Academic literature on the topic 'Gas conversion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas conversion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gas conversion"
Burch, Robert, and Shik C. Tsang. "Natural gas conversion." Current Opinion in Solid State and Materials Science 2, no. 1 (February 1997): 90–93. http://dx.doi.org/10.1016/s1359-0286(97)80110-6.
Full textRoss, Julian. "Natural gas conversion symposium." Applied Catalysis A: General 95, no. 2 (March 1993): N14. http://dx.doi.org/10.1016/0926-860x(93)85086-5.
Full textMinkkinen, A., J. F. Gaillard, and J. P. Burzynski. "Natural Gas Production with Gas Liquids Conversion." Revue de l'Institut Français du Pétrole 49, no. 5 (September 1994): 551–65. http://dx.doi.org/10.2516/ogst:1994036.
Full textTrimm, D. L. "Gas to Liquid Conversion for Australian Stranded Gas." Catalysis Surveys from Asia 8, no. 1 (February 2004): 73–74. http://dx.doi.org/10.1023/b:cats.0000015116.42082.a7.
Full textBasile, F., G. Fornasari, J. R. Rostrup-Nielsen, and A. Vaccari. "Advances in natural gas conversion." Catalysis Today 64, no. 1-2 (January 2001): 1–2. http://dx.doi.org/10.1016/s0920-5861(00)00502-2.
Full textPartridge, W. R. "CONVERSION OF GAS TO TRANSPORTATION FUELS." APPEA Journal 25, no. 1 (1985): 129. http://dx.doi.org/10.1071/aj84012.
Full textDenney, Dennis. "Taking Gas-To-Liquid Conversion Offshore." Journal of Petroleum Technology 52, no. 04 (April 1, 2000): 86–87. http://dx.doi.org/10.2118/0400-0086-jpt.
Full textZaman, Jasimuz. "Oxidative processes in natural gas conversion." Fuel Processing Technology 58, no. 2-3 (March 1999): 61–81. http://dx.doi.org/10.1016/s0378-3820(98)00090-3.
Full textBlanks, Robert F. "Fischer-Tropsch synthesis gas conversion reactor." Chemical Engineering Science 47, no. 5 (April 1992): 959–66. http://dx.doi.org/10.1016/0009-2509(92)80222-x.
Full textAmato, I. "Catalytic Conversion Could Be a Gas." Science 259, no. 5093 (January 15, 1993): 311. http://dx.doi.org/10.1126/science.259.5093.311.
Full textDissertations / Theses on the topic "Gas conversion"
Ashcroft, Alexander T. "Methane conversion over oxide catalysts." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305983.
Full textRichards, D. G. "Synthesis gas conversion to oxygenates using rhodium catalysts." Thesis, Brunel University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381157.
Full textTsui, Li-Hsin. "Supported metal catalysts for water-gas shift conversion." Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/13384.
Full textThe interests in an alternative, sustainable power generation method has greatly increased in the past decade due to increases in greenhouse gases and its impact on global climate change. The use of fuel cells as a form of energy generation is extremely promising as it converts chemical potential energy directly to electrical energy, bypassing the Carnot cycle limitations. Various types of fuel cells have been developed, with the proton exchange membrane fuel cell (PEMFC) being most promising for mobile and small-scale stationary uses under transient conditions. The PEMFC uses hydrogen and oxygen to generate electrical energy. While oxygen can be obtained from air, hydrogen does not exist in its elemental form; hence a process train is required to refine fuels (such as fossil fuels and bio-fuels) into pure hydrogen. This has been successfully achieved by large-scale industrial plants. A typical fuel processing train consists of a steam reforming stage converting the fuel into syngas. This is followed by a water-gas shift (WGS) stage to convert carbon monoxide, which is a poison for the platinum catalysts within fuel cells, into carbon dioxide. If the CO concentration required is extremely low, a methanation or preferential oxidation stage can be used subsequent to the WGS stage. This study focuses on the water-gas shift stage of the fuel processing train. Industrial base metal WGS catalysts are not suitable for a miniaturized fuel processing train due to the catalysts being developed for continuous operations, as miniaturized fuel processing trains are expected to operate at transient conditions. A slow and controlled reduction process is also required prior to operation, as well as the pyrophoricity of industrial catalysts after reduction. These can pose safety issues with non-technical personnel in household applications (e.g. CHP). PGM-based catalysts have shown high activities for the water-gas shift reaction in literature, are not pyrophoric and do not require lengthy and sensitive reduction processes prior to operation. The objective of this study was to investigate and compare two base metal catalysts (high temperature (HT) shift Fe₃O₄/Cr₂O₃ and low temperature (LT) shift CuO/ZnO/Al₂O₃ catalyst) with a PGM based counterpart, as well as to investigate whether the catalysts are able to achieve a required 1 vol% CO via the water-gas shift reaction. For these investigations a synthetic feedstock was used, based on typical exit concentrations of a steam methane reformer.
Anheden, Marie. "Analysis of gas turbine systems for sustainable energy conversion." Doctoral thesis, KTH, Chemical Engineering and Technology, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2914.
Full textIncreased energy demands and fear of global warming due tothe emission of greenhouse gases call for development of newefficient power generation systems with low or no carbondioxide(CO2) emissions. In this thesis, two different gasturbine power generation systems, which are designed with theseissues in mind, are theoretically investigated and analyzed.Inthe first gas turbine system, the fuel is combusted using ametal oxide as an oxidant instead of oxygen in the air. Thisprocess is known as Chemical Looping Combustion (CLC). CLC isclaimed to decrease combustion exergy destruction and increasethe power generation efficiency. Another advantage is thepossibility to separate CO2without a costly and energy demanding gasseparation process. The system analysis presented includescomputer-based simulations of CLC gas turbine systems withdifferent metal oxides as oxygen carriers and different fuels.An exergy analysis comparing the exergy destruction of the gasturbine system with CLC and conventional combustion is alsopresented. The results show that it is theoretically possibleto increase the power generation efficiency of a simple gasturbine system by introducing CLC. A combined gas/steam turbinecycle system with CLC is, however, estimated to reach a similarefficiency as the conventional combined cycle system. If thebenefit of easy and energy-efficient CO2separation is accounted for, a CLC combined cyclesystem has a potential to be favorable compared to a combinedcycle system with CO2separation.
In the second investigation, a solid, CO2-neutral biomass fuel is used in a small-scaleexternally fired gas turbine system for cogeneration of powerand district heating. Both open and closed gas turbines withdifferent working fluids are simulated and analyzed regardingthermodynamic performance, equipment size, and economics. Theresults show that it is possible to reach high power generationefficiency and total (power-and-heat) efficiency with thesuggested system. The economic analysis reveals that the costof electricity from theEFGT plant is competitive with the moreconventional alternatives for biomass based cogeneration in thesame size range (<10 MWe).
Keywords:power generation, Chemical Looping Combustion,CO2separation, oxygen carrier, biomass fuel, closedcycle gas turbine, externally fired gas turbine
Yan, Wei. "Gas phase conversion of sugars to valuable C3 chemicals." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5504.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on July 31, 2009) Includes bibliographical references.
Zeng, Fan. "Catalytic processes for conversion of natural gas engine exhaust and 2,3-butanediol conversion to 1,3-butadiene." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32777.
Full textDepartment of Chemical Engineering
Keith L. Hohn
Extensive research has gone into developing and modeling the three-way catalyst (TWC) to reduce the emissions of hydrocarbons, NOx and CO from gasoline-fueled engines level. However, much less has been done to model the use of the three-way catalyst to treat exhaust from natural gas-fueled engines. Our research address this gap in the literature by developing a detailed surface reaction mechanism for platinum based on elementary-step reactions. A reaction mechanism consisting of 24 species and 115 elementary reactions was constructed from literature values. All reaction parameters were used as found in the literature sources except for steps modified to improve the model fit to the experimental data. The TWC was simulated as a one-dimension, isothermal plug flow reactor (PFR) for the steady state condition and a continuous stirred-tank reactor (CSTR) for the dithering condition. This work describes a method to quantitatively simulate the natural gas engine TWC converter performance, providing a deep understanding of the surface chemistry in the converter. Due to the depletion of petroleum oil and recent volatility in price, synthesizing value-added chemicals from biomass-derived materials has attracted extensive attention. 1, 3-butadiene (BD), an important intermediate to produce rubber, is conventionally produced from petroleum. Recently, one potential route is to produce BD by dehydration of 2, 3-butanediol (BDO), which is produced at high yield from biomass. This reaction was studied over two commercial forms of alumina. Our results indicate acid/base properties greatly impact the BD selectivity. Trimethylamine can also modify the acid/base properties on alumina surface and affect the BD selectivity. Scandium oxide, acidic oxide or zirconia dual bed systems are also studied and our results show that acidic oxide used as the second bed catalyst can promote the formation of BD, while 2,5-dimethylphenol is found when the zirconia is used as the second bed catalyst which is due to the strong basic sites.
Bengtsson, Simon. "Economic and environmental implications of a conversion to natural gas." Thesis, Högskolan i Halmstad, Energivetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-27274.
Full textSwartz, Matthew M. "Nitric oxide conversion in a spark ignited natural gas engine." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=4009.
Full textTitle from document title page. Document formatted into pages; contains xi, 79 p. : ill. Includes abstract. Includes bibliographical references (p. 67-70).
Suárez, París Rodrigo. "Catalytic conversion of biomass-derived synthesis gas to liquid fuels." Doctoral thesis, KTH, Kemisk teknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182690.
Full textKlimatförändringarna är ett av de största globala hoten under det tjugoförsta århundradet. Fossila bränslen utgör den helt dominerande energikällan för transporter och många länder börjar stödja användning av renare bränslen. Bränslen baserade på biomassa är ett lovande alternativ för att diversifiera råvarorna, reducera beroendet av fossila råvaror och undvika växthusgaser. Forskningsintresset har snabbt skiftat från första generationens biobränslen som erhölls från mat-råvaror till andra generationens biobränslen producerade från icke ätbara-råvaror. Ämnet för denna doktorsavhandling är produktion av andra generationens biobränslen via termokemisk omvandling. Biomassa förgasas först till syntesgas, en blandning av i huvudsak vätgas och kolmoxid; syntesgasen kan sedan katalytiskt omvandlas till olika bränslen. Detta arbete sammanfattar sex publikationer som fokuserar på steget för syntesgasomvandling. Två processer är i huvudsak undersökta i denna sammanfattning. Den första delen av doktorsavhandlingen ägnas åt syntes av etanol och högre alkoholer som kan användas som bränsle eller bränsletillsatser. Mikroemulsionstekniken har använts vid framställningen av molybden-baserade katalysatorer, vilket gav en höjning av utbytet. Tillsatsen av metanol har också studerats som ett sätt att försöka få en högre koncentration av högre alkoholer, men en negativ effekt erhölls: huvudeffekten av metanoltillsatsen är en ökad metanproduktion. Den andra delen av doktorsavhandlingen handlar om vätebehandling av vaxer som ett viktigt upparbetningssteg vid framställning av mellandestillat från Fischer-Tropsch processen. Bifunktionella katalysatorer som består av ädelmetaller deponerade på silica-alumina valdes. Deaktiveringen av en platinabaserad katalysator undersöktes. Sintring och koksning var huvudorsakerna till deaktiveringen. En jämförelse mellan platina och palladium som funktionella metaller genomfördes också med resultatet att det var en ganska stor skillnad mellan materialens katalytiska egenskaper vilket gav olika omsättning och selektivitet, mycket sannolikt beroende på olika reaktionsmönster hos metallerna vid vätebehandling. Slutligen föreslås en kinetisk modell baserad på en Langmuir-Hinshelwood-Hougen-Watson modell för att beskriva reaktionerna vid vätebehandling. Denna modell ger en god anpassning till experimentella data.
El cambio climático es una de las mayores amenazas del siglo XXI. Los combustibles fósiles constituyen actualmente la fuente de energía más importante para el transporte, por lo que los diferentes gobiernos están empezando a tomar medidas para promover el uso de combustibles más limpios. Los combustibles derivados de biomasa son una alternativa prometedora para diversificar las fuentes de energía, reducir la dependencia de los combustibles fósiles y disminuir las emisiones de efecto invernadero. Los esfuerzos de los investigadores se han dirigido en los últimos años a los biocombustibles de segunda generación, producidos a partir de recursos no alimenticios. El tema de esta tesis de doctorado es la producción de biocombustibles de segunda generación mediante conversión termoquímica: en primer lugar, la biomasa se gasifica y convierte en gas de síntesis, una mezcla formada mayoritariamente por hidrógeno y monóxido de carbono; a continuación, el gas de síntesis puede transformarse en diversos biocombustibles. Este trabajo resume seis publicaciones, centradas en la etapa de conversión del gas de síntesis. Dos procesos se estudian con mayor detalle. En la primera parte de la tesis se investiga la producción de etanol y alcoholes largos, que pueden ser usados como combustible o como aditivos para combustible. La técnica de microemulsión se aplica en la síntesis de catalizadores basados en molibdeno, consiguiendo un incremento del rendimiento. Además, se introduce metanol en el sistema de reacción para intentar aumentar la producción de alcoholes más largos, pero los efectos obtenidos son negativos: la principal consecuencia es el incremento de la producción de metano. La segunda parte de la tesis estudia la hidroconversión de cera, una etapa esencial en la producción de destilados medios mediante Fischer-Tropsch. Los catalizadores estudiados son bifuncionales y consisten en metales nobles soportados en sílice-alúmina. La desactivación de un catalizador de platino se investiga, siendo la sinterización y la coquización las principales causas del problema. El uso de platino y paladio como componente metálico se compara, obteniendo resultados catalíticos bastante diferentes, tanto en conversión como en selectividad, probablemente debido a su diferente capacidad de hidrogenación. Finalmente, se propone un modelo cinético, basado en el formalismo de Langmuir-Hinshelwood-Hougen-Watson, que consigue un ajuste satisfactorio de los datos experimentales.
QC 20160308
Du, Toit Ernest. "The direct conversion of synthesis gas to chemicals / Ernest du Toit." Thesis, Potchefstroom University for Christian Higher Education, 2002. http://hdl.handle.net/10394/9624.
Full textThesis (PhD (Chemical Engineering))--Potchefstroom University for Christian Higher Education, 2003
Books on the topic "Gas conversion"
Northern Ireland. Dept. of Economic Development. Gas conversion assistance scheme. Belfast: H.M.S.O, 1986.
Find full textNatural Gas Conversion Symposium (1990 Oslo, Norway). Natural gas conversion: Proceedings of the Natural Gas Conversion Symposium, Oslo, August 12-17, 1990. Edited by Holmen A, Jens K. -J, and Kolboe S. Amsterdam: Elsevier, 1991.
Find full textNatural Gas Conversion Symposium (3rd 1993 Sydney, N.S.W.). Natural gas conversion II: Proceedings of the Third Natural Gas Conversion Symposium, Sydney, July 4-9, 1993. Edited by Curry-Hyde H. E and Howe R. 1948-. Amsterdam: Elsevier, 1994.
Find full textNatural Gas Conversion Symposium (6th 2001 Girdwood, Alaska). Natural gas conversion VI: Proceedings of the 6th Natural Gas Conversion Symposium, June 17-22, 2001, Alaska, USA. Amsterdam: Elsevier, 2001.
Find full textNatural, Gas Conversion (7th 2004 Dalian Shi China). Natural gas conversion VII: Proceedings of the 7th Natural Gas Conversion Symposium, June 6-10, 2004, Dalian, China. Amsterdam: Elsevier, 2004.
Find full textNatural, Gas Conversion Symposium (8th 2007 Natal Brazil). Natural gas conversion VIII: Proceedings of the 8th Natural Gas Conversion Symposium, Natal, Brazil, May 27-31, 2007. Amsterdam: Elsevier, 2007.
Find full textRichards, David Gareth. Synthesis gas conversion to oxygenates using rhodium catalysts. Uxbridge: Brunel University, 1985.
Find full textM, De Pontes, ed. Natural gas conversion IV: Proceedings of the 4th International Natural Gas Conversion Symposium, Kruger Park, South Africa, November 19-23, 1995. Amsterdam: Elsevier, 1997.
Find full textInternational Natural Gas Conversion Symposium (5th 1998 Giardini-Naxos, Italy, and Taormina, Italy). Natural gas conversion V: Proceedings of the Fifth International Natural Gas Conversion Symposium, Giardini Naxos-Taormina, Italy, September 20-25, 1998. Edited by Parmaliana A. Amsterdam: Elsevier, 1998.
Find full textBackman, Ulrika. Studies on nanoparticle synthesis via gas-to-particle conversion. [Espoo, Finland]: VTT Technical Research Centre of Finland, 2005.
Find full textBook chapters on the topic "Gas conversion"
Bunce, Richard H. "Gas Turbines." In Energy Conversion, 209–22. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-10.
Full textYenjaichon, Wisarn, Farzam Fotovat, and John R. Grace. "NATURAL GAS CONVERSION." In Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications, 313–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119251101.ch10.
Full textStruchtrup, Henning. "Gas Engines." In Thermodynamics and Energy Conversion, 289–326. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43715-5_13.
Full textPetrecca, Giovanni. "Facilities: Gas Compressors." In Energy Conversion and Management, 179–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06560-1_11.
Full text"Conversion factors." In Natural Gas, 393–95. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-809570-6.00024-2.
Full text"Conversion Factors." In Natural Gas, 209–10. Elsevier, 2007. http://dx.doi.org/10.1016/b978-1-933762-14-2.50014-5.
Full text"Units and Conversion Factors." In Gas Purification, 1374–75. Elsevier, 1997. http://dx.doi.org/10.1016/b978-088415220-0/50017-3.
Full text"Conversion factors and constants." In Gas Engineering, 289–98. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110691023-008.
Full textMutanga, Shingirirai Savious. "Natural gas conversion:." In Breakthrough: Corporate South Africa in a Green Economy, 112–34. Africa Institute of South Africa, 2014. http://dx.doi.org/10.2307/j.ctvh8r23w.13.
Full textSolbakken, Åge. "Synthesis Gas Production." In Natural Gas Conversion, 447–55. Elsevier, 1991. http://dx.doi.org/10.1016/s0167-2991(08)60111-1.
Full textConference papers on the topic "Gas conversion"
Sánchez, Mauricio A., Carlos Borrás, David Hergenrether, and William H. Sutton. "Super-Gas™ Vehicle Conversion." In Future Transportation Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-2473.
Full textGongaware, D. F. "Conversion of a Waste Gas to Liquid Natural Gas." In ADVANCES IN CRYOGENIC ENGEINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774670.
Full textMrakin, A. N., A. A. Selivanov, A. A. Morev, P. A. Batrakov, A. V. Kulbyakina, and D. G. Sotnikov. "Heat conversion alternative petrochemical complexes efficiency." In OIL AND GAS ENGINEERING (OGE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998832.
Full textRoger, F., A. Colleoc, J. F. Le Romancer, J. L. Carreau, L. Gbahoue, and Ph Hobbes. "Mass Velocity Distribution in a Horizontal Submerged Gas Jet: I / Gas Phase." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9408.
Full textWicks, Frank, George Berven, and Darryl Marchionne. "A Combined Cycle With Gas Turbine Topping and Thermodynamically Ideal Gas Turbine Bottoming." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929012.
Full textDossumov, Kusman, Gaukhar Y. Yergaziyeva, Laura K. Myltykbayeva, Naukhan A. Asanov, Moldir M. Telbayeva, and E. M. Tulibayev. "Catalytic Conversion of Biogas to Synthesis Gas." In 10TH International Conference on Sustainable Energy and Environmental Protection. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-048-6.27.
Full textWegeng, Robert S., Christopher J. Pestak, and John Mankins. "Hybrid Solar/Natural Gas Power System." In 11th International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3674.
Full textLun, Liyong, and Yingbai Xie. "Gas Turbine Cycle Recovering Pressure Energy of Natural Gas Transportation Pipelines by Vortex Tube." In 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5779.
Full textSauer, Jan, and Hans-Detlev Kuehl. "Analysis of unsteady gas temperature measurements in the appendix gap of a Stirling engine." In 15th International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-4795.
Full textWyczalek, Floyd. "Natural Gas Bridge-U.S. Energy Independence Initiative." In 7th International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-4640.
Full textReports on the topic "Gas conversion"
Gondouin, M. Natural gas conversion process. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5979186.
Full textAckerson, M. D., E. C. Clausen, and J. L. Gaddy. Biological conversion of synthesis gas. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6728177.
Full textKlasson, K. T., R. Basu, E. R. Johnson, E. C. Clausen, and J. L. Gaddy. Biological conversion of synthesis gas. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/6744576.
Full textAckerson, M. D., E. C. Clausen, and J. L. Gaddy. Biological conversion of synthesis gas. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/6873481.
Full textClausen, E. C. Biological conversion of synthesis gas. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/6484911.
Full textSkone, Timothy J. Natural Gas Energy Conversion by GTSC. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1509410.
Full textSzostak, R., and V. Nair. Modified ferrisilicates for synthesis gas conversion. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6918385.
Full textPeterson, Per F. Coiled Tube Gas Heaters For Nuclear Gas-Brayton Power Conversion. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1434471.
Full textNone, None. Conversion of Coal Mine Gas to LNG. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1240374.
Full textKlasson, K. T., R. Basu, E. R. Johnson, E. C. Clausen, and J. L. Gaddy. Biological conversion of synthesis gas culture development. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/7046130.
Full text