Academic literature on the topic 'Gas conversion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas conversion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gas conversion"

1

Burch, Robert, and Shik C. Tsang. "Natural gas conversion." Current Opinion in Solid State and Materials Science 2, no. 1 (February 1997): 90–93. http://dx.doi.org/10.1016/s1359-0286(97)80110-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ross, Julian. "Natural gas conversion symposium." Applied Catalysis A: General 95, no. 2 (March 1993): N14. http://dx.doi.org/10.1016/0926-860x(93)85086-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Minkkinen, A., J. F. Gaillard, and J. P. Burzynski. "Natural Gas Production with Gas Liquids Conversion." Revue de l'Institut Français du Pétrole 49, no. 5 (September 1994): 551–65. http://dx.doi.org/10.2516/ogst:1994036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Trimm, D. L. "Gas to Liquid Conversion for Australian Stranded Gas." Catalysis Surveys from Asia 8, no. 1 (February 2004): 73–74. http://dx.doi.org/10.1023/b:cats.0000015116.42082.a7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Basile, F., G. Fornasari, J. R. Rostrup-Nielsen, and A. Vaccari. "Advances in natural gas conversion." Catalysis Today 64, no. 1-2 (January 2001): 1–2. http://dx.doi.org/10.1016/s0920-5861(00)00502-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Partridge, W. R. "CONVERSION OF GAS TO TRANSPORTATION FUELS." APPEA Journal 25, no. 1 (1985): 129. http://dx.doi.org/10.1071/aj84012.

Full text
Abstract:
There is a widespread interest in the utilisation of the world's gas reserves, a considerable volume of which are located in remote areas and cannot be transported economically by pipeline. In addition the traditional market for such gas has been liquefied natural gas, but currently the market appears to be saturated. Consequently Bechtel Petroleum Inc. made a technical and economic analysis of processes which could be used to convert natural gas to transportation fuels. It was found that there is a number of new technologies which could be considered commercial and a considerable number that look promising but are not yet commercial.This paper presents the results of the economic analysis of the following five commercial or near commercial processes.Natural gas to methanol,Natural gas to methanol and gasoline,Natural gas to gasoline and diesel via the Fischer Tropsch process,Natural gas to gasoline and distillate (via extracted liquified petroleum gas), andOlefins direct to gasoline and distillate.For comparison purposes the economics of liquified natural gas were also developed.This comparison indicated that the conversion of olefins to transport fuels has a distinct economic advantage over the others. In addition this process has the flexibility of yielding varying percentages of gasoline and diesel according to market demand whereas some of the processes can produce only a single product. One disadvantage is that the olefins feedstock must be priced on a heating value basis comparable to natural gas and not for its alternative value in the manufacture of petrochemicals. There are situations in the world where refinery and chemical offgases containing olefins in dilute form could be priced competitively with natural gas.The conversion of extracted liquified petroleum gas from natural gas also looks promising, but it must be priced competitively with natural gas.The economic comparison highlighted the need for future basic research into the conversion of natural gas directly to transportation fuels rather than going through intermediate steps. Considerable research is currently being directed to these conversion processes. In addition there is also research being conducted to improve the economics of the commercial Fischer Tropsch conversion process.
APA, Harvard, Vancouver, ISO, and other styles
7

Denney, Dennis. "Taking Gas-To-Liquid Conversion Offshore." Journal of Petroleum Technology 52, no. 04 (April 1, 2000): 86–87. http://dx.doi.org/10.2118/0400-0086-jpt.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zaman, Jasimuz. "Oxidative processes in natural gas conversion." Fuel Processing Technology 58, no. 2-3 (March 1999): 61–81. http://dx.doi.org/10.1016/s0378-3820(98)00090-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blanks, Robert F. "Fischer-Tropsch synthesis gas conversion reactor." Chemical Engineering Science 47, no. 5 (April 1992): 959–66. http://dx.doi.org/10.1016/0009-2509(92)80222-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Amato, I. "Catalytic Conversion Could Be a Gas." Science 259, no. 5093 (January 15, 1993): 311. http://dx.doi.org/10.1126/science.259.5093.311.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Gas conversion"

1

Ashcroft, Alexander T. "Methane conversion over oxide catalysts." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richards, D. G. "Synthesis gas conversion to oxygenates using rhodium catalysts." Thesis, Brunel University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsui, Li-Hsin. "Supported metal catalysts for water-gas shift conversion." Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/13384.

Full text
Abstract:
Includes bibliographical references.
The interests in an alternative, sustainable power generation method has greatly increased in the past decade due to increases in greenhouse gases and its impact on global climate change. The use of fuel cells as a form of energy generation is extremely promising as it converts chemical potential energy directly to electrical energy, bypassing the Carnot cycle limitations. Various types of fuel cells have been developed, with the proton exchange membrane fuel cell (PEMFC) being most promising for mobile and small-scale stationary uses under transient conditions. The PEMFC uses hydrogen and oxygen to generate electrical energy. While oxygen can be obtained from air, hydrogen does not exist in its elemental form; hence a process train is required to refine fuels (such as fossil fuels and bio-fuels) into pure hydrogen. This has been successfully achieved by large-scale industrial plants. A typical fuel processing train consists of a steam reforming stage converting the fuel into syngas. This is followed by a water-gas shift (WGS) stage to convert carbon monoxide, which is a poison for the platinum catalysts within fuel cells, into carbon dioxide. If the CO concentration required is extremely low, a methanation or preferential oxidation stage can be used subsequent to the WGS stage. This study focuses on the water-gas shift stage of the fuel processing train. Industrial base metal WGS catalysts are not suitable for a miniaturized fuel processing train due to the catalysts being developed for continuous operations, as miniaturized fuel processing trains are expected to operate at transient conditions. A slow and controlled reduction process is also required prior to operation, as well as the pyrophoricity of industrial catalysts after reduction. These can pose safety issues with non-technical personnel in household applications (e.g. CHP). PGM-based catalysts have shown high activities for the water-gas shift reaction in literature, are not pyrophoric and do not require lengthy and sensitive reduction processes prior to operation. The objective of this study was to investigate and compare two base metal catalysts (high temperature (HT) shift Fe₃O₄/Cr₂O₃ and low temperature (LT) shift CuO/ZnO/Al₂O₃ catalyst) with a PGM based counterpart, as well as to investigate whether the catalysts are able to achieve a required 1 vol% CO via the water-gas shift reaction. For these investigations a synthetic feedstock was used, based on typical exit concentrations of a steam methane reformer.
APA, Harvard, Vancouver, ISO, and other styles
4

Anheden, Marie. "Analysis of gas turbine systems for sustainable energy conversion." Doctoral thesis, KTH, Chemical Engineering and Technology, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2914.

Full text
Abstract:

Increased energy demands and fear of global warming due tothe emission of greenhouse gases call for development of newefficient power generation systems with low or no carbondioxide(CO2) emissions. In this thesis, two different gasturbine power generation systems, which are designed with theseissues in mind, are theoretically investigated and analyzed.Inthe first gas turbine system, the fuel is combusted using ametal oxide as an oxidant instead of oxygen in the air. Thisprocess is known as Chemical Looping Combustion (CLC). CLC isclaimed to decrease combustion exergy destruction and increasethe power generation efficiency. Another advantage is thepossibility to separate CO2without a costly and energy demanding gasseparation process. The system analysis presented includescomputer-based simulations of CLC gas turbine systems withdifferent metal oxides as oxygen carriers and different fuels.An exergy analysis comparing the exergy destruction of the gasturbine system with CLC and conventional combustion is alsopresented. The results show that it is theoretically possibleto increase the power generation efficiency of a simple gasturbine system by introducing CLC. A combined gas/steam turbinecycle system with CLC is, however, estimated to reach a similarefficiency as the conventional combined cycle system. If thebenefit of easy and energy-efficient CO2separation is accounted for, a CLC combined cyclesystem has a potential to be favorable compared to a combinedcycle system with CO2separation.

In the second investigation, a solid, CO2-neutral biomass fuel is used in a small-scaleexternally fired gas turbine system for cogeneration of powerand district heating. Both open and closed gas turbines withdifferent working fluids are simulated and analyzed regardingthermodynamic performance, equipment size, and economics. Theresults show that it is possible to reach high power generationefficiency and total (power-and-heat) efficiency with thesuggested system. The economic analysis reveals that the costof electricity from theEFGT plant is competitive with the moreconventional alternatives for biomass based cogeneration in thesame size range (<10 MWe).

Keywords:power generation, Chemical Looping Combustion,CO2separation, oxygen carrier, biomass fuel, closedcycle gas turbine, externally fired gas turbine

APA, Harvard, Vancouver, ISO, and other styles
5

Yan, Wei. "Gas phase conversion of sugars to valuable C3 chemicals." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5504.

Full text
Abstract:
Thesis (Ph. D.)--University of Missouri-Columbia, 2008.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on July 31, 2009) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
6

Zeng, Fan. "Catalytic processes for conversion of natural gas engine exhaust and 2,3-butanediol conversion to 1,3-butadiene." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32777.

Full text
Abstract:
Doctor of Philosophy
Department of Chemical Engineering
Keith L. Hohn
Extensive research has gone into developing and modeling the three-way catalyst (TWC) to reduce the emissions of hydrocarbons, NOx and CO from gasoline-fueled engines level. However, much less has been done to model the use of the three-way catalyst to treat exhaust from natural gas-fueled engines. Our research address this gap in the literature by developing a detailed surface reaction mechanism for platinum based on elementary-step reactions. A reaction mechanism consisting of 24 species and 115 elementary reactions was constructed from literature values. All reaction parameters were used as found in the literature sources except for steps modified to improve the model fit to the experimental data. The TWC was simulated as a one-dimension, isothermal plug flow reactor (PFR) for the steady state condition and a continuous stirred-tank reactor (CSTR) for the dithering condition. This work describes a method to quantitatively simulate the natural gas engine TWC converter performance, providing a deep understanding of the surface chemistry in the converter. Due to the depletion of petroleum oil and recent volatility in price, synthesizing value-added chemicals from biomass-derived materials has attracted extensive attention. 1, 3-butadiene (BD), an important intermediate to produce rubber, is conventionally produced from petroleum. Recently, one potential route is to produce BD by dehydration of 2, 3-butanediol (BDO), which is produced at high yield from biomass. This reaction was studied over two commercial forms of alumina. Our results indicate acid/base properties greatly impact the BD selectivity. Trimethylamine can also modify the acid/base properties on alumina surface and affect the BD selectivity. Scandium oxide, acidic oxide or zirconia dual bed systems are also studied and our results show that acidic oxide used as the second bed catalyst can promote the formation of BD, while 2,5-dimethylphenol is found when the zirconia is used as the second bed catalyst which is due to the strong basic sites.
APA, Harvard, Vancouver, ISO, and other styles
7

Bengtsson, Simon. "Economic and environmental implications of a conversion to natural gas." Thesis, Högskolan i Halmstad, Energivetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-27274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Swartz, Matthew M. "Nitric oxide conversion in a spark ignited natural gas engine." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=4009.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2005.
Title from document title page. Document formatted into pages; contains xi, 79 p. : ill. Includes abstract. Includes bibliographical references (p. 67-70).
APA, Harvard, Vancouver, ISO, and other styles
9

Suárez, París Rodrigo. "Catalytic conversion of biomass-derived synthesis gas to liquid fuels." Doctoral thesis, KTH, Kemisk teknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182690.

Full text
Abstract:
Climate change is one of the biggest global threats of the 21st century. Fossil fuels constitute by far the most important energy source for transportation and the different governments are starting to take action to promote the use of cleaner fuels. Biomass-derived fuels are a promising alternative for diversifying fuel sources, reducing fossil fuel dependency and abating greenhouse gas emissions. The research interest has quickly shifted from first-generation biofuels, obtained from food commodities, to second-generation biofuels, produced from non-food resources. The subject of this PhD thesis is the production of second-generation biofuels via thermochemical conversion: biomass is first gasified to synthesis gas, a mixture of mainly H2 and CO; synthesis gas can then be catalytically converted to different fuels. This work summarizes six publications, which are focused on the synthesis gas conversion step. Two processes are principally examined in this summary. The first part of the PhD thesis is devoted to the synthesis of ethanol and higher alcohols, which can be used as fuel or fuel additives. The microemulsion technique is applied in the synthesis of molybdenum-based catalysts, achieving a yield enhancement. Methanol cofeeding is also studied as a way of boosting the production of longer alcohols, but a negative effect is obtained: the main outcome of methanol addition is an increase in methane production. The second part of the PhD thesis addresses wax hydroconversion, an essential upgrading step in the production of middle-distillate fuels via Fischer-Tropsch. Bifunctional catalysts consisting of noble metals supported on silica-alumina are considered. The deactivation of a platinum-based catalyst is investigated, sintering and coking being the main causes of decay. A comparison of platinum and palladium as catalyst metal function is also carried out, obtaining a fairly different catalytic performance of the materials in terms of conversion and selectivity, very likely due to dissimilar hydrogenation power of the metals. Finally, a kinetic model based on the Langmuir-Hinshelwood-Hougen-Watson formalism is proposed to describe the hydroconversion reactions, attaining a good fitting of the experimental data.
Klimatförändringarna är ett av de största globala hoten under det tjugoförsta århundradet. Fossila bränslen utgör den helt dominerande energikällan för transporter och många länder börjar stödja användning av renare bränslen. Bränslen baserade på biomassa är ett lovande alternativ för att diversifiera råvarorna, reducera beroendet av fossila råvaror och undvika växthusgaser. Forskningsintresset har snabbt skiftat från första generationens biobränslen som erhölls från mat-råvaror till andra generationens biobränslen producerade från icke ätbara-råvaror. Ämnet för denna doktorsavhandling är produktion av andra generationens biobränslen via termokemisk omvandling. Biomassa förgasas först till syntesgas, en blandning av i huvudsak vätgas och kolmoxid; syntesgasen kan sedan katalytiskt omvandlas till olika bränslen. Detta arbete sammanfattar sex publikationer som fokuserar på steget för syntesgasomvandling. Två processer är i huvudsak undersökta i denna sammanfattning. Den första delen av doktorsavhandlingen ägnas åt syntes av etanol och högre alkoholer som kan användas som bränsle eller bränsletillsatser. Mikroemulsionstekniken har använts vid framställningen av molybden-baserade katalysatorer, vilket gav en höjning av utbytet. Tillsatsen av metanol har också studerats som ett sätt att försöka få en högre koncentration av högre alkoholer, men en negativ effekt erhölls: huvudeffekten av metanoltillsatsen är en ökad metanproduktion. Den andra delen av doktorsavhandlingen handlar om vätebehandling av vaxer som ett viktigt upparbetningssteg vid framställning av mellandestillat från Fischer-Tropsch processen. Bifunktionella katalysatorer som består av ädelmetaller deponerade på silica-alumina valdes. Deaktiveringen av en platinabaserad katalysator undersöktes. Sintring och koksning var huvudorsakerna till deaktiveringen. En jämförelse mellan platina och palladium som funktionella metaller genomfördes också med resultatet att det var en ganska stor skillnad mellan materialens katalytiska egenskaper vilket gav olika omsättning och selektivitet, mycket sannolikt beroende på olika reaktionsmönster hos metallerna vid vätebehandling. Slutligen föreslås en kinetisk modell baserad på en Langmuir-Hinshelwood-Hougen-Watson modell för att beskriva reaktionerna vid vätebehandling. Denna modell ger en god anpassning till experimentella data.
El cambio climático es una de las mayores amenazas del siglo XXI. Los combustibles fósiles constituyen actualmente la fuente de energía más importante para el transporte, por lo que los diferentes gobiernos están empezando a tomar medidas para promover el uso de combustibles más limpios. Los combustibles derivados de biomasa son una alternativa prometedora para diversificar las fuentes de energía, reducir la dependencia de los combustibles fósiles y disminuir las emisiones de efecto invernadero. Los esfuerzos de los investigadores se han dirigido en los últimos años a los biocombustibles de segunda generación, producidos a partir de recursos no alimenticios. El tema de esta tesis de doctorado es la producción de biocombustibles de segunda generación mediante conversión termoquímica: en primer lugar, la biomasa se gasifica y convierte en gas de síntesis, una mezcla formada mayoritariamente por hidrógeno y monóxido de carbono; a continuación, el gas de síntesis puede transformarse en diversos biocombustibles. Este trabajo resume seis publicaciones, centradas en la etapa de conversión del gas de síntesis. Dos procesos se estudian con mayor detalle. En la primera parte de la tesis se investiga la producción de etanol y alcoholes largos, que pueden ser usados como combustible o como aditivos para combustible. La técnica de microemulsión se aplica en la síntesis de catalizadores basados en molibdeno, consiguiendo un incremento del rendimiento. Además, se introduce metanol en el sistema de reacción para intentar aumentar la producción de alcoholes más largos, pero los efectos obtenidos son negativos: la principal consecuencia es el incremento de la producción de metano. La segunda parte de la tesis estudia la hidroconversión de cera, una etapa esencial en la producción de destilados medios mediante Fischer-Tropsch. Los catalizadores estudiados son bifuncionales y consisten en metales nobles soportados en sílice-alúmina. La desactivación de un catalizador de platino se investiga, siendo la sinterización y la coquización las principales causas del problema. El uso de platino y paladio como componente metálico se compara, obteniendo resultados catalíticos bastante diferentes, tanto en conversión como en selectividad, probablemente debido a su diferente capacidad de hidrogenación. Finalmente, se propone un modelo cinético, basado en el formalismo de Langmuir-Hinshelwood-Hougen-Watson, que consigue un ajuste satisfactorio de los datos experimentales.

QC 20160308

APA, Harvard, Vancouver, ISO, and other styles
10

Du, Toit Ernest. "The direct conversion of synthesis gas to chemicals / Ernest du Toit." Thesis, Potchefstroom University for Christian Higher Education, 2002. http://hdl.handle.net/10394/9624.

Full text
Abstract:
The catalytic conversion of synthesis gas, obtainable from the processing of coal, biomass or natural gas, to a complex hydrocarbon product stream can be achieved via the Fischer-Tropsch process. The Fischer-Tropsch synthesis process has evolved from being mainly a fuel producing process in the early 1950's to that of a solvent and speciality wax production process towards the end of the 1970's. From the early 1980's there has been a clear shift towards the production of commodity chemicals in addition to fuel. Advances in reactor technology, volatile crude oil markets and a world trend towards "clean" fuels may cause a shift towards coal and natural gas as the feedstock of choice for the chemical industry. Fischer-Tropsch plants are capital intensive ventures due to the complexity of the process. Viable returns on such projects can only be realised by adding value to the products obtained from such processes. The chemical industry places a high premium on certain chemicals such as olefins and higher alcohols. More selective production of such chemicals can contribute to increased 'profitability and thus more economically viable processes. The C8+ alcohol and C6+ olefin product range can be labelled as valuable chemicals. A major limitation in the traditional Fischer-Tropsch process is the low selectivity towards these valuable chemicals. The product distribution observed for a Fischer-Tropsch catalyst system conforms to the SchulzFlory polymerisation mechanism, which is inherently non-selective. This investigation deals with an iron-based catalyst that can best be described as a chemically selective Fischer-Tropsch catalyst. The product spectrum achieved with this so-called "ChemFT" catalyst can be seen as a breakthrough in terms of producing chemicals directly from syngas. The investigation covers the following aspects: a review of the development of the ChemFT catalyst used in this investigation, the characterisation of the ChemFT catalyst, an experimental verification of the catalyst product spectrum with respect to alcohols and olefins, on both laboratory and pilot plant scale, the development of rate equations for'Fischer-Tropsch and Water-Gas-Shift activity. Experimental performance results of the ChemFT catalyst show high selectivity towards the desired alcohol product compared to traditional low temperature iron catalysts (8- 14 C atom% vs. 2 - 4 C atom %). Similar olefin selectivity is obtainable with lower long chain paraffin selectivity (little or no wax formation). It is concluded that the ChemFT catalyst differs from conventional Fischer-Tropsch iron catalysts as far as selectivity and typical process conditions are concerned. Published reaction rate equations were evaluated for applicability to such a scenario. Known Fischer-Tropsch reaction rate equations described the catalyst kinetics fairly well. The theoretical base thereof was further improved by modifYing the equations to include the effect of catalyst vacant sites. Published Water-Gas-Shift rate equations did not adequately describe the catalyst. It was shown that the accuracy of the Water-Gas-Shift equation could be improved by modifYing it to account for C02 adsorption. Reaction rate equations for both the Fischer-Tropsch and Water-Gas-Shift reaction rates that are valid in the typical operating conditions are proposed.
Thesis (PhD (Chemical Engineering))--Potchefstroom University for Christian Higher Education, 2003
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Gas conversion"

1

Northern Ireland. Dept. of Economic Development. Gas conversion assistance scheme. Belfast: H.M.S.O, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Natural Gas Conversion Symposium (1990 Oslo, Norway). Natural gas conversion: Proceedings of the Natural Gas Conversion Symposium, Oslo, August 12-17, 1990. Edited by Holmen A, Jens K. -J, and Kolboe S. Amsterdam: Elsevier, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Natural Gas Conversion Symposium (3rd 1993 Sydney, N.S.W.). Natural gas conversion II: Proceedings of the Third Natural Gas Conversion Symposium, Sydney, July 4-9, 1993. Edited by Curry-Hyde H. E and Howe R. 1948-. Amsterdam: Elsevier, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Natural Gas Conversion Symposium (6th 2001 Girdwood, Alaska). Natural gas conversion VI: Proceedings of the 6th Natural Gas Conversion Symposium, June 17-22, 2001, Alaska, USA. Amsterdam: Elsevier, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Natural, Gas Conversion (7th 2004 Dalian Shi China). Natural gas conversion VII: Proceedings of the 7th Natural Gas Conversion Symposium, June 6-10, 2004, Dalian, China. Amsterdam: Elsevier, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Natural, Gas Conversion Symposium (8th 2007 Natal Brazil). Natural gas conversion VIII: Proceedings of the 8th Natural Gas Conversion Symposium, Natal, Brazil, May 27-31, 2007. Amsterdam: Elsevier, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Richards, David Gareth. Synthesis gas conversion to oxygenates using rhodium catalysts. Uxbridge: Brunel University, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

M, De Pontes, ed. Natural gas conversion IV: Proceedings of the 4th International Natural Gas Conversion Symposium, Kruger Park, South Africa, November 19-23, 1995. Amsterdam: Elsevier, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Natural Gas Conversion Symposium (5th 1998 Giardini-Naxos, Italy, and Taormina, Italy). Natural gas conversion V: Proceedings of the Fifth International Natural Gas Conversion Symposium, Giardini Naxos-Taormina, Italy, September 20-25, 1998. Edited by Parmaliana A. Amsterdam: Elsevier, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Backman, Ulrika. Studies on nanoparticle synthesis via gas-to-particle conversion. [Espoo, Finland]: VTT Technical Research Centre of Finland, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gas conversion"

1

Bunce, Richard H. "Gas Turbines." In Energy Conversion, 209–22. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yenjaichon, Wisarn, Farzam Fotovat, and John R. Grace. "NATURAL GAS CONVERSION." In Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications, 313–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119251101.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Struchtrup, Henning. "Gas Engines." In Thermodynamics and Energy Conversion, 289–326. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43715-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Petrecca, Giovanni. "Facilities: Gas Compressors." In Energy Conversion and Management, 179–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06560-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Conversion factors." In Natural Gas, 393–95. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-809570-6.00024-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Conversion Factors." In Natural Gas, 209–10. Elsevier, 2007. http://dx.doi.org/10.1016/b978-1-933762-14-2.50014-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Units and Conversion Factors." In Gas Purification, 1374–75. Elsevier, 1997. http://dx.doi.org/10.1016/b978-088415220-0/50017-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Conversion factors and constants." In Gas Engineering, 289–98. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110691023-008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mutanga, Shingirirai Savious. "Natural gas conversion:." In Breakthrough: Corporate South Africa in a Green Economy, 112–34. Africa Institute of South Africa, 2014. http://dx.doi.org/10.2307/j.ctvh8r23w.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Solbakken, Åge. "Synthesis Gas Production." In Natural Gas Conversion, 447–55. Elsevier, 1991. http://dx.doi.org/10.1016/s0167-2991(08)60111-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gas conversion"

1

Sánchez, Mauricio A., Carlos Borrás, David Hergenrether, and William H. Sutton. "Super-Gas™ Vehicle Conversion." In Future Transportation Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-2473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gongaware, D. F. "Conversion of a Waste Gas to Liquid Natural Gas." In ADVANCES IN CRYOGENIC ENGEINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mrakin, A. N., A. A. Selivanov, A. A. Morev, P. A. Batrakov, A. V. Kulbyakina, and D. G. Sotnikov. "Heat conversion alternative petrochemical complexes efficiency." In OIL AND GAS ENGINEERING (OGE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roger, F., A. Colleoc, J. F. Le Romancer, J. L. Carreau, L. Gbahoue, and Ph Hobbes. "Mass Velocity Distribution in a Horizontal Submerged Gas Jet: I / Gas Phase." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wicks, Frank, George Berven, and Darryl Marchionne. "A Combined Cycle With Gas Turbine Topping and Thermodynamically Ideal Gas Turbine Bottoming." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dossumov, Kusman, Gaukhar Y. Yergaziyeva, Laura K. Myltykbayeva, Naukhan A. Asanov, Moldir M. Telbayeva, and E. M. Tulibayev. "Catalytic Conversion of Biogas to Synthesis Gas." In 10TH International Conference on Sustainable Energy and Environmental Protection. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-048-6.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wegeng, Robert S., Christopher J. Pestak, and John Mankins. "Hybrid Solar/Natural Gas Power System." In 11th International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lun, Liyong, and Yingbai Xie. "Gas Turbine Cycle Recovering Pressure Energy of Natural Gas Transportation Pipelines by Vortex Tube." In 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sauer, Jan, and Hans-Detlev Kuehl. "Analysis of unsteady gas temperature measurements in the appendix gap of a Stirling engine." In 15th International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-4795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wyczalek, Floyd. "Natural Gas Bridge-U.S. Energy Independence Initiative." In 7th International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-4640.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gas conversion"

1

Gondouin, M. Natural gas conversion process. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5979186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ackerson, M. D., E. C. Clausen, and J. L. Gaddy. Biological conversion of synthesis gas. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6728177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klasson, K. T., R. Basu, E. R. Johnson, E. C. Clausen, and J. L. Gaddy. Biological conversion of synthesis gas. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/6744576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ackerson, M. D., E. C. Clausen, and J. L. Gaddy. Biological conversion of synthesis gas. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/6873481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Clausen, E. C. Biological conversion of synthesis gas. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/6484911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skone, Timothy J. Natural Gas Energy Conversion by GTSC. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1509410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Szostak, R., and V. Nair. Modified ferrisilicates for synthesis gas conversion. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6918385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peterson, Per F. Coiled Tube Gas Heaters For Nuclear Gas-Brayton Power Conversion. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1434471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

None, None. Conversion of Coal Mine Gas to LNG. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1240374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klasson, K. T., R. Basu, E. R. Johnson, E. C. Clausen, and J. L. Gaddy. Biological conversion of synthesis gas culture development. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/7046130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography