Academic literature on the topic 'Gamma-rays imaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gamma-rays imaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gamma-rays imaging"
Zarifmahmoudi, Leili, and Ramin Sadeghi. "Scattered gamma rays." Nuclear Medicine Communications 36, no. 7 (July 2015): 755–56. http://dx.doi.org/10.1097/mnm.0000000000000324.
Full textKoshikawa, N., A. Omata, M. Masubuchi, Y. Okazaki, J. Kataoka, K. Matsunaga, H. Kato, A. Toyoshima, Y. Wakabayashi, and T. Kobayashi. "Activation imaging of drugs with hybrid Compton camera: A proof-of-concept study." Applied Physics Letters 121, no. 19 (November 7, 2022): 193701. http://dx.doi.org/10.1063/5.0116570.
Full textUenomachi, M., K. Shimazoe, and H. Takahashi. "Double photon coincidence crosstalk reduction method for multi-nuclide Compton imaging." Journal of Instrumentation 17, no. 04 (April 1, 2022): P04001. http://dx.doi.org/10.1088/1748-0221/17/04/p04001.
Full textYamamoto, Seiichi, Hiroshi Watabe, Kohei Nakanishi, Takuya Yabe, Mitsutaka Yamaguchi, Naoki Kawachi, Kei Kamada, et al. "A triple-imaging-modality system for simultaneous measurements of prompt gamma photons, prompt x-rays, and induced positrons during proton beam irradiation." Physics in Medicine & Biology 69, no. 5 (February 22, 2024): 055012. http://dx.doi.org/10.1088/1361-6560/ad25c6.
Full textTian, B. B., B. Jiang, H. T. Jing, and M. F. Yan. "Monte Carlo simulation study of a novel neutron resonance radiography method for oxygen identification in oxides and composite materials." Journal of Instrumentation 19, no. 09 (September 1, 2024): T09002. http://dx.doi.org/10.1088/1748-0221/19/09/t09002.
Full textUenomachi, Mizuki, Kenji Shimazoe, and Hiroyuki Takahashi. "A double photon coincidence detection method for medical gamma-ray imaging." Bio-Algorithms and Med-Systems 18, no. 1 (December 1, 2022): 120–26. http://dx.doi.org/10.2478/bioal-2022-0080.
Full textvan der Marel, J., and B. Cederwall. "Collimatorless imaging of gamma rays with help of gamma-ray tracking." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471, no. 1-2 (September 2001): 276–80. http://dx.doi.org/10.1016/s0168-9002(01)01007-5.
Full textSun, Y. K., H. T. Jing, B. B. Tian, X. L. Gao, and X. Y. Yang. "Research on proton beam spot imaging based on pixelated gamma detector." Journal of Instrumentation 17, no. 02 (February 1, 2022): P02033. http://dx.doi.org/10.1088/1748-0221/17/02/p02033.
Full textYamamoto, Seiichi, Tomohiro Yamashita, Yusuke Kobashi, Takuya Yabe, Takashi Akagi, Mitsutaka Yamaguchi, Naoki Kawachi, et al. "Simultaneous imaging of prompt gamma photons and prompt X-rays during irradiation of proton beams to human torso phantom at clinical dose level." Journal of Instrumentation 18, no. 07 (July 1, 2023): P07046. http://dx.doi.org/10.1088/1748-0221/18/07/p07046.
Full textLi, Y., P. Gong, X. Tang, Z. Hu, P. Wang, F. Tian, S. Wu, M. Ye, C. Zhou, and X. Zhu. "DOI correction for gamma ray energy reconstruction based on energy segment in 3D position-sensitive CdZnTe detectors." Journal of Instrumentation 17, no. 03 (March 1, 2022): T03004. http://dx.doi.org/10.1088/1748-0221/17/03/t03004.
Full textDissertations / Theses on the topic "Gamma-rays imaging"
Wild, Walter James. "Gamma-ray imaging probes." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184331.
Full textFontana, Cristiano Lino. "An Imaging Camera for Biomedical Application Based on Compton Scattering of Gamma Rays." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3423412.
Full textIn questa tesi presentiamo il lavoro di ricerca e sviluppo di una Camera Compton (CC) per imaging di piccoli oggetti. Le CC richiedono l'utilizzo di due rivelatori per ottenere la direzione d'incidenza di raggi gamma. Questo approccio, talvolta chiamato ``Collimazione Elettronica,'' si differenzia dalle tecniche usuali che utilizzano collimatori per selezionare fisicamente i raggi gamma di una certa direzione. Questa soluzione offre il vantaggio di una sensibilità maggiore e quindi di dosi inferiori. Proponiamo qui un nuovo sistema, che usa due similari Fotomoltiplicatori sensibili alla posizione (Hamamatsu 8500) accoppiati a differenti scintillatori (uno in plastica ed uno inorganico). Avere un solo tipo di rivelatore comporta una maggiore semplicità di progettazione ed utilizzo. Assieme all'apparato sperimentale, presentiamo il nostro algoritmo originale per la ricostruzione d'immagini, che è stato testato con un codice Monte Carlo scritto con Geant4. Applicando l'algoritmo ai dati sperimentali, abbiamo ottenuto una risoluzione di 6 mm, che è adatta all'imaging di piccoli animali (quali ratti e conigli) e per piccoli organi umani (tiroide e prostata). Il prototipo è stato sviluppato per per essere un elemento modulare compatto, che può essere esteso affiancando altri rivelatori simili
Rowell, Gavin Peter. "A search for very high energy gamma rays from PSR1706-44 using the Atmospheric Cerenkov Imaging Technique /." Title page, contents and abstract only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phr8808.pdf.
Full textGolnik, Christian. "Treatment verification in proton therapy based on the detection of prompt gamma-rays." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227948.
Full textHintergrund Strahlentherapie ist eine wichtige Modalität der therapeutischen Behandlung von Krebs. Das Ziel dieser Behandlungsform ist die Applikation einer bestimmten Strahlendosis im Tumorvolumen, wobei umliegendes, gesundes Gewebe nach Möglichkeit geschont werden soll. Bei der Bestrahlung mit einem hochenergetischen Protonenstrahl erlaubt die wohldefinierte Reichweite der Teilchen im Gewebe, in Kombination mit dem steilen, distalen Dosisgradienten, eine hohe Tumor-Konformalität der deponierten Dosis. Verglichen mit der klassisch eingesetzten Behandlung mit Photonen ergibt sich für eine optimiert geplante Behandlung mit Protonen ein deutlich reduziertes Dosisnivau im den Tumor umgebenden Gewebe. Motivation Die tatsächlich applizierte Reichweite der Protonen im Körper, und somit auch die lokal deponierte Dosis, ist stark abhängig vom Bremsvermögen der Materie im Strahlengang der Protonen. Bestrahlungspläne werden mit Hilfe eines Computertomographen (CT) erstellt, wobei die CT Bilder vor der eigentlichen Behandlung aufgenommen werden. Ein CT misst allerdings lediglich den linearen Schwächungskoeffizienten für Photonen in der Einheit Hounsfield Units (HU). Die Ungenauigkeit in der Umrechnung von HU in Protonen-Bremsvermögen ist, unter anderem, eine wesentliche Ursache für die Unsicherheit über die tatsächliche Reichweite der Protonen im Körper des Patienten. Derzeit existiert keine routinemäßige Methode, um die applizierte Dosis oder auch die Protonenreichweite in-vivo und in Echtzeit zu bestimmen. Um das geplante Dosisniveau im Tumorvolumen trotz möglicher Reichweiteunterschiede zu gewährleisten, werden die Bestrahlungspläne für Protonen auf Robustheit optimiert, was zum Einen das geplante Dosisniveau im Tumorvolumen trotz auftretender Reichweiteveränderungen sicherstellen soll, zum Anderen aber auf Kosten der möglichen Dosiseinsparung im gesunden Gewebe geht. Zusammengefasst kann der Hauptvorteil einer Therapie mit Protonen wegen der Unsicherheit über die tatsächlich applizierte Reichweite nicht wirklich realisiert. Eine Methode zur Bestimmung der Reichweite in-vivo und in Echtzeit wäre daher von großem Nutzen, um das theoretische Potential der Protonentherapie auch in der praktisch ausschöpfen zu können. Material und Methoden In dieser Arbeit werden zwei Konzepte zur Messung prompter Gamma-Strahlung behandelt, welche potentiell zur Bestimmung der Reichweite der Protonen im Körper eingesetzt werden können. Prompte Gamma-Strahlung entsteht durch Proton-Atomkern-Kollision auf einer Zeitskala unterhalb von Picosekunden entlang des Strahlweges der Protonen im Gewebe. Aufgrund der prompten Emission ist diese Form der Sekundärstrahlung ein aussichtsreicher Kandidat für eine Bestrahlungs-Verifikation in Echtzeit. Zum Einen wird die Anwendbarkeit von Compton-Kameras anhand eines Prototyps untersucht. Dabei zielt die Messung auf die Rekonstruktion des örtlichen Emissionsprofils der prompten Gammas ab. Zum Zweiten wird eine, im Rahmen dieser Arbeit neu entwickelte Messmethode, das Prompt Gamma-Ray Timing (PGT), vorgestellt und international zum Patent angemeldet. Im Gegensatz zu bereits bekannten Ansätzen, verwendet PGT die endliche Flugzeit der Protonen durch das Gewebe und bestimmt zeitliche Emissionsprofile der prompten Gammas. Ergebnisse Compton Kamera: Die örtliche Emissionsverteilung einer punktförmigen 22-Na Quelle wurde wurde bei einer Photonenenergie von 1.275 MeV nachgewiesen. Dabei konnten sowohl die absolute Quellposition als auch laterale Verschiebungen der Quelle rekonstruiert werden. Da prompte Gamma-Strahlung Emissionsenergien von einigen MeV aufweist, wurde als nächster Schritt ein Bildrekonstruktionstest bei 4.44 MeV durchgeführt. Ein geeignetes Testsetup wurde am Tandetron Beschleuniger am Helmholtz-Zentrum Dresden-Rossendorf, Deutschland, identifiziert, wo eine monoenergetische, punktförmige Emissionverteilung von 4.44 MeV Photonen erzeugt werden konnte. Für die Detektoren des Prototyps wurden zum Einen die örtliche und zeitliche Auflösung sowie die Energieauflösungen untersucht. Zum Anderen wurde die Emissionsverteilung der erzeugten 4.44 MeV Quelle rekonstruiert und die zugehörige Effizienz des Prototyps experimentell bestimmt. PGT: Für das neu vorgeschlagene Messverfahren PGT wurden im Rahmen dieser Arbeit die theoretischen Grundlagen ausgearbeitet und dargestellt. Darauf basierend, wurde ein Monte Carlo (MC) Code entwickelt, welcher die Modellierung von PGT Spektren ermöglicht. Am Protonenstrahl des Kernfysisch Verschneller Institut (KVI), Groningen, Niederlande, wurden zeitaufgelöste Spektren prompter Gammastrahlung aufgenommen und analysiert. Durch einen Vergleich von experimentellen und modellierten Daten konnte die Gültigkeit der vorgelegten theoretischen Überlegungen quantitativ bestätigt werden. Anhand eines hypothetischen Bestrahlungsszenarios wurde gezeigt, dass der statistische Fehler in der Bestimmung der Reichweite mit einer Genauigkeit von 5 mm bei einem Konfidenzniveau von 90 % für einen einzelnen starken Spot 5x10E8 Protonen mit PGT erreichbar ist. Schlussfolgerungen Für den Compton Kamera Prototyp wurde gezeigt, dass eine Bildgebung für Gamma-Energien einiger MeV, wie sie bei prompter Gammastrahlung auftreten, möglich ist. Allerdings erlaubt die prinzipielle Abbildbarkeit noch keine Nutzbarkeit unter therapeutischen Strahlbedingungen nicht. Der wesentliche und in dieser Arbeit nachgewiesene Hinderungsgrund liegt in der niedrigen (gemessenen) Nachweiseffizienz, welche die Anzahl der validen Daten, die für die Bildrekonstruktion genutzt werden können, drastisch einschränkt. PGT basiert, im Gegensatz zur Compton Kamera, auf einem einfachen zeit-spektroskopischen Messaufbau. Die kollimatorfreie Messmethode erlaubt eine gute Nachweiseffizienz und kann somit den statistischen Fehler bei der Reichweitenbestimmung auf ein klinisch relevantes Niveau reduzieren. Die guten Ergebnissen und die ausgeführten Abschätzungen für therapeutische Bedingungen lassen erwarten, dass PGT als Grundlage für eine Bestrahlungsverifiktation in-vivo und in Echtzeit zügig klinisch umgesetzt werden kann
Jones, Martin. "The development of a Compton camera for the imaging of gamma rays in the energy range 0.662 MeV to 6.130 MeV." Thesis, University of Liverpool, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.632425.
Full textWatanabe, Shio. "Stereoscopic observations of TeV gamma-rays from the supernova remnant RX J0852.0-4622 with the CANGAROO-3 imaging air Cerenkov telescopes." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136732.
Full textSemenov, Evgenii. "Experimental studies and evaluation of the implementation of 3γ-imaging and the new technology of XEMIS cameras adapted to the control of MOX fuel." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0443.
Full textThe non-destructive control and imaging with γ-rays are well-known widely used in nuclear fuel production industry and nuclear medicine, respectively. The thesis is centered on new application of a state-of-the-art detector, based on single-phase liquid xenon 24-cm long field-of-view camera, XEMIS2. It is constructed in Nantes, France. Originally conceived for small animal medical 3-gamma imaging, the camera is now being scrutinized to explore new area of its’ application in non-destructive control and imaging of high-density (> 10 g/cm3) MOX fuel pellets or rods that emit a wide spectrum of γ-rays, which is a quite relevant and ambitious goal. XEMIS2 main goal is a significant dose reduction per scan while preserving the same image quality as in conventionnal cameras. MOX fuel γ-rays emission spectrum was studied, and high activity is expected, but the useful high-energy region of interest (ROI) that was selected for this work presents a challenge due to small statistics. It was shown that other ROI used in current passive non-destructive gamma-scanning control face difficulties due to strong self-absorbtion of γ-rays. The thesis will expound on the two methods that were developed and assessed for MOX Pu/(U+Pu) ratio control, including new contributions to algorithms in Compton imaging
Porelli, Andrea. "TAIGA-HiSCORE: a new wide-angle air Cherenkov detector for multi-TeV gamma-astronomy and cosmic ray physics." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21610.
Full textThe TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) detector is a new ground-based Cherenkov detection technology for gamma-astronomy from 10TeV up to several PeV, and cosmic rays (CR) above 100TeV. The main topic of this work is TAIGA-HiSCORE, the wide-aperture air Cherenkov timing array. The focus is on precision extensive air shower (EAS) arrival direction reconstruction, achieved by (1) sub-nsec time-synchronization between the array stations, and (2) a newly developed array time calibration procedure. The performance is verified using simulated and experimental data from EAS, dedicated LED calibration, and a LIDAR laser beam from the International Space Station (ISS). The analysis of the HiSCORE 9 data (2013-14), collected with a data acquisition system (DAQ) based on the White Rabbit (WR) timing system, allows to verify the sub-nsec time synchronization between the array stations. The analysis of HiSCORE 28 data (2015-2018) addresses the problem of achieving an easy-to-perform time calibration for large area ground-based Cherenkov array. A new "hybrid" calibration method is developed, which makes use of EAS data, and requires direct LED calibration of only a few array stations. The "chessboard" method is applied on the reconstructed data to obtain a MC-independent estimation of the detector angular resolution, found to be 0.4° at threshold (~50TeV) and <= 0.2° above 100TeV. A serendipitous discovery was made in this work: a signal from the CATS-LIDAR on-board the ISS was found in the HiSCORE 28 data. These "ISS-events" are used to verify the detector performance, in particular the absolute angular pointing (<= 0.1°), particularly important since a strong gamma point source has not yet been detected by the TAIGA-HiSCORE. The final part of the work presents a first preliminary approach to a wide aperture point source analysis, developed for the TAIGA-HiSCORE in stand-alone operation.
Ley, Jean-Luc. "Mise en oeuvre d’un démonstrateur de caméra Compton pour l’imagerie en médecine nucléaire et pour le contrôle en temps réel de l’hadronthérapie à l’aide des rayonnements gamma prompts." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10334/document.
Full textHadrontherapy is one of the modalities available for treating cancer. This modality uses light ions (protons, carbon ions) to destroy cancer cells. Such particles have a ballistic accuracy thanks to their quasi-rectilinear trajectory, their path and the finished profile maximum dose in the end. Compared to conventional radiotherapy, this allows to spare the healthy tissue located adjacent downstream and upstream of the tumor. One of this modality’s quality assurance challenges is to control the positioning of the dose deposited by ions in the patient. One possibility to perform this control is to detect the prompt gammas emitted during nuclear reactions induced along the ion path in the patient. A Compton camera prototype, theoretically allowing to maximize the detection efficiency of the prompt gammas, is being developed under a regional collaboration. This camera was the main focus of my thesis, and particularly the following points : i) studying, throughout Monte Carlo simulations, the operation of the prototype in construction, particularly with respect to the expected counting rates on the different types of accelerators in hadrontherapy ii) conducting simulation studies on the use of this camera in clinical imaging, iii) characterising the silicon detectors (scatterer) iv) confronting Geant4 simulations on the camera’s response with measurements on the beam with the help of a demonstrator. As a result, the Compton camera prototype developed makes a control of the localization of the dose deposition in proton therapy to the scale of a spot possible, provided that the intensity of the clinical proton beam is reduced by a factor 200 (intensity of 108 protons / s). An application of the Compton camera in nuclear medicine seems to be attainable with the use of radioisotopes of an energy greater than 300 keV. These initial results must be confirmed by more realistic simulations (homogeneous and heterogeneous PMMA targets). Tests with the progressive integration of all camera elements will take place during 2016
Solovov, Vladimir Nikolaevitch. "Detection of gamma-rays in liquid xenon for medical imaging." Doctoral thesis, 2003. http://hdl.handle.net/10316/1844.
Full textBooks on the topic "Gamma-rays imaging"
Hailey, J. R. Application of scanning and imaging techniques to assess decay and wood quality in logs and standing trees. [Ottawa, Ont: Forestry Canada, 1988.
Find full textM, Carpenter John, Society of Photo-Optical Instrumentation Engineers., and Federal Aviation Administration Technical Center (U.S.). Aviation Security Research & Development Service., eds. Neutrons, x-rays, and gamma rays: Imaging detectors, material characterization techniques, and applications, 21-22 July 1992, San Diego, California. Bellingham, WA: SPIE, 1993.
Find full textUnited States. National Aeronautics and Space Administration., ed. Background due to cosmic protons in gamma-ray telescopes. Stanford, Calif: Stanford University, W.W. Hansen Experimental Physics Laboratory, 1990.
Find full textChʻoe, Chae-gŏl. Haek ŭihak yŏngsang kigi chŏngdo kwalli siltʻae chosa yŏnʼgu =: Study for status of quality control of nuclear medicine imaging equipments : gamma camera, SPECT, and PET. [Seoul]: Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng, 2007.
Find full textProtection, United States Bureau of Customs and Border. Environmental assessment for Gamma Imaging Inspection System: Port of San Francisco, San Francisco County, California : draft report. [United States]: U. S. Customs and Border Protection, Technology Solutions Program Office, 2006.
Find full textUnited States. Bureau of Customs and Border Protection. Environmental assessment for Gamma Imaging Inspection System: Port of San Francisco, San Francisco County, California : final report. Washington, DC: U. S. Customs and Border Protection, Technology Solutions Program Office, 2007.
Find full textPress, Radieago. World Radiography Day: November 8th - X-Ray Day - Radiation - Roentgen - Medical Professional - CT Scan - Gamma Rays - Scientist - Sports Imaging - Patients - Treatment. Independently Published, 2019.
Find full textPress, Radieago. World Radiology Day: November 8th | X-Ray Day | Radiation | Roentgen | Medical Professional | CT Scan | Gamma Rays | Scientist | Sports Imaging | Athletes | Yes The Table is Cold. Independently Published, 2019.
Find full textPress, Radieago. Radiologists See Right Through You: World Radiation Day November 8th - X-Ray Day - Radiation - Roentgen - Medical Professional - CT Scan - Gamma Rays - Scientist - Sports - Rad Technician - Sports Imaging. Independently Published, 2019.
Find full textBook chapters on the topic "Gamma-rays imaging"
Saint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford, and Brian Dennis. "Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution." In Handbook of X-ray and Gamma-ray Astrophysics, 1783–816. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-6960-7_170.
Full textSaint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford, and Brian Dennis. "Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution." In Handbook of X-ray and Gamma-ray Astrophysics, 1–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4544-0_170-1.
Full textMontanari, Alessandro, and Emmanuel Moulin. "Framework for Indirect Dark Matter Search with Gamma Rays." In Searching for Dark Matter with Imaging Atmospheric Cherenkov Telescopes, 41–65. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-66470-0_3.
Full textDean, A. J. "Integral — Fine Spectroscopy and Fine Imaging of Celestial Gamma-Rays." In Astrophysics and Space Science Library, 475–86. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0794-5_46.
Full textCrannell, C. J. "Imaging Solar Flares in Hard X Rays and Gamma Rays from Balloon-Borne Platforms." In Solar System Plasma Physics, 203–7. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm054p0203.
Full textSmither, Robert K., Patricia B. Fernandez, Timothy Graber, Peter von Ballmoos, Juan Naya, Francis Albernhe, G. Vedrenne, and Mohamed Faiz. "Review of Crystal Diffraction and its Application to Focusing Energetic Gamma Rays." In Imaging in High Energy Astronomy, 47–56. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0407-4_6.
Full textBolotnikov, Aleksey E., and Ralph B. James. "Position-Sensitive Virtual Frisch-Grid Detectors for Imaging and Spectroscopy of Gamma Rays." In Radiation Detection Systems, 103–40. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003147633-5.
Full textBolotnikov, Aleksey E., and Ralph B. James. "Position-Sensitive Virtual Frisch-Grid Detectors for Imaging and Spectroscopy of Gamma Rays." In Radiation Detection Systems, 103–40. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003219446-5.
Full textHayes, Laura A., Sophie Musset, Daniel Müller, and Säm Krucker. "The Spectrometer Telescope for Imaging X-Rays (STIX) on Solar Orbiter." In Handbook of X-ray and Gamma-ray Astrophysics, 1–18. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4544-0_168-1.
Full textHayes, Laura A., Sophie Musset, Daniel Müller, and Säm Krucker. "The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter." In Handbook of X-ray and Gamma-ray Astrophysics, 1391–408. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-6960-7_168.
Full textConference papers on the topic "Gamma-rays imaging"
Sagawa, N., Y. Morishita, M. Fujisawa, S. Kurosawa, M. Sasano, and M. Hayashi. "Visualization of alpha rays using a qCMOS camera and evaluation of the effects of beta rays, gamma rays, and neutrons on its camera." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10656234.
Full textMohammadi, A. Hamato, H. Tashima, Y. Iwao, C. Toramatsu, K. Parodi, and T. Yamaya. "Range verification in carbon ion therapy: Compton imaging of 718 keV gamma-rays." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655339.
Full textKamada, K., M. Yoshino, T. Horiai, K. J. Kim, N. Kutsuzawa, Y. Shoji, K. Nagai, et al. "Material Design of Eutectic Scintillators for Discrimination of Thermal Neutrons and Gamma-rays." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10657637.
Full textMorishita, Y., T. Yamada, T. Nakasone, M. Kanno, M. Sasaki, Y. Sanada, and T. Torii. "A detection technique for low-energy gamma rays from alpha emitters in background radiation environment." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10656110.
Full textCurado Da Silva, R. M., J. M. Maia, J. R. Campos, G. Falcão, F. Pinheiro, M. Abreu, M. Caine, et al. "THOR-SR: TGF and High-energy astrophysics Observatory for gamma-Rays on board the Space Rider." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655687.
Full textKurosawa, S., Q. Verdeyen, M. Smuda, A. Yamaji, T. Torii, and K. Watanabe. "Feasibility Study on the Discrimination of the Gamma Rays and Other Particles from the Thunderclouds and Lightnings with NaI:Tl Scintillator." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655625.
Full textHailey, Charles J., Klaus P. Ziock, Fiona A. Harrison, and Judith Fleischmann. "Imaging germanium telescope array for gamma-rays (IGETAGRAY)." In High−Energy Astrophysics in the 21st Century. AIP, 1990. http://dx.doi.org/10.1063/1.39687.
Full textXie, Hongwei, Faqiang Zhang, Jianhua Zhang, Jinchuan Chen, Dingyang Chen, and Linbo Li. "Analysis of noise power spectrum of gamma rays camera." In IS&T/SPIE Electronic Imaging, edited by Sophie Triantaphillidou and Mohamed-Chaker Larabi. SPIE, 2014. http://dx.doi.org/10.1117/12.2035275.
Full textBarrett, H. H. "Quantum Limits in Gamma-Ray Imaging." In Quantum-Limited Imaging and Image Processing. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/qlip.1986.tua1.
Full textEgarievwe, Stephen U., Eric D. Lukosi, Mebougna L. Drabo, Ifechukwude O. Okwechime, Oghaghare K. Okobiah, Aaron L. Adams, Anwar Hossain, Utpal N. Roy, Rubi Gul, and Ralph B. James. "Surface passivation and contacts in CdZnTe X-rays and gamma-rays detectors." In 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). IEEE, 2016. http://dx.doi.org/10.1109/nssmic.2016.8069954.
Full textReports on the topic "Gamma-rays imaging"
Kroeger, R. A., W. N. Johnson, R. L. Kinzer, J. D. Kurfess, S. E. Inderhees, B. Phlips, N. Gehrels, and B. Graham. Spatial Resolution and Imaging of Gamma-Rays with Germanium Strip Detectors. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada462288.
Full textBarty, C., D. Gibson, F. Albert, S. Anderson, G. Anderson, S. Betts, R. Berry, et al. Active Detection and Imaging of Nuclear Materials with High-Brightness Gamma Rays. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/948985.
Full textMartin, Jeffrey Basil. A Compton scatter camera for spectral imaging of 0.5 to 3.0 MeV gamma rays. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/167186.
Full text