Academic literature on the topic 'Gas generation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas generation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gas generation"
Devine, K. "Gas in Electricity Generation." Energy Exploration & Exploitation 13, no. 2-3 (May 1995): 149–57. http://dx.doi.org/10.1177/0144598795013002-305.
Full textGiunta, G., R. Vernazza, R. Salerno, A. Ceppi, G. Ercolani, and M. Mancini. "Hourly weather forecasts for gas turbine power generation." Meteorologische Zeitschrift 26, no. 3 (June 14, 2017): 307–17. http://dx.doi.org/10.1127/metz/2017/0791.
Full textTAKATA, Kazumasa, Keizo TSUKAGOSHI, Junichiro MASADA, and Eisaku ITO. "A102 DEVELOPMENT OF ADVANCED TECHNOLOGIES FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-1)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–29_—_1–34_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-29_.
Full textSaitoh, Keijiro, Eisaku Ito, Koichi Nishida, Satoshi Tanimura, and Keizo Tsukagoshi. "A105 DEVELOPMENT OF COMBUSTOR WITH EXHAUST GAS RECIRCULATION SYSTEM FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-2)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–47_—_1–52_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-47_.
Full textMoring, Frederick. "LDCs and distributed generation developments." Natural Gas 17, no. 3 (January 10, 2007): 30–32. http://dx.doi.org/10.1002/gas.3410170307.
Full textBurnby, M. W. "Gas for electricity generation." Power Engineering Journal 7, no. 6 (1993): 236. http://dx.doi.org/10.1049/pe:19930061.
Full textVickers, Frank. "Gas marketing opportunities in electric power generation." Natural Gas 13, no. 7 (January 9, 2007): 13–17. http://dx.doi.org/10.1002/gas.3410130704.
Full textSmith, William H. "Distributed electric generation to increase gas markets." Natural Gas 17, no. 2 (January 10, 2007): 29–32. http://dx.doi.org/10.1002/gas.3410170208.
Full textAweh, Amanda. "Enabling the Next Generation Smart Grid." Climate and Energy 38, no. 2 (August 10, 2021): 20–23. http://dx.doi.org/10.1002/gas.22247.
Full textChapman, Bruce R. "Pricing Distributed Generation: Challenges and Alternatives." Natural Gas & Electricity 33, no. 8 (February 15, 2017): 1–7. http://dx.doi.org/10.1002/gas.21965.
Full textDissertations / Theses on the topic "Gas generation"
Lee, Hi Sun. "Spray generation by gas-lift pumps." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61897.
Full textOpseth, Douglas A. "Landfill gas generation at a semi-arid landfill." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq39150.pdf.
Full textWitty, Susan Jean. "Sound generation by gas flow through corrugated pipes." Thesis, University of Hull, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395653.
Full textEccles, Neil C. "Structured grid generation for gas turbine combustion systems." Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/7348.
Full textPapadopoulos, Tilemachos. "Gas turbine cycles for intermediate load power generation." Thesis, Cranfield University, 2005. http://dspace.lib.cranfield.ac.uk/handle/1826/10718.
Full textUvwie, Patrick Awaciere. "Nigeria's gas flaring reduction : economic viability of power generation using flared gas / P.A. Uvwie." Thesis, North-West University, 2008. http://hdl.handle.net/10394/3697.
Full textHayko, Robert Kory. "Systems approach to natural gas analysis for power generation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ30858.pdf.
Full textTsoutsanis, Elias. "Performance adaptation of gas turbines for power generation applications." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/5614.
Full textGrilli, Roberto. "Methods for Trace Gas Detection Using Difference Frequency Generation." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520211.
Full textAVELLAR, VINICIUS PIMENTA DE. "TRANSIENT MODELLING OF INDUSTRIAL GAS TURBINE FOR POWER GENERATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16332@1.
Full textAs turbinas a gás são equipamentos de vital importância para o setor industrial, fornecendo trabalho e calor para diversos setores, do transporte aos sistemas de cogeração. A crescente necessidade de geração de energia elétrica confiável tem incentivado o projeto de turbinas a gás industriais, inclusive no Brasil, que operam com vários combustíveis como o diesel, gás natural, álcool e de combustíveis de baixo poder calorífico. Para melhor monitorar e controlar estes motores, uma análise completa da previsão de funcionamento em regime transitório é necessária. Durante o regime transitório das turbinas a gás industriais (heavy-duty), o sistema de controle deve manter os limites de certos parâmetros, tais como a temperatura na entrada da turbina e a velocidade de rotação do eixo, no seu valor nominal. Além disso, o tempo de resposta necessário para o sistema de controle atuar deve ser o mais breve possível para garantir uma operação de qualidade, segura e confiável. A temperatura de entrada da turbina, que é um parâmetro muito importante no desempenho de uma turbina a gás, é limitada pela resistência mecânica do material das pás da turbina. A velocidade de rotação do eixo deve permanecer constante, devido à ligação ao sistema elétrico, que não pode suportar altas flutuações de freqüência. Este trabalho tem como motivação o incremento da capacidade de simulação de um modelo computacional existente, incorporando, para este fim, rotinas de sistemas de controle. Como resultado, o novo modelo é capaz de simular qualquer condição de funcionamento de turbinas a gás industriais, em regime permanente e transitório controlado. Os resultados obtidos pelo programa computacional se mostraram fiéis ao comportamento real da máquina. Além disso, mostraram a flexibilidade do modelo ao lidar com diferentes condições de operação.Um programa computacional capaz de simular o desempenho transitório controlado de turbinas a gás é de extrema relevância para o desenvolvimento de softwares que auxiliam os operadores destes equipamentos. Dentre estes, estão os sistemas de monitoramento e diagnóstico dos equipamentos em questão.
Gas turbine engines are a vital part of today’s industry, providing both work and heat for several industry sectors, from transportation to cogeneration systems. The growing need for reliable electricity has encouraged the design of stationary gas turbines, including in Brazil, which operates on multiple fuels such as diesel, natural gas and low calorific fuels. To better monitor and control these engines, a complete analysis for prediction of transient operation is required. During transient operation of heavy duty gas turbines, the control system must keep the limits of certain parameters, such as turbine inlet temperature (TIT) and the rotational shaft speed within their design range. Moreover, the time required for the control system to react should be as short as possible to guarantee a safe and reliable operation. The turbine inlet temperature, which is a very important parameter in the performance of a gas turbine, is limited by the turbine blades material mechanical resistance. Furthermore, the rotational speed should remain constant due to the electric grid connection, which cannot withstand high frequency fluctuations. This work is motivated by the need to increase the ability of a computer model to simulate the performance of industrial gas turbines, incorporating, for this purpose, control system routines. As a result, the new model will be able to simulate any operating condition of industrial gas turbines, in both steady state and transient. The results obtained by the computer program proved to be faithful to the actual behavior of the engine. Furthermore, they showed the flexibility of the model to deal with different operating conditions. A computer program capable of simulating the transient performance of gas turbines is very important for the development softwares to help operators of such equipment. In addition, it could be used in on-line intelligent diagnostic program.
Books on the topic "Gas generation"
L, Reynolds Thomas, and NASA Glenn Research Center, eds. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) study. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textJames, Newcomb, and Cambridge Energy Research Associates, eds. Generation gap: U.S. natural gas and electric power in the 1990s. Cambridge, MA (Charles Square, 20 University Rd., Cambridge 02138): Cambridge Energy Research Associates, 1991.
Find full textBoard, Canada National Energy, ed. Natural gas for power generation: Issues and implications. Calgary: National Energy Board, 2006.
Find full textM, Spencer A., ed. Generation, accumulation, and production of Europe's hydrocarbons III. Berlin: Springer-Verlag, 1993.
Find full textVladislav, Sadykov, ed. Syngas generation from hydrocarbons and oxygenates with structured catalysts. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textMadhlopa, Amos. Principles of Solar Gas Turbines for Electricity Generation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68388-1.
Full textChen, M. J. Generation systems software: Steam, gas and diesel plant. London: Chapman & Hall, 1996.
Find full textGreenspan, Donald. The generation of turbulence in a compressed gas. Arlington, Tex: University of Texas at Arlington, Dept. of Mathematics, 1997.
Find full textM, Spencer A., ed. Generation, accumulation, and production of Europe's hydrocarbons II. Berlin: Springer-Verlag, 1992.
Find full text1948-, Lewan M. D., and Geological Survey (U.S.), eds. Comparison of kinetic-model predictions of deep gas generation. [Reston, Va.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Find full textBook chapters on the topic "Gas generation"
Zakharov, Y. N. "Mathematical Modeling of Gas Generation in Underground Gas Generator." In Communications in Computer and Information Science, 218–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12203-4_22.
Full textChen, M. J., M. Buamud, and D. M. Grant. "Gas turbine-generator program manual." In Generation Systems Software, 76–101. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1191-1_6.
Full textBarlaz, Morton A., and Robert K. Ham. "Leachate and gas generation." In Geotechnical Practice for Waste Disposal, 113–36. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3070-1_6.
Full textCôme, Guy-Marie. "Generation of Reaction Mechanisms." In Gas-Phase Thermal Reactions, 201–23. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9805-7_10.
Full textSchulenberg, Thomas. "Gas-Cooled Fast Reactors." In The fourth generation of nuclear reactors, 135–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64919-0_8.
Full textHiller, W. J., and J. Hägele. "Generation of High-Speed Aerosol Beams By Laval Nozzles." In Rarefied Gas Dynamics, 1235–43. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2467-6_55.
Full textHeszler, Peter, Lars Landström, and Claes-Göran Grangvist. "Basics of UV Laser-Assisted Generation of Nanoparticles." In Gas Phase Nanoparticle Synthesis, 69–122. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2444-3_4.
Full textTaylor, J'tia P. "Generation-IV Gas-Cooled Fast Reactor." In Nuclear Energy Encyclopedia, 349–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118043493.ch29.
Full textLiu, Kun, Daifen Chen, Serhiy Serbin, and Volodymyr Patlaichuk. "Power Generation Market for Gas Turbines." In Gas Turbines Structural Properties, Operation Principles and Design Features, 3–9. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0977-3_1.
Full textAyala, R. E. "Application of IGCC Technology to Power Generation." In Desulfurization of Hot Coal Gas, 75–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58977-5_5.
Full textConference papers on the topic "Gas generation"
Sato, T., S. Aoki, and H. Mori. "A Gas Turbine Interactive Design System — TDSYS — for Advanced Gas Turbines." In 1985 Joint Power Generation Conference: GT Papers. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-jpgc-gt-11.
Full textStillman, Arnold. "Signal generation in gas detectors." In Beam Instrumentation Workshop. AIP, 1994. http://dx.doi.org/10.1063/1.46990.
Full textRutledge, Chris. "Monitoring Gas Generation in Transformers." In 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). IEEE, 2018. http://dx.doi.org/10.1109/tdc.2018.8440249.
Full textBanister, Mark. "Photo Reactive Gas Generation System." In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4501.
Full textAchitaev, Andrei A., Stanislav A. Eroshenko, Anastasia G. Rusina, Alexey A. Zhidkov, and Pavel N. Evseenkov. "Landfill Gas Generation Projects Implementation." In 2020 Ural Smart Energy Conference (USEC). IEEE, 2020. http://dx.doi.org/10.1109/usec50097.2020.9281152.
Full textLothe, Per, and Nils Kristian Stroem. "Pressurized Natural Gas-Next-Generation Marine Gas Transport Solution." In Offshore Technology Conference. Offshore Technology Conference, 2007. http://dx.doi.org/10.4043/18630-ms.
Full textLi, Nathan, Lei Tao, James McSpiritt, Eric M. Jackson, Chadwick L. Canedy, Charles D. Merritt, Mijin Kim, et al. "Resonant cavity infrared detectors for scalable gas sensing." In Next-Generation Spectroscopic Technologies XV, edited by Richard A. Crocombe and Luisa T. M. Profeta. SPIE, 2023. http://dx.doi.org/10.1117/12.2662739.
Full textChen, Shin-Juh, Nicholas F. Aubut, Michael B. Frish, Kevin Bendele, Paul D. Wehnert, and Vineet Aggarwal. "Versatile advanced mobile natural gas leak detection system." In Next-Generation Spectroscopic Technologies XV, edited by Richard A. Crocombe and Luisa T. M. Profeta. SPIE, 2023. http://dx.doi.org/10.1117/12.2663631.
Full textWilkes, Colin. "Statistical Determination of Natural Gas Superheat Requirements." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26036.
Full textSanjay, Onkar Singh, and B. N. Prasad. "Thermodynamic Performance of Complex Gas Turbine Cycles." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26109.
Full textReports on the topic "Gas generation"
Frank S. Felicione, Steven M. Frank, and Dennis D. Keiser. WIPP Gas-Generation Experiments. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/920400.
Full textPerson, J. C. Grout gas generation test plan. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/10116469.
Full textZACH, J. J. The Chemistry of Flammable Gas Generation. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/805379.
Full textZACH, J. J. The Chemistry of Flammable Gas Generation. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/807324.
Full textHolmes, Matthew David, and Gary Robert Parker. Gas Generation of Heated PBX 9502. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329835.
Full textJonah, C. D., S. Kapoor, M. S. Matheson, W. A. Mulac, and D. Meisel. Gas generation from Hanford grout samples. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/205643.
Full textDeb, Kaushik. Gas Demand Growth Beyond Power Generation. King Abdullah Petroleum Studies and Research Center, May 2019. http://dx.doi.org/10.30573/ks--2019-dp62.
Full textBenjamin C. Wiant, Ihor S. Diakunchak, Dennis A. Horazak, and Harry T. Morehead. NEXT GENERATION GAS TURBINE SYSTEMS STUDY. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/828625.
Full textGeorge Bailey, Elizabeth Bluhm, John Lyman, Richard Mason, Mark Paffett, Gary Polansky, G. D. Roberson, Martin Sherman, Kirk Veirs, and Laura Worl. Gas Generation from Actinide Oxide Materials. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/775827.
Full textUnknown. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/791498.
Full text