Academic literature on the topic 'Galerkin-isogeometric method'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Galerkin-isogeometric method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Galerkin-isogeometric method"

1

Yu, Shengjiao, Renzhong Feng, and Tiegang Liu. "An isogeometric discontinuous Galerkin method for Euler equations." Mathematical Methods in the Applied Sciences 40, no. 8 (2016): 3129–39. http://dx.doi.org/10.1002/mma.4227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Michoski, C., J. Chan, L. Engvall, and J. A. Evans. "Foundations of the blended isogeometric discontinuous Galerkin (BIDG) method." Computer Methods in Applied Mechanics and Engineering 305 (June 2016): 658–81. http://dx.doi.org/10.1016/j.cma.2016.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hofer, Christoph. "Analysis of discontinuous Galerkin dual-primal isogeometric tearing and interconnecting methods." Mathematical Models and Methods in Applied Sciences 28, no. 01 (2017): 131–58. http://dx.doi.org/10.1142/s0218202518500045.

Full text
Abstract:
In this paper, we present the analysis of the discontinuous Galerkin dual-primal isogeometric tearing and interconnecting method (dG-IETI-DP) for a multipatch discretization in two-space dimensions where we only consider vertex primal variables. As model problem, we use the Poisson equation with globally constant diffusion coefficient. The dG-IETI-DP method is a combination of the dual-primal isogeometric tearing and interconnecting method (IETI-DP) with the discontinuous Galerkin (dG) method. We use the dG method only on the interfaces to couple different patches. This enables us to handle no
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Shengjiao. "Adjoint-Based Adaptive Isogeometric Discontinuous Galerkin Method for Euler Equations." Advances in Applied Mathematics and Mechanics 10, no. 3 (2018): 652–72. http://dx.doi.org/10.4208/aamm.oa-2017-0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Duvigneau, R. "Isogeometric analysis for compressible flows using a Discontinuous Galerkin method." Computer Methods in Applied Mechanics and Engineering 333 (May 2018): 443–61. http://dx.doi.org/10.1016/j.cma.2018.01.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Kun, Shengjiao Yu, Zheng Wang, Renzhong Feng, and Tiegang Liu. "Adjoint-based airfoil optimization with adaptive isogeometric discontinuous Galerkin method." Computer Methods in Applied Mechanics and Engineering 344 (February 2019): 602–25. http://dx.doi.org/10.1016/j.cma.2018.10.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pezzano, Stefano, Régis Duvigneau, and Mickaël Binois. "Geometrically consistent aerodynamic optimization using an isogeometric Discontinuous Galerkin method." Computers & Mathematics with Applications 128 (December 2022): 368–81. http://dx.doi.org/10.1016/j.camwa.2022.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tran, Han Duc, and Binh Huy Nguyen. "An isogeometric SGBEM for crack problems of magneto-electro-elastic materials." Vietnam Journal of Mechanics 39, no. 2 (2017): 135–47. http://dx.doi.org/10.15625/0866-7136/8691.

Full text
Abstract:
The isogeometric symmetric Galerkin boundary element method is applied for the analysis of crack problems in two-dimensional magneto-electro-elastic domains. In this method, the field variables of the governing integral equations as well as the geometry of the problems are approximated using non-uniform rational B-splines (NURBS) basis functions. The key advantage of this method is that the isogeometric analysis and boundary element method deal only with the boundary of the domain. To verify the accuracy of the proposed method, numerical examples for crack problems in infinite and finite domai
APA, Harvard, Vancouver, ISO, and other styles
9

Ren, Jingwen, and Hongwei Lin. "A Survey on Isogeometric Collocation Methods with Applications." Mathematics 11, no. 2 (2023): 469. http://dx.doi.org/10.3390/math11020469.

Full text
Abstract:
Isogeometric analysis (IGA) is an effective numerical method for connecting computer-aided design and engineering, which has been widely applied in various aspects of computational mechanics. IGA involves Galerkin and collocation formulations. Exploiting the same high-order non-uniform rational B-spline (NURBS) bases that span the physical domain and the solution space leads to increased accuracy and fast computation. Although IGA Galerkin provides optimal convergence, IGA collocation performs better in terms of the ratio of accuracy to computational time. Without numerical integration, by wor
APA, Harvard, Vancouver, ISO, and other styles
10

Stauffert, Maxime, and Régis Duvigneau. "Shape Sensitivity Analysis in Aerodynamics Using an Isogeometric Discontinuous Galerkin Method." SIAM Journal on Scientific Computing 43, no. 5 (2021): B1081—B1104. http://dx.doi.org/10.1137/20m1356269.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Galerkin-isogeometric method"

1

Saade, Christelle. "Méthodes isogéométriques espace-temps pour des équations multi-champs en mécanique." Thesis, Ecole centrale de Marseille, 2020. http://www.theses.fr/2020ECDM0011.

Full text
Abstract:
Dans ce travail, nous introduisons différentes formulations faibles basées sur des méthodes de Galerkin continues en temps pour plusieurs types de problèmes, pilotés par des équations aux dérivées partielles dans l’espace et le temps. Notre approche repose sur une discrétisation simultanée et arbitraire de l’espace et du temps. L’analyse isogéométrique (IGA) est utilisée comme outil de discrétisation à la place de la méthode classique des éléments finis (FEM) afin de bénéficier des propriétés de continuité des fonctions B-splines et NURBS. Un état de l’art détaillé est présenté pour introduire
APA, Harvard, Vancouver, ISO, and other styles
2

Ladecký, Martin. "Isogeometrická analýza a její použití v mechanice kontinua." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371938.

Full text
Abstract:
Thesis deals with solving the problems of continuum mechanics by method of Isogeometric analysis. This relatively young method combines the advantages of precise NURBS geometry and robustness of the classical finite element method. The method is described on procedure of solving a plane Poissons boundary value problem. Solver is implemented in MatLab and algorithms are attached to the text.
APA, Harvard, Vancouver, ISO, and other styles
3

Gdhami, Asma. "Méthodes isogéométriques pour les équations aux dérivées partielles hyperboliques." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4210/document.

Full text
Abstract:
L’Analyse isogéométrique (AIG) est une méthode innovante de résolution numérique des équations différentielles, proposée à l’origine par Thomas Hughes, Austin Cottrell et Yuri Bazilevs en 2005. Cette technique de discrétisation est une généralisation de l’analyse par éléments finis classiques (AEF), conçue pour intégrer la conception assistée par ordinateur (CAO), afin de combler l’écart entre la description géométrique et l’analyse des problèmes d’ingénierie. Ceci est réalisé en utilisant des B-splines ou des B-splines rationnelles non uniformes (NURBS), pour la description des géométries ain
APA, Harvard, Vancouver, ISO, and other styles
4

Kadapa, Chennakesava. "Mixed Galerkin and least-squares formulations for isogeometric analysis." Thesis, Swansea University, 2014. https://cronfa.swan.ac.uk/Record/cronfa42221.

Full text
Abstract:
This work is concerned with the use of isogeometric analysis based on Non- Uniform Rational B-Splines (NURBS) to develop efficient and robust numerical techniques to deal with the problems of incompressibility in the fields of solid and fluid mechanics. Towards this, two types of formulations, mixed Galerkin and least-squares, are studied. During the first phase of this work, mixed Galerkin formulations, in the context of isogeometric analysis, are presented. Two-field and three-field mixed variational formulations - in both small and large strains - are presented to obtain accurate numerical
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Galerkin-isogeometric method"

1

Seiler, Agnes, and Bert Jüttler. "Reparameterization and Adaptive Quadrature for the Isogeometric Discontinuous Galerkin Method." In Mathematical Methods for Curves and Surfaces. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67885-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Calabrò, Francesco, Gabriele Loli, Giancarlo Sangalli, and Mattia Tani. "Quadrature Rules in the Isogeometric Galerkin Method: State of the Art and an Introduction to Weighted Quadrature." In Advanced Methods for Geometric Modeling and Numerical Simulation. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27331-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amin Ghaziani, Milad, Josef Kiendl, and Laura De Lorenzis. "Isogeometric Multiscale Modeling with Galerkin and Collocation Methods." In Virtual Design and Validation. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38156-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Falini, Antonella, and Tadej Kanduč. "A Study on Spline Quasi-interpolation Based Quadrature Rules for the Isogeometric Galerkin BEM." In Advanced Methods for Geometric Modeling and Numerical Simulation. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27331-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mika, Michal L., René R. Hiemstra, Dominik Schillinger, and Thomas J. R. Hughes. "A Comparison of Matrix-Free Isogeometric Galerkin and Collocation Methods for Karhunen–Loève Expansion." In Current Trends and Open Problems in Computational Mechanics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87312-7_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Galerkin-isogeometric method"

1

Wilson, S. G., J. Kópházi, A. R. Owens, and M. D. Eaton. "Interior Penalty Schemes for Discontinuous Isogeometric Methods With an Application to Nuclear Reactor Physics." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81322.

Full text
Abstract:
Until recently, interior penalty methods have been applied to elliptic operators using an approach based on the mass matrix of finite elements that possess a constant Jacobian. In the case of isogeometric analysis, such an approach would not always guarantee coercivity of the bilinear form and thus numerical stability of the solution. In this paper, optimal interior penalty parameters [1] are described and applied to the symmetric interior penalty scheme of the discontinuous Galerkin isogeometric spatial discretisation of the neutron diffusion equation. The numerical accuracy of the proposed m
APA, Harvard, Vancouver, ISO, and other styles
2

Held, Susanne, Wolfgang Dornisch, and Nima Azizi. "An Isogeometric Element Formulation for Linear Two-Dimensional Elasticity Based on the Airy Equation." In VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/yic2021.2021.12598.

Full text
Abstract:
The aim of this work is to derive a formulation for linear two-dimensional elasticity using just one degree of freedom. With the Airy stress function, a measure without further physical meaning is chosen to this single degree of freedom. The corresponding Airy equation requires higher order basis functions for the discretization of the formulation [1]. Isogeometric structural analysis (IGA) is based on shape functions of the system in Computer-Aided design (CAD) software [2]. These shape functions can fulfill the requirement of high continuity and therefore the formulation is obtained through
APA, Harvard, Vancouver, ISO, and other styles
3

Niiranen, Jarkko, Sergei Khakalo, Viacheslav Balobanov, et al. "ISOGEOMETRIC GALERKIN METHODS FOR GRADIENT-ELASTIC BARS, BEAMS, MEMBRANES AND PLATES." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2002.9170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!