Academic literature on the topic 'GAN Generative Adversarial Network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GAN Generative Adversarial Network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "GAN Generative Adversarial Network"
Thakur, Amey. "Generative Adversarial Networks." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 2307–25. http://dx.doi.org/10.22214/ijraset.2021.37723.
Full textIranmanesh, Seyed Mehdi, and Nasser M. Nasrabadi. "HGAN: Hybrid generative adversarial network." Journal of Intelligent & Fuzzy Systems 40, no. 5 (April 22, 2021): 8927–38. http://dx.doi.org/10.3233/jifs-201202.
Full textNaman and Sudha Narang, Chaudhary Sarimurrab, Ankita Kesari. "Human Face Generation using Deep Convolution Generative Adversarial Network." January 2021 7, no. 01 (January 29, 2021): 114–20. http://dx.doi.org/10.46501/ijmtst070127.
Full textChi, Wanle, Yun Huoy Choo, and Ong Sing Goh. "Review of Generative Adversarial Networks in Image Generation." Journal of Advanced Computational Intelligence and Intelligent Informatics 26, no. 1 (January 20, 2022): 3–7. http://dx.doi.org/10.20965/jaciii.2022.p0003.
Full textC, Ms Faseela Kathun. "Generating faces From the Sketch Using GAN." International Journal for Research in Applied Science and Engineering Technology 9, no. 10 (October 31, 2021): 1–3. http://dx.doi.org/10.22214/ijraset.2021.38259.
Full textC, Ms Faseela Kathun. "Generating faces From the Sketch Using GAN." International Journal for Research in Applied Science and Engineering Technology 9, no. 10 (October 31, 2021): 1–3. http://dx.doi.org/10.22214/ijraset.2021.38259.
Full textCai, Zhipeng, Zuobin Xiong, Honghui Xu, Peng Wang, Wei Li, and Yi Pan. "Generative Adversarial Networks." ACM Computing Surveys 54, no. 6 (July 2021): 1–38. http://dx.doi.org/10.1145/3459992.
Full textFu Jie Tey, Fu Jie Tey, Tin-Yu Wu Fu Jie Tey, Yueh Wu Tin-Yu Wu, and Jiann-Liang Chen Yueh Wu. "Generative Adversarial Network for Simulation of Load Balancing Optimization in Mobile Networks." 網際網路技術學刊 23, no. 2 (March 2022): 297–304. http://dx.doi.org/10.53106/160792642022032302010.
Full textTu, Jun, Willies Ogola, Dehong Xu, and Wei Xie. "Intrusion Detection Based on Generative Adversarial Network of Reinforcement Learning Strategy for Wireless Sensor Networks." International Journal of Circuits, Systems and Signal Processing 16 (January 13, 2022): 478–82. http://dx.doi.org/10.46300/9106.2022.16.58.
Full textHan, Ligong, Ruijiang Gao, Mun Kim, Xin Tao, Bo Liu, and Dimitris Metaxas. "Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (April 3, 2020): 10909–16. http://dx.doi.org/10.1609/aaai.v34i07.6723.
Full textDissertations / Theses on the topic "GAN Generative Adversarial Network"
Aftab, Nadeem. "Disocclusion Inpainting using Generative Adversarial Networks." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-40502.
Full textYamazaki, Hiroyuki Vincent. "On Depth and Complexity of Generative Adversarial Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217293.
Full textTrots att Generative Adversarial Networks (GAN) har lyckats generera realistiska bilder består de än idag av neurala nätverk som är parametriserade med relativt få tränbara vikter jämfört med neurala nätverk som används för klassificering. Vi tror att en sådan modell är suboptimal vad gäller generering av högdimensionell och komplicerad data och anser att modeller med högre kapaciteter bör ge bättre estimeringar. Dessutom, i en generativ uppgift så förväntas en modell kunna extrapolera information från lägre till högre dimensioner medan i en klassificeringsuppgift så behöver modellen endast att extrahera lågdimensionell information från högdimensionell data. Vi evaluerar ett flertal GAN med varierande kapaciteter genom att använda shortcut connections för att studera hur kapaciteten påverkar träningsstabiliteten, samt kvaliteten av de genererade datapunkterna. Resultaten visar att träningen blir mindre stabil för modeller som fått högre kapaciteter genom naivt tillsatta lager men visar samtidigt att datapunkternas kvaliteter kan öka, specifikt för bilder, bilder med hög visuell fidelitet. Detta åstadkoms med hjälp utav regularisering och noggrann balansering.
Eisenbeiser, Logan Ryan. "Latent Walking Techniques for Conditioning GAN-Generated Music." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100052.
Full textMaster of Science
Artificial music generation is a rapidly developing field focused on the complex task of creating neural networks that can produce realistic-sounding music. Beyond simply generating music lies the challenge of controlling or conditioning that generation. Conditional generation can be used to specify a tempo for the generated song, increase the density of notes, or even change the genre. Latent walking is one of the most popular techniques in conditional image generation, but its effectiveness on music-domain generation is largely unexplored, especially for generative adversarial networks (GANs). This paper focuses on latent walking techniques for conditioning the music generation network MuseGAN and examines the impact and effectiveness of this conditioning on the generated music.
Oskarsson, Joel. "Probabilistic Regression using Conditional Generative Adversarial Networks." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166637.
Full textRinnarv, Jonathan. "GANChat : A Generative Adversarial Network approach for chat bot learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278143.
Full textNyligen har en ny metod för att träna generativa neurala nätverk kallad Generative Adversarial Networks (GAN) visat bra resultat inom datorseendedomänen och visat potential inom andra maskininlärningsområden också GAN-träning är en träningsmetod där två neurala nätverk tävlar och försöker överträffa varandra, och i processen lär sig båda. I detta examensarbete har effektiviteten av GAN-träning testats på konversationsagenter, som också kallas Chat bots. För att testa det här jämfördes modeller tränade med nuvarande state-of- the-art träningsmetoder, så som Maximum likelihood-metoden (ML), med GAN-tränade modeller. Modellernas prestation mättes genom distans från modelldistribution till måldistribution efter träning. Det här examensarbetet visar att GAN-metoden presterar sämre än ML-metoden i vissa scenarier men kan överträffa ML i vissa fall.
Ljung, Mikael. "Synthetic Data Generation for the Financial Industry Using Generative Adversarial Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301307.
Full textMed striktare förhållningsregler till hur data ska hanteras genom GDPR och PIPEDA har intresset för anonymiseringsmetoder för att censurera känslig data aktualliserats. En lovande teknik inom området återfinns i Generativa Motstridande Nätverk, en arkitektur som syftar till att generera data som återspeglar de statiska egenskaperna i dess underliggande dataset utan att äventyra datasubjektens integritet. Trots forskningsfältet unga ålder har man gjort stora framsteg i genereringsprocessen av så kallad syntetisk data, och numera finns det modeller som kan generera bilder av hög realistisk karaktär. Som ett steg framåt i forskningen har arkitekturen adopterats till nya domäner, och den här studien syftar till att undersöka dess förmåga att syntatisera finansiell tabelldata. I studien undersöks en framträdande modell inom forskningsfältet, CTGAN, tillsammans med två föreslagna idéer i syfte att förbättra dess generativa förmåga. Resultaten indikerar att en förändrad träningsdynamik och en ny optimeringsstrategi förbättrar arkitekturens förmåga att generera syntetisk data. Den genererade datan håller i sin tur hög kvalité med tydliga influenser från dess underliggande dataset, och resultat på efterföljande analyser mellan datakällorna är av jämförbar karaktär. Slutsatsen är således att GANs har stor potential att generera tabulär data som kan betrakatas som substitut till känslig data, vilket möjliggör för en mer frikostig delningspolitik av data inom organisationer.
Sargent, Garrett Craig. "A Conditional Generative Adversarial Network Demosaicing Strategy for Division of Focal Plane Polarimeters." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1606050550958383.
Full textZou, Xiaozhou. "Improve the Convergence Speed and Stability of Generative Adversarial Networks." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1309.
Full textWaldow, Walter E. "An Adversarial Framework for Deep 3D Target Template Generation." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1597334881614898.
Full textBirgersson, Anna, and Klara Hellgren. "Texture Enhancement in 3D Maps using Generative Adversarial Networks." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162446.
Full textBooks on the topic "GAN Generative Adversarial Network"
GANs in Action: Deep Learning with Generative Adversarial Networks. Manning Publications Company, 2019.
Find full textBook chapters on the topic "GAN Generative Adversarial Network"
Miyato, Takeru, and Masanori Koyama. "Generative Adversarial Network (GAN)." In Computer Vision, 1–6. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-03243-2_860-1.
Full textMiyato, Takeru, and Masanori Koyama. "Generative Adversarial Network (GAN)." In Computer Vision, 508–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63416-2_860.
Full textHuq, Mahmudul, and Rytis Maskeliunas. "Speech Enhancement Using Generative Adversarial Network (GAN)." In Hybrid Intelligent Systems, 273–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96305-7_26.
Full textDiao, Yufeng, Liang Yang, Xiaochao Fan, Yonghe Chu, Di Wu, Shaowu Zhang, and Hongfei Lin. "AFPun-GAN: Ambiguity-Fluency Generative Adversarial Network for Pun Generation." In Natural Language Processing and Chinese Computing, 604–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60450-9_48.
Full textStamm, Matthew C., and Xinwei Zhao. "Anti-Forensic Attacks Using Generative Adversarial Networks." In Multimedia Forensics, 467–90. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7621-5_17.
Full textParvathi, R., and V. Pattabiraman. "Image Synthesis with Generative Adversarial Networks (GAN)." In Computer Vision and Recognition Systems, 239–50. New York: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003180593-12.
Full textOuyang, Jiahong, Guanhua Wang, Enhao Gong, Kevin Chen, John Pauly, and Greg Zaharchuk. "Task-GAN: Improving Generative Adversarial Network for Image Reconstruction." In Machine Learning for Medical Image Reconstruction, 193–204. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33843-5_18.
Full textKokate, Pradnyawant, Amit D. Joshi, and P. S. Tamizharasan. "An Empirical Comparison of Generative Adversarial Network (GAN) Measures." In Lecture Notes in Electrical Engineering, 1383–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5341-7_105.
Full textBayramli, Bayram, Usman Ali, Te Qi, and Hongtao Lu. "FH-GAN: Face Hallucination and Recognition Using Generative Adversarial Network." In Neural Information Processing, 3–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36708-4_1.
Full textYu, Xiaoli, Yanyun Qu, and Ming Hong. "Underwater-GAN: Underwater Image Restoration via Conditional Generative Adversarial Network." In Pattern Recognition and Information Forensics, 66–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05792-3_7.
Full textConference papers on the topic "GAN Generative Adversarial Network"
Luo, Fuli, Shunyao Li, Pengcheng Yang, Lei Li, Baobao Chang, Zhifang Sui, and Xu Sun. "Pun-GAN: Generative Adversarial Network for Pun Generation." In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-1336.
Full textCheng, Adriel. "PAC-GAN: Packet Generation of Network Traffic using Generative Adversarial Networks." In 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 2019. http://dx.doi.org/10.1109/iemcon.2019.8936224.
Full textWang, Chaoyue, Chaohui Wang, Chang Xu, and Dacheng Tao. "Tag Disentangled Generative Adversarial Network for Object Image Re-rendering." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/404.
Full textHe, Dongxiao, Lu Zhai, Zhigang Li, Di Jin, Liang Yang, Yuxiao Huang, and Philip S. Yu. "Adversarial Mutual Information Learning for Network Embedding." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/459.
Full textJoshi, Amol S., Ali Dabouei, Jeremy Dawson, and Nasser M. Nasrabadi. "FDeblur-GAN: Fingerprint Deblurring using Generative Adversarial Network." In 2021 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2021. http://dx.doi.org/10.1109/ijcb52358.2021.9484406.
Full textHuang, Jialu, Ying Huang, Yan-ting Lin, Zi-yang Liu, Yang Lin, and Wenhui Wu. "Does Generative Adversarial Network (GAN) help in SRAF image generation?" In 2021 International Workshop on Advanced Patterning Solutions (IWAPS). IEEE, 2021. http://dx.doi.org/10.1109/iwaps54037.2021.9671262.
Full textHuq, Mahmudul. "Enhancement of Alaryngeal Speech using Generative Adversarial Network (GAN)." In 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA). IEEE, 2021. http://dx.doi.org/10.1109/aiccsa53542.2021.9686759.
Full textMeddahi, Amar, Hassen Drira, and Ahmed Meddahi. "SIP-GAN: Generative Adversarial Networks for SIP traffic generation." In 2021 International Symposium on Networks, Computers and Communications (ISNCC). IEEE, 2021. http://dx.doi.org/10.1109/isncc52172.2021.9615632.
Full textHeyrani Nobari, Amin, Wei Chen, and Faez Ahmed. "Range-GAN: Range-Constrained Generative Adversarial Network for Conditioned Design Synthesis." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-69963.
Full textSun, Yiwei, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, and Vasant Honavar. "MEGAN: A Generative Adversarial Network for Multi-View Network Embedding." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/489.
Full textReports on the topic "GAN Generative Adversarial Network"
Ellis, John. miniGAN: A Generative Adversarial Network proxy application. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1763585.
Full text