Dissertations / Theses on the topic 'Gas sensing; Plasmonic applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Gas sensing; Plasmonic applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Maake, Popoti Jacqueline. "Photovoltaic and gas sensing applications of transitional metal nanocomposites of poly(3-hexylthiophene)-titanium dioxide." University of Western Cape, 2021. http://hdl.handle.net/11394/8240.
Full textThis thesis starts with the reviewing of studies on the loading of noble metals and nanostructured metal oxides into bulk heterojunction organic solar cell device architectures. The reviews focused on the innovative developments in the use of various fullerene derivatives as electron acceptors in organic solar cells. It additionally reflected on the effect of metallic nanoparticles (NPs), such as gold (Au) and silver (Ag), on the performance of organic solar cells. Besides the metallic NPs, the effect of metal oxide nanoparticle loading, e.g. CuO, ZnO and TiO2, on the organic solar cell performance, and the use of noble metals doped TiO2 on the gas sensing application were reviewed.
2024
Perino, Mauro. "Characterization of plasmonic surfaces for sensing applications." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424012.
Full textDurante il mio periodo di dottorato in Scienza e Tecnologia dell’Informazione l’attività di ricerca principale è stata focalizzata sulla caratterizzazione, simulativa e sperimentale, dei plasmoni di superficie. I plasmoni di superficie sono onde elettromagnetiche evanescenti che si propagano all’interfaccia tra un mezzo metallico ed un mezzo dielettrico. Il loro vettore d’onda è più elevato rispetto a quello della luce nel mezzo dielettrico. Per poter quindi generare l’eccitazione si devono utilizzare particolari tecniche di accoppiamento. I due metodi più diffusi sono l’accoppiamento Kretschmann e l’accoppiamento tramite reticolo. Una volta raggiunte le condizioni di accoppiamento dei plasmoni di superficie, si realizza il fenomeno della risonanza plasmonica, la quale si manifesta attraverso brusche variazioni nelle componenti della luce riflessa o trasmessa dalla superficie. Tipicamente si può registrare un minimo della riflettanza in funzione dell’angolo di incidenza della luce sulla superficie. Esistono, tuttavia, anche altre modalità per registrare e misurare queste risonanze, come ad esempio monitorando intensità, polarizzazione o fase della luce trasmessa e riflessa dalla superficie, in funzione della sua lunghezza d’onda o dei sui angoli di incidenza. Le variazioni chimico/fisiche che avvengono all’interfaccia metallo/dielettrico, modificando la costante di accoppiamento plasmonica, cambiano le condizioni di risonanza. Nel caso in cui le variazioni all’interfaccia siano dovute ad un processo di riconoscimento molecolare è possibile rilevare le molecole d’interesse valutando i cambiamenti della risonanza plasmonica, fornendo così l’opportunità per l’implementazione di sensori specifici. L’attività di dottorato è stata focalizzata innanzitutto sullo studio teorico del comportamento della risonanza plasmonica, utilizzando varie tecniche di simulazione numerica: il metodo RCWA (Rigorous Coupled Wave Analysis), Il metodo di Chandezon ed il metodo agli elementi finiti, implementato tramite Comsol v3.5. Ho poi affrontato lo studio, tramite simulazioni, delle risonanze di superficie in configurazione Kretschmann, sia per interfacce metallo/dielettrico piane sia per interfacce nano-strutturate. Considerando una configurazione conica, ho simulato le risonanze di superficie per nano-strutture reticolari e per nano-strutture bi-dimensionali periodiche. Inoltre ho analizzato il legame tra le modalità di accoppiamento grating e Kretschmann. Tramite queste simulazioni mi è stato possibile valutare e studiare la sensibilità delle varie risonanze plasmoniche alla variazione di indice di rifrazione, quando essa avviene all’interfaccia metallo/dielettrico. È stato così possibile identificare un nuovo parametro per descrivere la risonanza plasmonica e la sua sensibilità, ossia l’angolo azimutale, definito come l’angolo tra il vettore del grating ed il piano di scattering della luce. Considerando questo particolare angolo, la sensibilità del sensore può essere controllata con un’opportuna regolazione degli altri parametri coinvolti nell’eccitazione plasmonica, consentendole di raggiungere valori molto elevati. Successivamente, grazie all’utilizzo di due banchi, uno per la configurazione Kretschmann ed uno per la misura di reticoli nano-strutturati in configurazione conica, ho realizzato delle campagne di misure sperimentali. E’ stato così possibile confrontare i risultati sperimentali con le simulazioni numeriche per le seguenti condizioni: • Interfaccia piana, configurazione Kretschmann • reticolo nano-strutturato, configurazione Kretschmann • reticolo nano-strutturato, configurazione conica L’attività sperimentale si è particolarmente focalizzata sul reticolo nano-strutturato, sia per l’innovativa modalità di caratterizzazione delle sue risonanze plasmoniche (valutazione del segnale trasmesso in funzione dell’angolo di incidenza e dell’angolo azimutale), sia per l’elevata sensibilità ottenuta valutando la variazione dell’angolo azimutale. La caratterizzazione è stata effettuata sia per il reticolo esposto all’aria che per il reticolo immerso in un liquido (tipicamente acqua). Per poter verificare il comportamento della sensibilità azimutale ho variato l’indice di rifrazione del liquido in contatto con la superficie utilizzando soluzioni miste di acqua e glicerolo. Inoltre, tramite tecniche di funzionalizzazione della superficie, ovvero applicando delle molecole thiolate che vengono adsorbite sulla parte metallica dell’interfaccia, mi è stato possibile variare le costanti di accoppiamento plasmonico, in modo da verificare la capacità del dispositivo di rilevare l’avvenuta creazione di uno strato molecolare sulla superficie. Inoltre ho positivamente verificato la capacità di immobilizzare uno strato di anticorpi sulla superficie plasmonica. Tutte le misure sperimentali che ho svolto in questa tesi sono state effettuate su sensori con superfici piane o nano-strutturate prodotte dallo spin-off universitario Next Step Engineering, con il quale ho collaborato durante il percorso di ricerca.
Ahmadivand, Arash. "Plasmonic Nanoplatforms for Biochemical Sensing and Medical Applications." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3576.
Full textPrasad, Janak [Verfasser]. "Sensing applications of biofunctionalised plasmonic gold nanoparticles / Janak Prasad." Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1070108898/34.
Full textHajebifard, Akram. "Plasmonic Nano-Resonators and Fano Resonances for Sensing Applications." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41616.
Full textPasquale, Alyssa Joy. "Engineering photonic-plasmonic devices for spectroscopy and sensing applications." Thesis, Boston University, 2012. https://hdl.handle.net/2144/32043.
Full textPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
The control of light on the nano-scale has driven the development of novel optical devices such as biosensors, antennas and guiding elements. These applications benefit from the distinctive resonant properties of noble metal thin films and nanoparticles. Many optimization parameters exist in order to engineer nanoparticle properties for spectroscopy and sensing applications: for example, the choice of metal, the particle morphology, and the array geometry. By utilizing various designs from simple monomer gratings to more complex engineered arrays, we model and characterize plasmonic arrays for sensing applications. In this thesis, I have focused on the novel paradigm of photonic-plasmonic coupling to design, fabricate, and characterize optimized nanosensors. In particular, nanoplasmonic necklaces, which consist of circular loops of closely spaced gold nanoparticles, are designed using 3D finite-difference time-domain (FDTD) simulations, fabricated with electron-beam lithography, and characterized using dark-field scattering and surface-enhanced Raman spectroscopy (SERS) of p-mercaptoaniline (pMA) monolayers. I show that such necklaces are able to support hybridized dipolar scattering resonances and polarization-controlled electromagnetic hot-spots. In addition, necklaces exhibit strong intensity enhancement when the necklace diameter leads to coupling between the broadband plasmonic resonance and the circular resonator structure of the necklace. Hence, these necklaces lead to stronger field intensity enhancement than nanoparticle monomers and dimers, which are also carefully studied. Furthermore, by embedding a dimer into one or more concentric necklace resonators, I am able to efficiently couple radiation into the dimer hot-spot by utilizing first- and second-order far-field coupling. This nanolensing leads to an order of 6-18 times improvement in Raman enhancement over isolated dimers, which is a promising platform for compact on-chip sensors. Additionally, I have fabricated and experimentally characterized devices that were designed in my group for SERS of pMA using an optimization algorithm. The algorithm confirms that the best arrangement of nanoparticles to increase near-field intensity enhancement in a single hot-spot is to embed a dimer into particles that couple light into the hot-spot via far-field photonic radiation. These genetically optimized nanoantennas show improvement in Raman enhancement 10 times that of nanoparticle dimers, and 100 times the enhancement of optimized two-dimensional monomer diffraction gratings.
2031-01-02
Robinson, Jendai E. "Fabrication and Characterization of Plasmonic and Electrochemical Devices Towards Sensing Applications." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1490351933726863.
Full textBuchholt, Kristina. "Nanostructured materials for gas sensing applications." Doctoral thesis, Linköpings universitet, Tillämpad Fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69641.
Full textSil, Devika. "SYNTHESIS AND APPLICATIONS OF PLASMONIC NANOSTRUCTURES." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/364016.
Full textPh.D.
The localized surface plasmon resonance (LSPR), arising due to the collective oscillation of free electrons in metal nanoparticles, is a sensitive probe of the nanostructure and its surrounding dielectric medium. Synthetic strategies for developing surfactant free nanoparticles using ultrafast lasers providing direct access to the metallic surface that harvest the localized surface plasmons will be discussed first followed by the applications. It is well known that the hot carriers generated as a result of plasmonic excitation can participate and catalyze chemical reactions. One such reaction is the dissociation of hydrogen. By the virtue of plasmonic excitation, an inert metal like Au can become reactive enough to support the dissociation of hydrogen at room temperature, thereby making it possible to optically detect this explosive gas. The mechanism of sensing is still not well understood. However, a hypothesis is that the dissociation of hydrogen may lead to the formation of a metastable gold hydride with optical properties distinct from the initial Au nanostructures, causing a reversible increase in transmission and blue shift in LSPR. It will also be shown that by tracking the LSPR of bare Au nanoparticles grown on a substrate, the adsorption of halide ions on Au can be detected exclusively. The shift in LSPR frequency is attributed to changes in electron density rather than the morphology of the nanostructures, which is often the case.
Temple University--Theses
Angiola, Marco. "Gas sensing properties of carbon nanostructures." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424809.
Full textIl presente lavoro è focalizzato sullo studio di sensori ottici basati su nanomateriali di carbonio, nell’ottica di un’applicazione di questi materiali come sensori di gas. Il lavoro prende in analisi due materiali, i nanotubi di carbonio (CNTs) e il grafene ossido (GO). La comprensione dei meccanismi di interazione di questi materiali con le molecole di gas è fondamentale per le applicazioni future di questi materiali nel rilevamento di diverse specie nocive di gas. A tal proposito, nanostrutture a base di GO e CNTs sono state sviluppate e studiate come sensori ottici verso gas ossidanti-riducenti (H2, CO, NO2) e nei contronti di composti volatili organici aromatici (benzene, toluene, xylene). Le nanoparticelle di oro sono state utilizzate come sonde ottiche grazie alla loro peculiare caratterista di risonanza plasmonica di superficie localizzata, la quale è estremamente sensibile alle variazioni di proprietà ottico-elettroniche del mezzo che le circonda, come l’indice di rifrazione, e alle variazione di densità di portatori di carica che sono coinvolti nell'eccitazione plasmonica nelle nanoparticelle di oro. Quindi, le nanoparticelle di oro, non solo amplificano le variazioni optoelettroniche del film di nanomateriali di carbonio a cui sono state accoppiate, ma interagiscono con questi inducendo un miglioramento della risposta ai gas e un abbassamento del limite di rilevamento ai gas in analisi. Inoltre, GO e CNTs presentano una vasta gamma di possibili funzionalizzazioni, che, possono essere sfruttate per una progettazione mirata delle proprietà di gas sensing delle nanostrutture di carbonio. I CNTs sono stati abbinati a nanoparticelle di Au, Pd, Ni e a fullereni. Pd e Au portano ad un miglioramento delle prestazioni dei sensori verso il gas H2, nanoparticelle di Ni e fullereni sembrano avere un’azione specifica verso il gas CO. In questo lavoro viene anche suggerita la possiblità di monitorare le proprietà di assorbanza di fullereni e CNTs nel range del vicino IR. I CNTs, in tal caso, avrebbero la duplice funzione di sonde ottiche e di materiale sensibile. Oltre all'effetto delle nanoparticelle di oro sulle proprietà di gas sensing del GO, è stata valutata l’influenza dei diversi gruppi funzionali. L’estensione dei domini sp2 sembra favorire il rilevamento di H2, mentre una forte rimozione di gruppi funzionali inibisce la risposta del GO verso CO e NO 2.
Starke, Thomas. "Gas sensing applications of phthalocyanine thin films." Thesis, Nottingham Trent University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312313.
Full textTAMVAKOS, ATHANASIOS. "ZnO-Based nanostructures for gas sensing applications." Doctoral thesis, Politecnico di Torino, 2015. http://hdl.handle.net/11583/2598561.
Full textHutter, Tanya. "Plasmonic and photonic nano-structures for applications in SERS and chemical sensing." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648334.
Full textKravets, Vira V. "Optical Properties of Plasmonic Nanostructures for Bio-Imaging and Bio-Sensing Applications." Thesis, University of Colorado at Colorado Springs, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10282081.
Full textKravets, Vira V. (Ph.D., Physics) Optical properties of plasmonic nanostructures for bio-imaging and bio-sensing applications Dissertation directed by Associate Professor Anatoliy Pinchuk. ABSTRACT This dissertation explores the physics of free electron excitations in gold nanoparticle chains, silver nanoparticle colloids, and thin gold films. Electron excitations in nanostructures (surface plasmons, SP) are responsible for unique optical properties, which are applied in bio-sensing and bio-imaging applications. For gold nanoparticle chains, the effect of SP on resonance light absorption was studied experimentally and theoretically. Mainly, how the spectral position of the absorption peak depends on inter-particle distances. This dependence is used in ?molecular rulers?, providing spatial resolution below the Rayleigh limit. The underlying theory is based on particle interaction via scattered dipole fields. Often in literature only the near-field component of the scattered field is considered. Here, I show that middle and far fields should not be neglected for calculation of extinction by particle chains. In silver nanoparticles, SP excitations produce two independent effects: (a) the intrinsic fluorescence of the particles, and (b) the enhancement of a molecule?s fluorescence by a particle?s surface. The mechanism of (a) is deduced by studying how fluorescence depends on particle size. For (b), I show that fluorescence of a dye molecule on the surface of a nanoparticle is enhanced, when compared to that of the free-standing dye. I demonstrate that the dye?s fluorescent quantum yield is dependent on the particle?s size, making labeled silver nanoparticles attractive candidates as bio-imaging agents. Labeled nanoparticles are applied to cell imaging, and their bio-compatibility with two cell lines is evaluated here. Finally, in gold films under attenuated total internal reflection (ATR) conditions, the SP create a propagating wave (SP-polariton, SPP) when coupled with the incident light. Because of the sensitivity of SPPs to the medium adjacent to the gold film surface, they are widely applied in bio-sensing applications. A toolbox for the description of sputter-deposited gold films is presented here: it employs three experimental techniques (ATR, transmittance and atomic force microscopy) in combination with the effective medium theory for double-layered film model. Our findings have allowed for the avoidance of superficial fitting parameters in our model.
Jiménez, Gallardo Ismael. "Tungsten oxide nanocrystalline powders for gas sensing applications." Doctoral thesis, Universitat de Barcelona, 2003. http://hdl.handle.net/10803/1507.
Full textThe first chapter of this dissertation presents the general framework where this investigation is placed. It includes a brief overview of chemical sensors, metal oxide-based gas sensors and the reported properties of WO3 for gas sensing applications. Finally, motivation and main targets of this investigation, as well as the organisation of this dissertation, are presented and argued. Chapter 2 presents the experimental details of this study. It discusses the preparation of WO3 nanocrystalline powder, the experimental techniques used to analyse the structural properties of the WO3 powders and the implementation and test of gas sensor devices. For this work, XRD, Raman spectroscopy, TEM-EELS, XPS, EPR, TPD and DRIFTS have been used. Thick-film screen-printed gas sensors based on WO3-powders were tested.
The target of Chapter 3 is to present an investigation into the structural and spectroscopic properties of pure and catalysed nanocrystalline WO3 powder. Firstly, the characterisation of pure nanocrystalline WO3 powder is considered. The main parameter analysed is the influence of the annealing treatment on the structural properties. Structural and spectroscopic properties of catalysed WO3 are also reported here. In this case, the emphasis lays on the characterisation of catalytic centres, rather than on bulk WO3. The catalytic additives introduced were copper (Cu), vanadium (V) and chromium (Cr).
Results concerning gas sensors based on WO3 nanocrystalline powders for the detection of the previously mentioned gases are reported in Chapter 4. The purpose of this investigation was to evaluate the sensing properties of thick-film gas sensors based on WO3 obtained from tungstic acid and to determine the effect of different additives on sensor response to NH3, H2S and NO2. Interference of humidity on the detection of these gases was also evaluated. A tentative interpretation of the reported results based only on the test data presented is also provided.
The aim of Chapter 5 is to explore the implementation of real condition characterisation techniques to WO3-based nanopowders in order to study surface species and reactions involved in gas sensing. By real condition, we refer to a characterisation under controlled conditions of temperature and gas concentration on the sample, as similar to test conditions as possible. These studies, which are standard in the field of catalysis, are not so common for gas sensors. This is still a key point in the field of gas sensors at the moment: to obtain a deeper understanding of what occurs on the surface of the sensing material. The chapter has two main parts, corresponding to the results of DRIFTS and TPD techniques. By means of DRIFTS it is possible to identify surface species that present infrared vibrations. By TPD, the desorption of adsorbed target gases is analysed.
Finally, Chapter 6 aims at discussing the results previously presented as a whole, as well as presenting the main conclusions that can be drawn from this investigation and some proposals for a future research grounded on the present work.
Hoel, Anders. "Electrical Properties of Nanocrystalline WO3 for Gas Sensing Applications." Doctoral thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4051.
Full textVaitiekus, Deivis. "Development of quantum cascade lasers for gas sensing applications." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/13916/.
Full textCICIOTTI, FULVIO. "Oscillator-Based CMOS Readout Interfaces for Gas Sensing Applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241089.
Full textDetection of toxic and dangerous gases has always been a need for safety purpose and, in recent years, portable and low-cost gas sensing systems are becoming of main interest. This thesis presents fast, high precision, low-power, versatile CMOS interface circuits for portable gas sensing applications. The target sensors are Metal Oxide Semiconductor (MOX) sensors which are widely used due to their inherent compatibility with integrated MEMS technologies. The chosen readout typologies are based on the time-domain Resistor-Controlled Oscillator. This guarantees wide dynamic range, good precision and the ability to cope with the large MOX sensor resistance variations. Four different prototypes have been successfully developed and tested. Chemical measurements with a real SnO2 MOX sensor have also been performed to validate the results, showing a minimum CO detection capability in ambient air of 5 ppm. The ASICs are able to cover 128 dB of DR at 4 Hz of digital output data rate, or 148 dB at 0.4 Hz, while providing a relative error always better than 0.4% (SNDR >48 dB). Target performances have been achieved with aggressive design strategies and system-level optimization, and using a scaled (compared to typical implementations in this field) 130nm CMOS technology provided by Infineon Technologies AG. Power consumption is about 450 μA. Moreover, this work introduces the possibility to use the same oscillator-based architecture to perform capacitive sensors readout. Measurement results with capacitive MEMS sensors have shown 116 dB of DR in CSENS mode, with an SNR of 74 dB at 10 Hz of digital output data rate. The architectures developed in this thesis are compatible with the modern standards in the portable gas sensing industry.
Marinov, Dilyan. "Laser spectroscopic trace-gas sensing with medical and environmental applications /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17281.
Full textLi, Sheng. "Design, fabrication and testing of micronozzles for gas sensing applications." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3389.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Newton, Andrew. "Optical properties of Langmuir-Blodgett films in gas sensing applications." Thesis, Coventry University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309773.
Full textTanvir, Nauman Bin [Verfasser], and Gerald A. [Akademischer Betreuer] Urban. "Investigation of metal oxide nanomaterials for CO2 gas sensing applications." Freiburg : Universität, 2017. http://d-nb.info/1138195316/34.
Full textBreivik, Magnus. "Fabrication of mid-infrared laser diodes : for gas sensing applications." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23859.
Full textDavies, Edward. "Optical fibre sensors with applications in gas and biological sensing." Thesis, Aston University, 2011. http://publications.aston.ac.uk/15800/.
Full textFarcau, Cosmin [Verfasser]. "Ordered Plasmonic Nanostructures: from Fabrication to Relevant Applications in Optical Spectroscopy and Sensing / Cosmin Farcau." Munich : GRIN Verlag, 2015. http://d-nb.info/1097463818/34.
Full textWilson, Rachel Lyndsey. "Deposition of ultra-thin metal oxide films for gas sensing applications." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10040158/.
Full textNi, Liang. "Silicon nanowires synthesized by VLS growth mode for gas sensing applications." Rennes 1, 2012. http://www.theses.fr/2012REN1S010.
Full textThis research work mainly focused on realization of microelectronic devices based on silicon nanowires (SiNWs) synthesized by VLS (Vapor Liquid Solid) method. The growth of these nanowires was carried out by LPCVD (Low Pressure Chemical Vapor Deposition) using a metal catalyst (gold). The N-type in-situ doping (from phosphorus) levels of the VLS silicon nanowires were demonstrated for a range varying from 2. 1016 to 2. 1020 at. Cm-3. The electrical behaviors of nanowires were studied in function of doping and temperature. Two different devices based on silicon nanowires were fabricated, i) inter-digital comb-shaped devices and ii) V-shaped groove devices. The first static measurements upon the SiNWs based resistor showed their high sensitivity under exposure to smoke. The quantitative dynamic measurements under exposure to a low concentration of ammonia gas (350 ppm NH3/N2) were carried out, which demonstrated high performances of the SiNWs based resistors. The relative sensitivity (Sg) can reach 740 %. This research work demonstrated the feasibility of electronic devices from silicon nanowires with potential applications as gas sensors with promising performances
Ahsan, Mohammed. "Thermally evaporated tungsten oxide (WO3) thin films for gas sensing applications." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/53124/1/Mohammed_Ahsan_Thesis.pdf.
Full textRivera, Ivan Fernando. "RF MEMS Resonators for Mass Sensing Applications." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5817.
Full textJarro, Sanabria Carlos Andrés. "GROWTH OF SILVER NANOPARTICLES ON TRANSPARENT SUBSTRATES FROM LIQUID PRECURSORS: IMPROVEMENTS AND APPLICATIONS." UKnowledge, 2013. http://uknowledge.uky.edu/ece_etds/38.
Full textZhao, Jun [Verfasser], and Harald [Akademischer Betreuer] Giessen. "Large-area low-cost fabrication of complex plasmonic nanostructures for sensing applications / Jun Zhao. Betreuer: Harald Giessen." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1069533262/34.
Full textParthangal, Prahalad Madhavan. "Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6881.
Full textThesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Hoel, Anders. "Electrical Properties of Nanocrystalline WO3 for Gas Sensing Applications." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4051.
Full textLai, Khue Tian. "Optical characterisation of quantum well infrared photodetectors (QWIPs) for gas sensing applications." Thesis, University of Hull, 2004. http://hydra.hull.ac.uk/resources/hull:5592.
Full textAdnan, Rohul. "Gold-based Nanomaterials: Spectroscopy, Microscopy and Applications in Catalysis and Sensing." Thesis, University of Canterbury. Chemistry, 2015. http://hdl.handle.net/10092/10507.
Full textEvans, G. P. "Single-walled carbon nanotube networks and related composite materials for gas sensing applications." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10046785/.
Full textKIPTIEMOI, KIPRONO KORIR. "ZnO nanowires for energy harvesting and gas sensing applications: a quantum mechanical study." Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2539901.
Full textMangu, Raghu. "NANOSTRUCTURED ARRAYS FOR SENSING AND ENERGY STORAGE APPLICATIONS." UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/207.
Full textAdeyemo, Adedunni D. "Interaction of Metal Oxides with Carbon Monoxide and Nitric Oxide for Gas Sensing Applications." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1332475552.
Full textThabethe, Sibongiseni Stanley. "Growth and characterization of FeSi nanowires by chemical vapor deposition for gas sensing applications." Thesis, University of the Western Cape, 2014. http://hdl.handle.net/11394/4239.
Full textFeSi nanowires were synthesized via a chemical vapor deposition method. Anhydrous FeCl3 powder in this case served as the Fe source and was evaporated at a temperature of 1100oC to interact with silicon substrates which served as the silicon source. The nanowires followed the vapor solid (VS) growth mechanism, which does not require the use of a metal catalyst; the native silicon oxide layer on the silicon substrates played the role of the catalyst in the growth of these nanostructures. A second growth mechanism, involving the use of a metal catalyst to assist in the growth of the nanowires was attempted by depositing a thin film of gold on silicon substrates. The reaction yielded SiOx nanowires; these results are discussed in detail in Chapter 5. All the nanostructures were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Photoluminescence Spectroscopy (PL), Raman Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR).
Emamjomeh, Seyed Mahmoud. "Nanoscale sensors based on "D TMDs and nanostructured Metal Oxides for gas sensing applications." Doctoral thesis, Università degli Studi dell'Aquila, 2018. http://hdl.handle.net/11697/165111.
Full textTarttelin, Hernandez P. "Modification of n-type and p-type metal oxide semiconductor systems for gas sensing applications." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1549841/.
Full textShehata, Nader. "Design of optical characteristics of ceria nanoparticles for applications including gas sensing and up-conversion." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/49574.
Full textPh. D.
Strauß, Ina Carina [Verfasser], and Jürgen [Akademischer Betreuer] Caro. "Metal-organic frameworks for gas and vapour-sensing applications / Ina Carina Strauß ; Betreuer: Jürgen Caro." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2020. http://d-nb.info/1215427255/34.
Full textSchulz, Marcel [Verfasser], and Peter [Akademischer Betreuer] Behrens. "Reactive metal-organic-frameworks for highly selective gas sensing applications / Marcel Schulz ; Betreuer: Peter Behrens." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2020. http://d-nb.info/1213445817/34.
Full textRenard, Laëtitia. "Nanostructured tin-based materials : sensing and optical applications." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14183/document.
Full textClass II hybrid materials were prepared from ditin hexaalkynides. Two families of precursors, including either hydrocarbon or oligothiophene-based spacers, were obtained and led by the sol-gel process to self-assembled organotin-based hybrid materials made of planes of oxide separated by organic bridges. Thus, the rigid thienyl spacer gave rise to a “pseudo-lamellar” structure that showed a monomer emission band with a rather small red-shift compared with to the emission of the precursor in solution. However more disordered thienyl xerogels led to broad emission features assigned to excimer or dimer formation. Moreover, thin films containing alkylene- and arylalkylene bridged have been prepared and showed a “pseudoparticulate” porous morphology and a short-range hierarchical order in the organic-inorganic SnOx pseudoparticles. Unexpectedly these hybrid thin films detect hydrogen gas at a temperature as low as 50 °C at the 200-10000 ppm level. From these hybrid thin films, crystalline tin dioxide (SnO2) were prepared by a thermal post-treatment. As expected, cassiterite SnO2 films detected H2 and to a less extent CO with a best operating temperature comprised between 300 and 350 °C
Arsat, Rashidah, and rashidah arsat@student rmit edu au. "Investigation of Nanostructured Thin Films on Surface Acoustic Wave and Conductometric Transducers for Gas Sensing Applications." RMIT University. Electrical and Computer Engineering, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091002.094407.
Full textWierzbowska, Katarzyna Barbara. "Studies of electronic and sensing properties of epitaxial InP surfaces for applications in gas sensor devices." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2007. http://tel.archives-ouvertes.fr/tel-00926562.
Full textGonzález, Fernández Ernesto. "Low-power techniques for wireless gas sensing network applications: pulsed light excitation with data extraction strategies." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/672792.
Full textLa presente tesis está enfocada en dos líneas de investigación, La primera aborda el desarrollo de una metodología basada en luz pulsada para modulación de sensores químico-resistivos para la extracción de información de la señal transitoria; y la segunda plantea la implementación de una red inalámbrica de sensores (WSN) basada en tecnología LoRa para la monitorización de la calidad del aire (AQM) y la detección de eventos de fuga de gases. Este documento está estructurado en cuatro capítulos organizados de la siguiente forma: el Capítulo 1 presenta el estado del arte, una introducción a los mecanismos de mejora del comportamiento de los sensores químico-resistivos, así como una introducción a la implementación de redes inalámbricas de sensores para la monitorización de la calidad del aire; el Capítulo 2 está compuesto por los dos artículos publicados relacionados con la metodología basada en la modulación utilizando luz pulsada para la extracción de información de la señal transitoria de sensores químico-resistivos; el Capítulo 3 presenta el artículo publicado relacionado con la implementación de una WSN para AQM; el Capítulo 4 presenta las conclusiones derivadas de los resultados obtenidos durante el desarrollo de el proyecto de tesis y las recomendaciones para el trabajo futuro asociado a la continuidad de los principales resultados de esta tesis.
The present thesis project is focused in two different yet related research lines. The first one addresses the development of a pulsed light-based chemiresistive sensor modulation methodology for transient information extraction. The second research line developed deals with the implementation of a LoRa-based portable, scalable, low-cost, and low power Wireless Sensor Network (WSN) for Air Quality Monitoring (AQM) and gas leakage events detection. This document is structured in four Chapters organized as follows: Chapter 1 presents the state of the art, an introduction to sensing performance enhancement and transient data extraction methods, as well as an introduction to the implementation of WSN for AQM; Chapter 2 is composed of the two published paper related to the pulsed light modulation methodology for transient information extraction; Chapter 3 presents the published paper related to the implementation of a LoRa-based WSN for AQM; Chapter 4 states the conclusions derived from the results obtained during this thesis project and the recommendations for the future work associated to the continuity of this thesis findings.
Sturaro, Marco. "Synthesis and characterization of transparent conductive oxides for gas sensing, solar control and transparent electrode applications." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3426751.
Full textIl mio lavoro di tesi si è focalizzato sulla sintesi di film sottili di ossidi trasparenti e conduttivi (TCOs) per via colloidale per applicazioni di gas sensing, solar control ed elettrodo trasparente. Il lavoro è suddiviso principalmente in tre diverse parti. La prima parte si concentra sullo sviluppo di nanoparticelle di ossidi dopati conduttivi e trasparenti per via colloidale. In particolare sono stati sintetizzate, utilizzando sintesi heat-up che non richiedono iniezione ad alta temperatura, nanoparticelle di ZnO dopato con metalli trivalenti come Alluminio e Gallio, oppure dopato con elementi tetravalenti come Silicio e Germanio, e nanoparticelle di TiO2 dopata con Niobio. Gli elettroni liberi introdotti nel cristallo in seguito al drogaggio portano allo sviluppo di peculiari proprietà optoelettroniche, in particolare alla formazione di una LSPR nel vicino infrarosso. Tali nanoparticelle sono state caratterizzate mediante diverse tecniche che permettono di investigare in particolare le variazioni della loro morfologia e delle proprietà ottiche a seguito di diverse concentrazioni di dopante. Nella seconda parte vengono invece approfonditi gli aspetti legati alla deposizione delle sospensioni colloidali ottenute e alla caratterizzazione dei film sottili prodotti. Uno degli obiettivi primari è ottenere film sottili funzionali (ad esempio come elettrodi trasparenti o per rivestimenti solar control) utilizzando blandi trattamenti termici e attraverso diversi approcci, tra cui irraggiamento UV o attacchi con acidi organici in modo da eliminare gran parte dei residui organici. In questo modo, combinando sintesi heat up “non injection” facilmente scalabili, deposizioni tramite spray coating o spin coating (che non richiedano quindi l’uso di vuoto o apparecchiature costose) e trattamenti termici che non richiedano temperature eccessive, è possibile aprire la strada ad una industrializzazione del processo. L’ultima parte si focalizza sull’utilizzo di tali film per applicazioni sensoristiche, in particolare per la rilevazione di H2 e NO2. La LSPR è sensibile ai cambiamenti della costante dielettrica nell’intorno delle particelle ed alla variazione di densità di carica: ciò permette di monitorare i gas che interagiscono con l’ossido analizzando lo spostamento in lunghezza d’onda del picco plasmonico. Sono stati effettuate misurazioni di gas sensing ottico ed elettrico per valutare le diverse performance dei TCOs a diversa concentrazione di dopante. Misurazioni in presenza di LED blu sono state inoltre eseguite, investigando il ruolo di tale radiazione nella cinetica di desorbimento delle molecole adsorbite. Infine è stata anche valutata l’influenza di nanoparticelle di Platino sulla rilevazione di idrogeno al fine di migliorare la sensibilità del sensore sfruttando l’attività catalitica di tali nanoparticelle.