1186590777/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Abraham, Santosh. "Heat Transfer and Flow Measurements on a One-Scale Gas Turbine Can Combustor Model." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/35177.

Full text
Abstract:
Combustion designers have considered back-side impingement cooling as the solution for modern DLE combustors. The idea is to provide more cooling to the deserved local hot spots and reserve unnecessary coolant air from local cold spots. Therefore, if accurate heat load distribution on the liners can be obtained, then an intelligent cooling system can be designed to focus more on the localized hot spots. The goal of this study is to determine the heat transfer and pressure distribution inside a typical can-annular gas turbine combustor. This is one of the first efforts in the public domain to i
APA, Harvard, Vancouver, ISO, and other styles
46

Petrov, Miroslav. "Biomass and Natural Gas Hybrid Combined Cycles." Licentiate thesis, KTH, Energy Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1660.

Full text
Abstract:
<p>Biomass is one of the main natural resources in Sweden.Increased utilisation of biomass for energy purposes incombined heat and power (CHP) plants can help the country meetits nuclear phase-out commitment. The present low-CO2 emissioncharacteristics of the Swedish electricity production system(governed by hydropower and nuclear power) can be retained onlyby expansion of biofuels in the CHP sector. Domestic Swedishbiomass resources are vast and renewable, but not infinite.They should be utilised as efficiently as possible in order tomeet the conditions for sustainability in the future.Applic
APA, Harvard, Vancouver, ISO, and other styles
47

Carrotte, Jonathan F. "The mixing characteristics of dilution jets issuing into a confined cross-flow." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/32627.

Full text
Abstract:
An experimental investigation has been carried out into the mixing of a row of jets injected into a confined cross-flow. Measurements were made on a fully annular test facility, the geometry of the rig simulating that found in the dilution zone of a gas turbine combustion chamber. A small temperature difference of 44°C between the cross-flow and dilution fluid allowed the mixing characteristics to be assessed, with hot jets being injected into a relatively cold cross-flow at a jet to cross-flow momentum flux ratio of 4.0. The investigation concentrated on differences in the mixing of individua
APA, Harvard, Vancouver, ISO, and other styles
48

Collin, Félix. "Modeling and numerical simulations of two-phase ignition in gas turbine." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0053.

Full text
Abstract:
Afin de répondre aux nouvelles réglementations environnementales internationales tout en maintenant une forte compétitivité économique, des technologies innovantes de chambres de combustion aéronautiques sont développées. Ces technologies doivent garantir un rallumage rapide en cas d’extinction, qui est un des aspects les plus critiques et complexes de la conception moteur. La maîtrise de cette phase implique une compréhension approfondie des phénomènes physiques mis en jeu. Dans cette thèse la séquence d’allumage diphasique de moteur aéronautique a été étudiée dans son intégralité, du claquag
APA, Harvard, Vancouver, ISO, and other styles
49

Scrittore, Joseph. "Experimental Study of the Effect of Dilution Jets on Film Cooling Flow in a Gas Turbine Combustor." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28171.

Full text
Abstract:
Cooling combustor chambers for gas turbine engines is challenging because of the complex flow fields inherent to this engine component. This complexity, in part, arises from the interaction of high momentum dilution jets required to mix the fuel with effusion film cooling jets that are intended to cool the combustor walls. The dilution and film cooling flow have different performance criteria, often resulting in conflicting flow mechanisms. The purpose of this study is to evaluate the influence that the dilution jets have on the film cooling effectiveness and how the flow and thermal patte
APA, Harvard, Vancouver, ISO, and other styles
50

Tse, David Gar Nile. "Flow and combustion characteristics of model annular and can-type combustors." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/8941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!