Journal articles on the topic 'GAMMA-400'

To see the other types of publications on this topic, follow the link: GAMMA-400.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'GAMMA-400.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Galper, A. M., N. P. Topchiev, and Yu T. Yurkin. "GAMMA-400 Project." Astronomy Reports 62, no. 12 (December 2018): 882–89. http://dx.doi.org/10.1134/s1063772918120223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Topchiev, N. P., A. M. Galper, V. Bonvicini, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, et al. "The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations." Journal of Physics: Conference Series 675, no. 3 (February 5, 2016): 032009. http://dx.doi.org/10.1088/1742-6596/675/3/032009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arkhangelskiy, A. I., I. V. Arkhangelskaja, M. D. Kheymits, M. F. Runtso, S. I. Suchkov, N. P. Topchiev, and Yu T. Yurkin. "The Prototype of GAMMA-400 Apparatus." Physics Procedia 74 (2015): 191–98. http://dx.doi.org/10.1016/j.phpro.2015.09.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Galper, A. M., O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, M. Boezio, V. Bonvicini, et al. "Status of the GAMMA-400 project." Advances in Space Research 51, no. 2 (January 2013): 297–300. http://dx.doi.org/10.1016/j.asr.2012.01.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Topchiev, N. P., A. M. Galper, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, I. V. Chernysheva, O. D. Dalkarov, et al. "High-energy gamma- and cosmic-ray observations with future space-based GAMMA-400 gamma-ray telescope." EPJ Web of Conferences 208 (2019): 14004. http://dx.doi.org/10.1051/epjconf/201920814004.

Full text
Abstract:
The future space-based GAMMA-400 gamma-ray telescope will be installed on the Navigator platform of the Russian Astrophysical Observatory. A highly elliptical orbit will provide observations for 7-10 years of many regions of the celestial sphere continuously for a long time (~ 100 days). GAMMA-400 will measure gamma-ray fluxes in the energy range from ~ 20 MeV to several TeV and electron + positron fluxes up to ~ 20 TeV. GAMMA-400 will have an excellent separation of gamma rays from the background of cosmic rays and electrons + positrons from protons and an unprecedented angular (~ 0.01° at Eγ = 100 GeV) and energy (~ 1% at Eγ = 100 GeV) resolutions better than for Fermi-LAT, as well as ground-based facilities, by a factor of 5-10. Observations of GAMMA-400 will provide new fundamental data on discrete sources and spectra of gamma-ray emission and electrons + positrons, as well as the nature of dark matter.
APA, Harvard, Vancouver, ISO, and other styles
6

Egorov, Andrey E., Nikolay P. Topchiev, Arkadiy M. Galper, Oleg D. Dalkarov, Alexey A. Leonov, Sergey I. Suchkov, and Yuriy T. Yurkin. "Dark matter searches by the planned gamma-ray telescope GAMMA-400." Journal of Cosmology and Astroparticle Physics 2020, no. 11 (November 24, 2020): 049. http://dx.doi.org/10.1088/1475-7516/2020/11/049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mikhailova, A. V., A. V. Bakaldin, I. V. Chernysheva, A. M. Galper, M. D. Kheymits, A. A. Leonov, A. G. Mayorov, et al. "Capabilities of the GAMMA-400 gamma-ray telescope for lateral aperture." Journal of Physics: Conference Series 1690 (December 2020): 012026. http://dx.doi.org/10.1088/1742-6596/1690/1/012026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Topchiev, N. P., A. M. Galper, V. Bonvicini, O. Adriani, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, et al. "High-energy gamma-ray studying with GAMMA-400 after Fermi-LAT." Journal of Physics: Conference Series 798 (January 2017): 012011. http://dx.doi.org/10.1088/1742-6596/798/1/012011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chasovikov, E. N., I. V. Arkhangelskaja, A. A. Perfil‘ev, A. I. Arkhangelskiy, A. M. Galper, N. P. Topchiev, Yu V. Gusakov, M. D. Kheymits, and Yu T. Yurkin. "GAMMA-400 Space Gamma-telescope Mathematical Model with Engineering Elements Included." Physics Procedia 74 (2015): 206–11. http://dx.doi.org/10.1016/j.phpro.2015.09.198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Topchiev, N. P., A. M. Galper, V. Bonvicini, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, et al. "The GAMMA-400 experiment: Status and prospects." Bulletin of the Russian Academy of Sciences: Physics 79, no. 3 (March 2015): 417–20. http://dx.doi.org/10.3103/s1062873815030429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Topchiev, N. P., A. M. Galper, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, Yu V. Gusakov, O. D. Dalkarov, et al. "The Future Space-Based GAMMA-400 Gamma-Ray Telescope for Studying Gamma and Cosmic Rays." Bulletin of the Russian Academy of Sciences: Physics 83, no. 5 (May 2019): 629–31. http://dx.doi.org/10.3103/s106287381905037x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Topchiev, N. P., A. M. Galper, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, R. A. Cherniy, I. V. Chernysheva, et al. "GAMMA-400 Gamma-Ray Observations in the GeV and TeV Energy Range." Physics of Atomic Nuclei 84, no. 6 (November 2021): 1053–58. http://dx.doi.org/10.1134/s106377882113038x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Topchiev, N. P., A. M. Galper, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, I. V. Chernysheva, O. D. Dalkarov, et al. "Space-based GAMMA-400 mission for direct gamma- and cosmic-ray observations." Journal of Physics: Conference Series 1181 (February 2019): 012041. http://dx.doi.org/10.1088/1742-6596/1181/1/012041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Arkhangelskaja, I. V., A. I. Arkhangelskiy, E. N. Chasovikov, A. M. Galper, M. D. Kheymits, A. E. Murchenko, and Y. T. Yurkin. "The Counting and Triggers Signals Formation System for Gamma-telescope GAMMA-400." Physics Procedia 74 (2015): 212–19. http://dx.doi.org/10.1016/j.phpro.2015.09.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Leonov, A. A., A. M. Galper, V. Bonvicini, N. P. Topchiev, O. Adriaini, R. L. Aptekar, I. V. Arkhangelskaja, et al. "Separation of electrons and protons in the GAMMA-400 gamma-ray telescope." Advances in Space Research 56, no. 7 (October 2015): 1538–45. http://dx.doi.org/10.1016/j.asr.2015.06.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Leonov, A. A., A. M. Galper, N. P. Topchiev, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, I. V. Chernysheva, et al. "Capabilities of the GAMMA-400 gamma-ray telescope to detect gamma-ray bursts from lateral directions." Advances in Space Research 69, no. 1 (January 2022): 514–30. http://dx.doi.org/10.1016/j.asr.2021.10.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Galper, A. M., S. I. Suchkov, N. P. Topchiev, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, Yu V. Gusakov, et al. "Precision Measurements of High-Energy Cosmic Gamma-Ray Emission with the GAMMA-400 Gamma-Ray Telescope." Physics of Atomic Nuclei 80, no. 6 (November 2017): 1141–45. http://dx.doi.org/10.1134/s1063778817060096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kheymits, M. D., I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. M. Galper, V. G. Zverev, A. A. Leonov, S. I. Suchkov, N. P. Topchiev, and Y. T. Yurkin. "Method of Incident Low-Energy Gamma-Ray Direction Reconstruction in GAMMA-400 Gamma-Ray Space Telescope." Physics Procedia 74 (2015): 368–71. http://dx.doi.org/10.1016/j.phpro.2015.09.196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Arkhangelskaja, I. V., A. E. Murchenko, E. N. Chasovikov, A. I. Arkhangelskiy, and M. D. Kheymits. "Gamma-telescopes Fermi/LAT and GAMMA-400 Trigger Systems Event Recognizing Methods Comparison." Physics Procedia 74 (2015): 246–53. http://dx.doi.org/10.1016/j.phpro.2015.09.220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kheymits, M. D., A. A. Leonov, V. G. Zverev, A. M. Galper, I. V. Arkhangelskaya, A. I. Arkhangelskiy, S. I. Suchkov, et al. "Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope." Journal of Physics: Conference Series 675, no. 3 (February 5, 2016): 032012. http://dx.doi.org/10.1088/1742-6596/675/3/032012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chadwick, P. M., N. A. Dipper, E. W. Lincoln, V. G. Mannings, T. J. L. McComb, S. M. Rayner, K. J. Orford, K. E. Turver, and D. G. Williams. "SN 1987A - Limits to 400 GeV gamma-ray emission." Astrophysical Journal 333 (October 1988): L19. http://dx.doi.org/10.1086/185277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Galper, A. M., V. Bonvicini, N. P. Topchiev, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, et al. "Space γ-observatory GAMMA-400 Current Status and Perspectives." Physics Procedia 74 (2015): 177–82. http://dx.doi.org/10.1016/j.phpro.2015.09.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Galper, A. M., O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, M. Boezio, V. Bonvicini, et al. "Characteristics of the GAMMA-400 gamma-ray telescope for searching for dark matter signatures." Bulletin of the Russian Academy of Sciences: Physics 77, no. 11 (November 2013): 1339–42. http://dx.doi.org/10.3103/s1062873813110105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Topchiev, N. P., A. M. Galper, V. Bonvicini, O. Adriani, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, et al. "New stage in high-energy gamma-ray studies with GAMMA-400 after Fermi-LAT." EPJ Web of Conferences 145 (2017): 06001. http://dx.doi.org/10.1051/epjconf/201714506001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Topchiev, N. P., A. M. Galper, V. Bonvicini, O. Adriani, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, et al. "New stage in high-energy gamma-ray studies with GAMMA-400 after Fermi-LAT." EPJ Web of Conferences 145 (2017): 06001. http://dx.doi.org/10.1051/epjconf/201614506001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Runtso, M. F., A. I. Arkhangelskiy, I. V. Arkhangelskaja, А. М. Galper, V. А. Kaplin, А. А. А. А. Leonov, P. Yu Naumov, et al. "The Distinctive Features of Anticoincidence Detector System of the GAMMA-400 Gamma-ray Telescope." Physics Procedia 74 (2015): 220–23. http://dx.doi.org/10.1016/j.phpro.2015.09.204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sa’diyah, Nyimas, Ayu Satia Haini, Sri Ramadiana, and Rugayah Rugayah. "KERAGAMAN, HERITABILITAS DAN KEMAJUAN GENETIK KARAKTER AGRONOMI CABAI MERAH GENERASI M 3 HASIL IRADIASI SINAR GAMMA." Jurnal Agrotek Tropika 7, no. 3 (November 1, 2019): 503. http://dx.doi.org/10.23960/jat.v7i3.3555.

Full text
Abstract:
Peningkatan produksi cabai di Indonesia dapat dilakukan dengan perakitan varietas unggul melalui program pemuliaan tanaman. Parameter genetik yang dibutuhkan agar seleksi dalam pemuliaan tanaman berjalan efektif yaitu: keragaman, heritabilitas dan kemajuan genetik. Penelitian ini bertujuan untuk mengetahui: (1) nilai keragaman fenotipe cabai merah varietas Laris hasil iradiasi sinar gamma 400 Gy, (2) nilai keragaman genotipecabai merah varietas Laris hasil iradiasi sinar gamma 400 Gy, (3) nilai heritabilitas cabai merah varietas Laris hasil iradiasi sinar gamma 400 Gy, dan (4) nilai kemajuan genetik cabai merah varietas Laris hasil iradiasi sinar gamma 400 Gy.Penelitian ini dilaksanakan dari bulan Oktober 2018-April 2019 di Laboratorium Lapang Terpadu Fakultas Pertanian Universitas Lampung. Benih cabai yang digunakan yaitu cabai merah varietas Laris generasi ketiga (M 3 ) yang telah diiradiasi sinar gamma 400 Gy (nomor 30) dan benih cabai varietas Laris (M 0 ). Rancangan yang digunakan adalah metode single plant. Hasil penelitian menunjukkan bahwa: nilai (1) ragam fenotipe yang luas terdapat pada karakter umur berbunga, umur panen, tinggi dikotomus, tinggi akhir generatif, jumlah buah total,bobot buah total, (2) ragam genotipe yang luas terdapat pada karakter umur berbunga, umur panen, tinggi akhir generatif, jumlah buah total, dan bobot buah total, (3) nilai heritabilitas yang tinggi terdapat pada karakter jumlah cabang primer, jumlah buah total, dan bobot buah total, (4) nilai kemajuan genetik yang tinggi terdapat pada karakter jumlah buah total dan bobot buah total.
APA, Harvard, Vancouver, ISO, and other styles
28

Leonov, A. A., A. M. Galper, N. P. Topchiev, V. Bonvicini, O. Adriani, I. V. Arkhangelskaja, A. I. Arkhangelskiy, et al. "Modifications of a method for low energy gamma-ray incident angle reconstruction in the GAMMA-400 gamma-ray telescope." Journal of Physics: Conference Series 798 (January 2017): 012012. http://dx.doi.org/10.1088/1742-6596/798/1/012012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ginzburg, V. L., V. A. Kaplin, A. I. Karakash, L. V. Kurnosova, A. G. Labenskii, M. F. Runtso, A. P. Soldatov, et al. "Development of the GAMMA-400 gamma-ray telescope to record cosmic gamma rays with energies up to 1 TeV." Cosmic Research 45, no. 5 (October 2007): 449–51. http://dx.doi.org/10.1134/s0010952507050097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Galper, A. M., N. P. Topchiev, R. L. Aptekar, I. V. Arkhangelskaja, M. Boezio, V. Bonvicini, A. Vacchi, et al. "Scientific tasks and present status of the GAMMA-400 project." Bulletin of the Russian Academy of Sciences: Physics 75, no. 6 (June 2011): 875–77. http://dx.doi.org/10.3103/s1062873811030178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mocchiutti, E., A. M. Galper, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, M. Boezio, et al. "The GAMMA-400 Space Experiment: Gammas, Electrons and Nuclei Measurements." Nuclear Physics B - Proceedings Supplements 239-240 (June 2013): 204–9. http://dx.doi.org/10.1016/j.nuclphysbps.2013.05.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Arkhangelskaja, I. V., A. I. Arkhangelskiy, E. N. Chasovikov, M. D. Kheymits, Y. T. Yurkin, A. M. Galper, S. I. Suchkov, N. P. Topchiev, and A. E. Murchenko. "Gamma-quanta and charged particles recognition by the counting and triggers signals formation system of GAMMA-400 space gamma-telescope." Journal of Physics: Conference Series 798 (January 2017): 012016. http://dx.doi.org/10.1088/1742-6596/798/1/012016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Leonov, A. A., A. M. Galper, N. P. Topchiev, A. V. Bakaldin, O. D. Dalkarov, E. A. Dzhivelikyan, A. E. Egorov, et al. "Multiple Coulomb scattering method to reconstruct low-energy gamma–ray direction in the GAMMA-400 space-based gamma–ray telescope." Advances in Space Research 63, no. 10 (May 2019): 3420–27. http://dx.doi.org/10.1016/j.asr.2019.01.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Topchiev, N. P., A. M. Galper, V. Bonvicini, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, et al. "Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements." Journal of Physics: Conference Series 675, no. 3 (February 5, 2016): 032010. http://dx.doi.org/10.1088/1742-6596/675/3/032010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Naumov, P. P., P. Yu Naumov, M. F. Runtso, and A. A. Solodovnikov. "Software for Control and Measuring Instrumentation of the GAMMA-400 Gamma-telescope Fast Scintillator Detector System." Physics Procedia 74 (2015): 261–65. http://dx.doi.org/10.1016/j.phpro.2015.09.227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wangyao, Panyawat, Sureerat Polsilapa, Anchalee Srimek, and Aimamorn Promboopha. "Effect of Thermal Exposure on Long-Term Heated Microstructures at 900°C of Nickel Base Superalloy Turbine Blades, Grade Udimet 500." Key Engineering Materials 658 (July 2015): 25–30. http://dx.doi.org/10.4028/www.scientific.net/kem.658.25.

Full text
Abstract:
In this research, 5 superalloys Udimet-500 samples were reheat-treated under simulation of 2 working conditions. First, they were heated at 900oC for 400 hours of each heating cycle from the beginning until accumulated heating time reached 1600 hours, these samples were collected and examined the microstructures for size and shape of gamma prime particles. Another heating condition, they had an additional over thermal exposure heating at 1125oC for 1 hour after heating at 900oC of each 400 hours-heating cycle. Then the results were analyzed from 2 working conditions. It was found that the area fraction, average area of gamma prime particle values of nickel base superalloy turbine blade, grade Udimet-500 happened in the same directions in first heating program. However, with the over thermal exposure heating at 1125oC for 1 hour after every heating at 900oC for 400 hours-heating, the obtained results show rates of the area fraction, average area of gamma prime particle values had changed more slowly because the temperature 1125oC at the end of each 900C heating could solutioning some coarse gamma prime phase back to the matrix in some degree. Therefore, the rate of ripening of gamma particle size was slower due to that the microstructural rejuvenation was always performed after each heating cycle and also allowed the reprecipitation of uniform finer gamma prime particles providing longer service time than those of first heating condition.
APA, Harvard, Vancouver, ISO, and other styles
37

Bobkov, S. G., O. V. Serdin, M. S. Gorbunov, A. I. Arkhangelskiy, and N. P. Topchiev. "The scientific data acquisition system of the GAMMA-400 space project." Journal of Physics: Conference Series 675, no. 3 (February 5, 2016): 032014. http://dx.doi.org/10.1088/1742-6596/675/3/032014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Arkhangelskiy, A. I., I. V. Arkhangelskaja, J. Merphi, M. F. Runtso, and V. S. Timoshin. "The Application of Sensl Silicon Photomultipliers in GAMMA–400 Satellite Project." Physics Procedia 74 (2015): 390–93. http://dx.doi.org/10.1016/j.phpro.2015.09.205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Brazier, K. T. S., A. Carramiñana, P. M. Chadwick, N. A. Dipper, E. W. Lincoln, V. G. Mannings, T. J. L. McComb, K. J. Orford, S. M. Rayner, and K. E. Turver. "400 Gev gamma rays from the X-ray pulsar 1E2259+586." Nuclear Physics B - Proceedings Supplements 14, no. 1 (March 1990): 196–99. http://dx.doi.org/10.1016/0920-5632(90)90420-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hobson, Scott, Martin Lenter, and Cornelia Dorner-Ciossek. "P2-400: THE EFFECTS OF GAMMA SECRETASE MODULATORS ON ABETA OLIGOMERIZATION." Alzheimer's & Dementia 10 (July 2014): P625. http://dx.doi.org/10.1016/j.jalz.2014.05.1080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Simonova, G., and R. Liscak. "PO-0657 RADIOSURGERY OF BRAIN METASTASES USING LEKSELL GAMMA KNIFE – RESULTS OF 400 TREATED PATIENTS RESULTS OF 400." Radiotherapy and Oncology 103 (May 2012): S257. http://dx.doi.org/10.1016/s0167-8140(12)70990-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Arkhangelskaja, I. V., A. I. Arkhangelskiy, E. N. Chasovikov, A. M. Galper, M. D. Kheymits, A. E. Murchenko, and Y. T. Yurkin. "Gamma-quanta onboard identification in the GAMMA-400 experiment using the counting and triggers signals formation system." Journal of Physics: Conference Series 675, no. 3 (February 5, 2016): 032015. http://dx.doi.org/10.1088/1742-6596/675/3/032015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wanga, Maliata Athon, Hussein Shimelis, Lydia N. Horn, and Fatma Sarsu. "The Effect of Single and Combined Use of Gamma Radiation and Ethylmethane Sulfonate on Early Growth Parameters in Sorghum." Plants 9, no. 7 (June 30, 2020): 827. http://dx.doi.org/10.3390/plants9070827.

Full text
Abstract:
Success in inducing genetic variation through mutagenic agents is dependent on the source and dose of application. The objective of this study was to determine the optimum doses of a single and combined use of gamma radiation and ethylmethane sulfonate (EMS) for effective mutation breeding in sorghum. The study involved two concurrent experiments as follows: in experiment I, the seeds of four sorghum genotypes (‘Parbhani Moti’, ‘Parbhani Shakti’, ‘ICSV 15013′, and ‘Macia’) were treated using gamma radiation (0, 300, 400, 500 and 600 Gy), EMS (0, 0.5 and 1.0%), and gamma radiation followed by EMS (0 and 300 Gy and 0.1% EMS; 400 Gy and 0.05% EMS). In experiment II, the seeds of two genotypes (‘Macia’ and ‘Red sorghum’) were treated with seven doses of gamma radiation only (0, 100, 200, 300, 400, 500 and 600 Gy). Overall, the combined applied doses of gamma radiation and EMS are not recommended due to poor seedling emergence and seedling survival rate below LD50. The best dosage of gamma radiation for genotypes Red sorghum, Parbhani Moti, Macia, ICSV 15013 and Parbhani Shakti ranged between 392 and 419 Gy, 311 and 354 Gy, 256 and 355 Gy, 273 and 304 Gy, and 266 and 297 Gy, respectively. The EMS optimum dosage ranges for genotypes Parbhani Shakti, ICSV 15013, Parbhani Moti and Macia were between 0.41% and 0.60%, 0.48% and 0.58%, 0.46% and 0.51%, and 0.36% and 0.45%, respectively. The above dose rates are useful to induce genetic variation in the tested sorghum genotypes for greater mutation events in sorghum breeding programs.
APA, Harvard, Vancouver, ISO, and other styles
44

Aswini, G., D. Arulbalachandran, and S. Latha. "Effect of gamma irradiation on quantitative traits and post harvesting analysis of groundnut (Arachis hypogaea L.) seed in M1 generation." Plant Science Today 9, no. 4 (October 21, 2022): 1074–84. http://dx.doi.org/10.14719/pst.1785.

Full text
Abstract:
Groundnut (Arachis hypogaea L.) is a member of family Fabaceae. It is an important monoecious annual legume, mainly grown for oilseed. Gamma irradiation is a powerful tool to induce genetic alteration and improvement in crops with beneficial mutants. The study was undertakenn to evaluate the quantitative traits of gamma rays on groundnut. Genetically healthy, dried and uniform size seeds of groundnut variety of Dharani were treated with six doses viz., 100, 200, 300, 400, 500 and 600 Gy of gamma rays. The biological damage based on lethality and injury was estimated in the M1 generation. The present investigation reveals that seed germination LD50 value recorded at 300 Gy and highest survival percentage value was obtained at 100 Gy compared to control and other treatments. In M1 generation, the morphological and quantitative traits were decreased as the dose increases. The maximum reduction was observed at 600 Gy. In general, the higher doses showed increasing plant damage compared to control. The amino acid content was high in 500 Gy doses of gamma irradiation. The lipids, protein and carbohydrate content were high in 400 Gy compared to control and other doses. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the lipid substances and the results showed that significantly more compounds were found in seeds that had received 400 Gy radiation than in untreated seeds. The current study found that gamma irradiation changes the morphology, quantitative characteristics and biochemical composition of groundnut seeds in the M1 generation.
APA, Harvard, Vancouver, ISO, and other styles
45

Akgün, İlknur, Tuğçe Ayşe Karakoca, and Ruziye Karaman. "Farklı Gamma Işını Dozlarının İki Sıralı Arpada (Hordeum vulgare L.) Bazı Tarımsal Özellikler Üzerine Etkisi." Turkish Journal of Agriculture - Food Science and Technology 7, sp2 (December 21, 2019): 86. http://dx.doi.org/10.24925/turjaf.v7isp2.86-92.3152.

Full text
Abstract:
In this study, the effect of different doses of gamma ray (200, 300, 400 and 500 Gy) applied on seeds of Tarm-92 two-row barley varieties on some agricultural properties were investigated. The research was conducted in 2016-2017 vegetation period under Isparta conditions. In M1 generation, normal and abnormal plants are harvested separately according to the spike and plant appearance at each dose and 9 different [200, 200 A, 300, 300 A, 400, 400 A, 400 A (plants with double spike formation and branching tendency in spike Ç.B.) 500 and 500 A gray] groups were formed. A total of 10 plots with control (no irradiation) were included in the M2 generation. Results showed that the effect of gamma ray application on the thousand grain weight, test weight, ratio of husk and protein content was significant statistically. While increasing the ratio of husk and protein content, gamma ray application significantly reduced the weight of a thousand grains and test weight. In this research, plant height, spike length, number of grain per spike and weight of grain per spike were investigated on a single plant. Discriminant analysis was done and distance between groups was determined. The rate of plants similar to control in examined characters in M2 generation is 400 Gy 7.83%, 200 Gy 10%, 300 Gy 19.60% and 500 Gy 22.22%. When the coefficients containing linear separation functions are examined, it is determined that the most effective feature is spike length.
APA, Harvard, Vancouver, ISO, and other styles
46

Priyanka, S., R. Sudhagar, C. Vanniarajan, K. Ganesamurthy, and J. Souframanien. "Gamma rays induced morphological, flowering and palynological modifications in horse gram (Macrotyloma uniflorum)." Journal of Environmental Biology 42, no. 5 (September 28, 2021): 1363–69. http://dx.doi.org/10.22438/jeb/42/5/mrn-1691.

Full text
Abstract:
Aim: The quest was framed to analyse the effect of high dose of gamma rays on morphological, flowering, and palynological traits in horse gram (Macrotyloma uniflorum). Methodology: Two horse gram varieties PAIYUR 2 and CRIDA 1-18 R were mutated using 32 mutagenic combinations. Sterile plants produced by gamma rays: 400 Gy were utilized to study the alterations in morphological, flowering characters in 20 randomly selected plants, and palynological traits using scanning electron microscope. Results: Gamma rays (GR):400 Gy produced sterile plants with altered ideotype and reproductive traits. It reduced expression of yield attributing traits, delayed first flowering, modified anther, and pollen size. The palynological changes included genotype dependant variation in pili number, size and exine ornamentation. Interpretation: High gamma ray dose is lethal to horse gram which was evidenced through grave modifications in morphological and palynological traits. These alterations resulted in sterility. Sterile plants tried to repair the irradiation induced damages and hence failed to perform routine reproductive functions.
APA, Harvard, Vancouver, ISO, and other styles
47

Priyanka, S., R. Sudhagar, C. Vanniarajan, K. Ganesamurthy, and J. Souframanien. "Gamma rays induced morphological, flowering and palynological modifications in horse gram (Macrotyloma uniflorum)." Journal of Environmental Biology 42, no. 5 (September 28, 2021): 1363–69. http://dx.doi.org/10.22438/jeb/42/5/mrn-1691.

Full text
Abstract:
Aim: The quest was framed to analyse the effect of high dose of gamma rays on morphological, flowering, and palynological traits in horse gram (Macrotyloma uniflorum). Methodology: Two horse gram varieties PAIYUR 2 and CRIDA 1-18 R were mutated using 32 mutagenic combinations. Sterile plants produced by gamma rays: 400 Gy were utilized to study the alterations in morphological, flowering characters in 20 randomly selected plants, and palynological traits using scanning electron microscope. Results: Gamma rays (GR):400 Gy produced sterile plants with altered ideotype and reproductive traits. It reduced expression of yield attributing traits, delayed first flowering, modified anther, and pollen size. The palynological changes included genotype dependant variation in pili number, size and exine ornamentation. Interpretation: High gamma ray dose is lethal to horse gram which was evidenced through grave modifications in morphological and palynological traits. These alterations resulted in sterility. Sterile plants tried to repair the irradiation induced damages and hence failed to perform routine reproductive functions.
APA, Harvard, Vancouver, ISO, and other styles
48

Azigwe, C., P. A. D. Zoryeku, I. K. Asante, and F. Oppong-Adjei. "Effect of Gamma Irradiation on Chlorophyll Content in the Cowpea (Vigna unguiculata (L.) Walp)." Ghana Journal of Science 61, no. 2 (January 31, 2021): 113–17. http://dx.doi.org/10.4314/gjs.v61i2.11.

Full text
Abstract:
The experiment was conducted to study the mutagenic effect of gamma rays on chlorophyll content at three different physiological stages in the cowpea: pre-flowering, flowering and post-flowering. Five sets of cowpea seeds were subjected to individual doses of gamma rays: 400 Gy, 450 Gy, 500 Gy, 600 Gy and 0 Gy. The seeds were sown to raise the M1 generation. The M1 generation seeds were collected and sown in the next season to raise the M2 generation. Leaf chlorophyll content was measured for M2 generation plants. Mean chlorophyll content for pre-flowering stage ranged between 38.9 ± 8.17 (control) and 64.2 ± 6.16 (400 Gy). Flowering stage mean chlorophyll content ranged from 48.3 ± 14.4 (600 Gy) to 99.4 ± 6.22 (450 Gy). Post-harvest chlorophyll mean content ranged between 13.1 ±0.98 (600 Gy) and 38.0 ±1.90 (400 Gy). There were significant differences in treatment effects for pre-flowering (P = 0.021), flowering (P = 0.005) and harvest (P = 0.000). At pre-flowering treatment, treatment 400 Gy scored a significant increase of 64 percent (P = 0.02) above the control. The optimum dose for useful induced mutation for increases in chlorophyll concentration in the cowpea was 400 Gy.
APA, Harvard, Vancouver, ISO, and other styles
49

Hutagaol, Antonio Gogo, and Muhammad Ilham Bayquni. "KARAKTERISASI MATERIAL INSULASI KABEL LISTRIK TEGANGAN RENDAH DARI PRODUK LOKAL PASCA IRADIASI GAMMA." Urania : Jurnal Ilmiah Daur Bahan Bakar Nuklir 28, no. 2 (June 30, 2022): 79. http://dx.doi.org/10.17146/urania.2022.28.2.6615.

Full text
Abstract:
KARAKTERISASI MATERIAL INSULASI KABEL LISTRIK TEGANGAN RENDAH DARI PRODUK LOKAL PASCA IRADIASI GAMMA. Penelitian ini ditujukan untuk mempelajari pengaruh radiasi gamma terhadap karakter polimer semi kristalin pada material insulasi kabel listrik tegangan rendah dari produk lokal, terkait penggunaannya di fasilitas dengan radiasi gamma tinggi. Sampel uji diiradiasi menggunakan perangkat Gamma Cell dengan dosis radiasi sebesar 25, 50, 100, 200, 400 dan 800 kGy. Derajat kristalinitas dan komposisi senyawa dari sampel uji dianalisis dengan uji XRD dan dikarakterisasi menggunakan FTIR. Berdasarkan uji XRD yang dilakukan, tidak teramati adanya perbedaan signifikan pada pola difraksi antara sampel uji non iradiasi maupun sampel uji iradiasi dengan variasi besar dosis. Hal ini mengindikasikan tidak terdapat perubahan fase mayor dari senyawa kristalin yang terkandung dalam sampel uji terkait. Adapun derajat kristalinitas dari sampel uji cenderung menurun seiring meningkatnya dosis radiasi yang diberikan. Hasil analisis FTIR menunjukkan adanya perbedaan transmittance yang fluktuatif antar sampel uji dengan dosis radiasi gamma yang berbeda juga dengan sampel uji non-iradiasi gamma. Adanya spektra yang semakin melebar di 400 kGy dan 800 kGy, pada wavenumber 3369 – 3370 cm-1, hal ini mengindikasikan adanya gugus O-H stretch. Pengujian lebih lanjut diperlukan untuk menguatkan identifikasi terhadap gugus fungsi, penentuan senyawa organik, maupun evaluasi terhadap karakter mekanik sampel uji yang sekaligus diperlukan untuk mengonfirmasi dugaan adanya gangguan terhadap asosiasi polimer-plasticizer.Kata kunci: Polimer semi kristalin, irradiasi gamma, derajat kristalinitas, perubahan kimia
APA, Harvard, Vancouver, ISO, and other styles
50

Bakaldin, A. V., A. M. Galper, A. A. Leonov, S. I. Suchkov, and N. P. Topchiev. "GAMMA-400 experiment: perspectives of observation of the discrete astrophysical gamma-ray sources in the Milky Way disk." Journal of Physics: Conference Series 1181 (February 2019): 012073. http://dx.doi.org/10.1088/1742-6596/1181/1/012073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography