Academic literature on the topic 'Gas adsorption and selectivity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas adsorption and selectivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gas adsorption and selectivity"

1

Jiang, Weile, Yong Xia, Aifei Pan, et al. "Facet-Dependent Gas Adsorption Selectivity on ZnO: A DFT Study." Chemosensors 10, no. 10 (2022): 436. http://dx.doi.org/10.3390/chemosensors10100436.

Full text
Abstract:
Semiconductor-based gas sensors are of great interest in both industrial and research settings, but poor selectivity has hindered their further development. Current efforts including doping, surface modifications and facet controlling have been proved effective. However, the “methods-selectivity” correlation is ambiguous because of uncontrollable defects and surface states during the experiments. Here, as a case study, using a DFT method, we studied the adsorption features of commonly tested gases—CH2O, H2, C2H5OH, CH3COCH3, and NH3—on facets of ZnO(0001¯), ZnO(101¯0) and ZnO(101¯1). The adsor
APA, Harvard, Vancouver, ISO, and other styles
2

Chan Wai, Hoong, Mohd Noor Mazlee, Zainal Arifin Ahmad, Shamsul Baharin Jamaludin, Mohd Azlan Mohd Ishak, and Muhammad Shahar Jusoh. "Sustainable Porous Materials for Gas Adsorption Applications; A Concise Review." Advanced Materials Research 795 (September 2013): 96–101. http://dx.doi.org/10.4028/www.scientific.net/amr.795.96.

Full text
Abstract:
Many new sustainable porous materials were developed for gas adsorption applications. Common materials such as activated carbon, clay materials and metal organic framework (MOF) that utilized as potential porous adsorption materials were studied. The article was also discussed on the fabrication methods of porous materials. Adsorptions of flue gas using porous materials were reviewed. It was found that the adsorption properties of porous materials were highly dependent on surface area, selectivity and impregnation. Low cost porous adsorbents such as clay and fly ash were also reviewed as poten
APA, Harvard, Vancouver, ISO, and other styles
3

He, Jiating, and Xu Li. "Metal–Organic Framework for Selective Gas Scavenging." Journal of Molecular and Engineering Materials 04, no. 04 (2016): 1640014. http://dx.doi.org/10.1142/s2251237316400141.

Full text
Abstract:
Selective gas adsorption plays an important role in adsorptive separation of gases and scavenging unfavorable or hazardous gases. The use of cost-effective and environmentally friendly materials for selective gas adsorption has become one of the most pressing needs today. The development of new adsorbents is essential but difficult due to the selectivity and efficiency requirements for practical application. As potential scavengers, metal–organic frameworks (MOFs) have drawn great attention. In this review, the current progress of science and technology development of MOFs on selective gas sca
APA, Harvard, Vancouver, ISO, and other styles
4

Parinyakit, Supatsorn, and Patcharin Worathanakul. "Static and Dynamic Simulation of Single and Binary Component Adsorption of CO2 and CH4 on Fixed Bed Using Molecular Sieve of Zeolite 4A." Processes 9, no. 7 (2021): 1250. http://dx.doi.org/10.3390/pr9071250.

Full text
Abstract:
The simulation of carbon dioxide (CO2)-methane (CH4) mixed gas adsorption and the selectivity on zeolite 4A using Aspen Adsorption were studied. The influence of temperature ranging from 273 to 343 K, pressure up to 10 bar and various compositions of CO2 in the binary system were simulated. The findings of the study demonstrate that the models are accurate. In addition, the effects of various key parameters such as temperature, pressure, and various compositions of binary gases were investigated. The highest CO2 and CH4 adsorption are found at 273 K and 10 bar in the Langmuir isotherm model wi
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Chin-Wen, and Shivaji Sircar. "Comments on binary and ternary gas adsorption selectivity." Separation and Purification Technology 170 (October 2016): 453–61. http://dx.doi.org/10.1016/j.seppur.2016.06.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dutta, Sujeet, Ronan Lefort, Denis Morineau, et al. "Thermodynamics of binary gas adsorption in nanopores." Physical Chemistry Chemical Physics 18, no. 35 (2016): 24361–69. http://dx.doi.org/10.1039/c6cp01587e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dubskikh, Vadim A., Konstantin A. Kovalenko, Anton S. Nizovtsev, et al. "Enhanced Adsorption Selectivity of Carbon Dioxide and Ethane on Porous Metal–Organic Framework Functionalized by a Sulfur-Rich Heterocycle." Nanomaterials 12, no. 23 (2022): 4281. http://dx.doi.org/10.3390/nano12234281.

Full text
Abstract:
Porous metal–organic framework [Zn2(ttdc)2(bpy)] (1) based on thieno[3,2‑b]thiophenedicarboxylate (ttdc) was synthesized and characterized. The structure contains intersected zig-zag channels with an average aperture of 4 × 6 Å and a 49% (v/v) guest-accessible pore volume. Gas adsorption studies confirmed the microporous nature of 1 with a specific surface area (BET model) of 952 m2·g–1 and a pore volume of 0.37 cm3·g–1. Extensive CO2, N2, O2, CO, CH4, C2H2, C2H4 and C2H6 gas adsorption experiments at 273 K and 298 K were carried out, which revealed the great adsorption selectivity of C2H6 ove
APA, Harvard, Vancouver, ISO, and other styles
8

Ismail, Marhaina, Mohamad Azmi Bustam, Nor Ernie Fatriyah Kari, and Yin Fong Yeong. "Ideal Adsorbed Solution Theory (IAST) of Carbon Dioxide and Methane Adsorption Using Magnesium Gallate Metal-Organic Framework (Mg-gallate)." Molecules 28, no. 7 (2023): 3016. http://dx.doi.org/10.3390/molecules28073016.

Full text
Abstract:
Ideal Adsorbed Solution Theory (IAST) is a predictive model that does not require any mixture data. In gas purification and separation processes, IAST is used to predict multicomponent adsorption equilibrium and selectivity based solely on experimental single-component adsorption isotherms. In this work, the mixed gas adsorption isotherms were predicted using IAST calculations with the Python package (pyIAST). The experimental CO2 and CH4 single-component adsorption isotherms of Mg-gallate were first fitted to isotherm models in which the experimental data best fit the Langmuir model. The pres
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Xiaoxing, Rongxing Fang, Dachang Chen та Guozhi Zhang. "Using Pd-Doped γ-Graphyne to Detect Dissolved Gases in Transformer Oil: A Density Functional Theory Investigation". Nanomaterials 9, № 10 (2019): 1490. http://dx.doi.org/10.3390/nano9101490.

Full text
Abstract:
To realize a high response and high selectivity gas sensor for the detection dissolved gases in transformer oil, in this study, the adsorption of four kinds of gases (H2, CO, C2H2, and CH4) on Pd-graphyne was investigated, and the gas sensing properties were evaluated. The energetically-favorable structure of Pd-Doped γ-graphyne was first studied, including through a comparison of different adsorption sites and a discussion of the electronic properties. Then, the adsorption of these four molecules on Pd-graphyne was explored. The adsorption structure, adsorption energy, electron transfer, elec
APA, Harvard, Vancouver, ISO, and other styles
10

Pan, Sudip, Ranajit Saha, Subhajit Mandal, et al. "Selectivity in Gas Adsorption by Molecular Cucurbit[6]uril." Journal of Physical Chemistry C 120, no. 26 (2016): 13911–21. http://dx.doi.org/10.1021/acs.jpcc.6b02545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!