Academic literature on the topic 'Galaxy formation clusters'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Galaxy formation clusters.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Galaxy formation clusters"

1

Larson, Richard B. "Galaxy Formation and Cluster Formation." Symposium - International Astronomical Union 126 (1988): 311–21. http://dx.doi.org/10.1017/s007418090004256x.

Full text
Abstract:
A primary motivation for studying globular clusters is that, as the oldest known galactic fossils, they trace the earliest stages of galactic evolution; indeed, they may hold the key to understanding galaxy formation. Thus it is clearly of great importance to learn how to read the fossil record. To do this, we need to understand something about how the globular clusters themselves formed. Were they the first bound objects to form, or did they form in larger pre-existing systems of which they are just small surviving fragments? If the latter, what were the prehistoric cluster-forming systems like? And how did they manage to produce objects like globular clusters?
APA, Harvard, Vancouver, ISO, and other styles
2

Blau, Steven K. "Galaxy clusters in formation." Physics Today 68, no. 6 (June 2015): 20. http://dx.doi.org/10.1063/pt.3.2807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kravtsov, Andrey V., and Stefano Borgani. "Formation of Galaxy Clusters." Annual Review of Astronomy and Astrophysics 50, no. 1 (September 22, 2012): 353–409. http://dx.doi.org/10.1146/annurev-astro-081811-125502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Robertson, Andrew. "The galaxy–galaxy strong lensing cross-sections of simulated ΛCDM galaxy clusters." Monthly Notices of the Royal Astronomical Society: Letters 504, no. 1 (March 22, 2021): L7—L11. http://dx.doi.org/10.1093/mnrasl/slab028.

Full text
Abstract:
ABSTRACT We investigate a recent claim that observed galaxy clusters produce an order of magnitude more galaxy–galaxy strong lensing (GGSL) than simulated clusters in a Λ cold dark matter (CDM) cosmology. We take galaxy clusters from the c-eagle hydrodynamical simulations and calculate the expected amount of GGSL for sources placed behind the clusters at different redshifts. The probability of a source lensed by one of the most massive c-eagle clusters being multiply imaged by an individual cluster member is in good agreement with that inferred for observed clusters. We show that numerically converged results for the GGSL probability require higher resolution simulations than had been used previously. On top of this, different galaxy formation models predict cluster substructures with different central densities, such that the GGSL probabilities in ΛCDM cannot yet be robustly predicted. Overall, we find that GGSL within clusters is not currently in tension with the ΛCDM cosmological model.
APA, Harvard, Vancouver, ISO, and other styles
5

Neumayer, Nadine. "Nuclear Star Clusters." Proceedings of the International Astronomical Union 12, S316 (August 2015): 84–90. http://dx.doi.org/10.1017/s1743921316007018.

Full text
Abstract:
AbstractThe centers of galaxies host two distinct, compact components: massive black holes and nuclear star clusters. Nuclear star clusters are the densest stellar systems in the universe, with masses of ~ 107M⊙and sizes of ~ 5pc. They are almost ubiquitous at the centres of nearby galaxies with masses similar to, or lower than the Milky Way. Their occurrence both in spirals and dwarf elliptical galaxies appears to be a strong function of total galaxy light or mass. Nucleation fractions are up to 100% for total galaxy magnitudes of MB= −19mag or total galaxy luminosities of about LB= 1010L⊙and falling nucleation fractions for both smaller and higher galaxy masses. Although nuclear star clusters are so common, their formation mechanisms are still under debate. The two main formation scenarios proposed are the infall and subsequent merging of star clusters and the in-situ formation of stars at the center of a galaxy. Here, I review the state-of-the-art of nuclear star cluster observations concerning their structure, stellar populations and kinematics. These observations are used to constrain the proposed formation scenarios for nuclear star clusters. Constraints from observations show, that likely both cluster infall and in-situ star formation are at work. The relative importance of these two mechanisms is still subject of investigation.
APA, Harvard, Vancouver, ISO, and other styles
6

Anders, Peter, Uta Fritze –. v. Alvensleben, and Richard de Grijs. "Young Star Clusters: Progenitors of Globular Clusters!?" Highlights of Astronomy 13 (2005): 366–68. http://dx.doi.org/10.1017/s1539299600015987.

Full text
Abstract:
AbstractStar cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. Young clusters are observed to form in a variety of such galaxies, a substantial number resembling the progenitors of globular clusters in mass and size, but with significantly enhanced metallicity. From studies of the metal-poor and metal-rich star cluster populations of galaxies, we can therefore learn about the violent star formation history of these galaxies, and eventually about galaxy formation and evolution. We present a new set of evolutionary synthesis models of our GALEV code, with special emphasis on the gaseous emission of presently forming star clusters, and a new tool to compare extensive model grids with multi-color broad-band observations to determine individual cluster masses, metallicities, ages and extinction values independently. First results for young star clusters in the dwarf starburst galaxy NGC 1569 are presented. The mass distributions determined for the young clusters give valuable input to dynamical star cluster system evolution models, regarding survival and destruction of clusters. We plan to investigate an age sequence of galaxy mergers to see dynamical destruction effects in process.
APA, Harvard, Vancouver, ISO, and other styles
7

van den Bergh, S. "Star clusters in the Magellanic Clouds." Symposium - International Astronomical Union 148 (1991): 161–64. http://dx.doi.org/10.1017/s0074180900200259.

Full text
Abstract:
Star clusters in the Magellanic Clouds (MCs) differ from those in the Galaxy in a number of respects: (1) the Clouds contain a class of populous open clusters that has no Galactic counterpart; (2) Cloud clusters have systematically larger radii rh than those in the Galaxy; (3) clusters of all ages in the Clouds are, on average, more flattened than those in the Galaxy. In the Large Magellanic Cloud (LMC) there appear to have been two distinct epochs of cluster formation. LMC globulars have ages of 12-15 Gyr, whereas most populous open clusters have ages <5 Gyr. No such dichotomy is observed for clusters in the Small Magellanic Cloud (SMC) The fact that the SMC exhibits no enhanced cluster formation at times of bursts of cluster formation in the LMC, militates against encounters between the Clouds as a cause for enhanced rates of star and cluster formation.
APA, Harvard, Vancouver, ISO, and other styles
8

Benavides, José A., Laura V. Sales, and Mario G. Abadi. "Accretion of galaxy groups into galaxy clusters." Monthly Notices of the Royal Astronomical Society 498, no. 3 (September 2, 2020): 3852–62. http://dx.doi.org/10.1093/mnras/staa2636.

Full text
Abstract:
ABSTRACT We study the role of group infall in the assembly and dynamics of galaxy clusters in ΛCDM. We select 10 clusters with virial mass M200 ∼ 1014 $\rm M_\odot$ from the cosmological hydrodynamical simulation Illustris and follow their galaxies with stellar mass M⋆ ≥ 1.5 × 108 $\rm M_\odot$. A median of ${\sim}38{{\ \rm per\ cent}}$ of surviving galaxies at z = 0 is accreted as part of groups and did not infall directly from the field, albeit with significant cluster-to-cluster scatter. The evolution of these galaxy associations is quick, with observational signatures of their common origin eroding rapidly in 1–3 Gyr after infall. Substructure plays a dominant role in fostering the conditions for galaxy mergers to happen, even within the cluster environment. Integrated over time, we identify (per cluster) an average of 17 ± 9 mergers that occur in infalling galaxy associations, of which 7 ± 3 occur well within the virial radius of their cluster hosts. The number of mergers shows large dispersion from cluster to cluster, with our most massive system having 42 mergers above our mass cut-off. These mergers, which are typically gas rich for dwarfs and a combination of gas rich and gas poor for M⋆ ∼ 1011 $\rm M_\odot$, may contribute significantly within ΛCDM to the formation of specific morphologies, such as lenticulars (S0) and blue compact dwarfs in groups and clusters.
APA, Harvard, Vancouver, ISO, and other styles
9

Elbaz, D. "Infrared Observations of Galaxy Clusters." Highlights of Astronomy 11, no. 2 (1998): 1128–30. http://dx.doi.org/10.1017/s1539299600019754.

Full text
Abstract:
The evolution of galaxy clusters from their formation due to the merging of sub structures, the bulk of star formation and subsequent chemical enrichment of the intra-cluster medium, is expected to be quite recent (z<l-2) in the hierarchical clustering scenario (White & Frenk 1991).
APA, Harvard, Vancouver, ISO, and other styles
10

Danieli, Shany, Pieter van Dokkum, Sebastian Trujillo-Gomez, J. M. Diederik Kruijssen, Aaron J. Romanowsky, Scott Carlsten, Zili Shen, et al. "NGC 5846-UDG1: A Galaxy Formed Mostly by Star Formation in Massive, Extremely Dense Clumps of Gas." Astrophysical Journal Letters 927, no. 2 (March 1, 2022): L28. http://dx.doi.org/10.3847/2041-8213/ac590a.

Full text
Abstract:
Abstract It has been shown that ultra-diffuse galaxies (UDGs) have higher specific frequencies of globular clusters, on average, than other dwarf galaxies with similar luminosities. The UDG NGC 5846-UDG1 is among the most extreme examples of globular cluster–rich galaxies found so far. Here we present new Hubble Space Telescope observations and analysis of this galaxy and its globular cluster system. We find that NGC 5846-UDG1 hosts 54 ± 9 globular clusters, three to four times more than any previously known galaxy with a similar luminosity and higher than reported in previous studies. With a galaxy luminosity of L V,gal ≈ 6 × 107 L ⊙ (M ⋆ ≈ 1.2 × 108 M ⊙) and a total globular cluster luminosity of L V,GCs ≈ 7.6 × 106 L ⊙, we find that the clusters currently comprise ∼13% of the total light. Taking into account the effects of mass loss from clusters during their formation and throughout their lifetime, we infer that most of the stars in the galaxy likely formed in globular clusters, and very little to no “normal” low-density star formation occurred. This result implies that the most extreme conditions during early galaxy formation promoted star formation in massive and dense clumps, in contrast to the dispersed star formation observed in galaxies today.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Galaxy formation clusters"

1

Beasley, Michael Andrew. "Globular clusters as probes of galaxy formation." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/4949/.

Full text
Abstract:
Observations and analysis of globular cluster systems associated with three galaxy types are presented. Spectroscopy of globular cluster (GC) candidates in the Sculptor spirals NGC 253 and NGC 55 has identified 15 GCs in these galaxies. This spectroscopic sample, combined with plate scans, indicates total GC populations consistent with that expected for their luminosity and morphological type. From these data, we define new GC samples for spectroscopy. Radial velocities of 87 GCs in the Virgo elliptical NGC 4472 have been obtained, yielding data for 144 GCs when combined with previous studies. We find the blue GCs have significantly higher velocity dispersion than the red GCs, with little rotation in either population. The GCs dispersion profile declines slowly, yielding mass profiles consistent with X-ray data. We find a steeply rising M/L ratio, indicative of a massive dark halo surrounding this galaxy. From line-strengths of the GCs, we derive ages and metallicities for the GCs using simple stellar population (SSP) models. We find that the GCs are old and coeval and the bimodality seen in then- colours reflects metallicity rather than age differences. The GCs exhibit solar abundance ratios and both subpopulations show evidence for radial metallicity gradients. We have obtained high S/N spectra for 64 star clusters in the Large Magellanic Cloud. We measure their Lick indices to test the age and metallicity calibration of SSP models by comparison with literature values. We find our metallicities are consistent, although the values from our integrated spectra are slightly higher. The agreement of the ages for the old GCs is good, but is somewhat poorer for the youngest clusters. We obtain an age-metallicity relation for the clusters consistent with the galaxy's field stars. We show first results of a project to investigate the age and metallicity distributions of globular cluster systems using semi-analytic models of galaxy formation.
APA, Harvard, Vancouver, ISO, and other styles
2

Contini, Emanuele. "Galaxy populations in clusters and proto-clusters." Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/9964.

Full text
Abstract:
2012/2013
The aim of my Thesis is to explore the physical properties of the galaxy population in clusters and proto-clusters. A large number of physical processes plays an important role in the formation and evolution of galaxies: cooling, that allows the condensation of gas in the centre of dark matter haloes; star formation, that converts cold gas in stars; feedback from Active Galactic Nuclei (AGN), that prevents the gas in the central regions of haloes from "over-cooling"; feedback from Supernovae, which liberates energy in the surrounding, mixing the gas and enriching it with heavy metals. Galaxy clusters are special environments in which additional important processes take place, and play an important role in the evolution of the cluster galaxy population. Galaxy merging, harassments, tidal interactions, ram pressure stripping and strangulation are all processes acting in dense environments such as clusters of galaxies. I will take advantage of a {\it state of the art}-semi-analytic model of galaxy formation and of a set of 27 high-resolution dark matter only simulations: the semi-analytic model is based on physically motivated and observationally constrained prescriptions for the physical processes listed above and makes use of merger-trees extracted from the simulations to generate mock catalogues of galaxies. First, I make use of this set of simulations to carry out a statistical study of dark matter substructures. In the framework of modern theories of galaxy formation, dark matter substructures can be considered as the birth-sites of luminous galaxies. Therefore, the analysis of subhaloes, and in particular of their mass and spatial distributions, merger and mass accretion histories, provides important information about the expected properties of galaxies in the framework of hierarchical galaxy formation models. I have studied the amount and distribution of dark matter substructures within dark matter haloes, focusing mainly on the measured properties of subhaloes as a function of the mass and physical properties of their parent haloes, and redshift. I show that the fraction of halo mass in substructures increases with increasing mass, reaching $10 \%$ for haloes with mass of the order of $10^{15} \,M_{\odot} \hm$. The scatter in the relation is driven by halo concentration, with less concentrated haloes having larger fractions of mass in substructures. Most of this mass is locateted in the external regions of the parent haloes, in relatively few, but massive subhaloes, thus giving rise to a mass segregation which appears to be stronger at increasing redshift. Tidal stripping is found to be the process responsible for that. In fact, haloes that are more massive at the time of accretion, and that are supposed to host more luminous galaxies, are brought closer to the centre on shorter time-scales by dynamical friction, and therefore suffer of a more significant stripping. The results confirm that the main properties of galaxies, such as luminosity or stellar mass, are related to the mass of subhalos at infall, as found in previous studies.. The main results discussed in this part of the Thesis have been published in Contini et al. (2012), MNRAS.420.2978C. In a second part, I describe the implementation of physical processes responsible for the generation of the Intra-Cluster Light (ICL) in the available semi-analytic model, that, in its original form, does not account for them. The inclusion of these physical processes is, thus, an important improvement of the model. I take advantage of this upgrade of the model to investigate the origin of the ICL and to understand how the main properties of galaxies change with respect to a model that does not include these additional prescriptions. I find the fraction of ICL in groups and clusters predicted by the model to range between $10 \%$ and $40 \%$, with a large scatter and no halo mass dependence. Large part of the scatter on cluster scales is due to a range of dynamical histories, while on smaller scales it is mainly driven by individual accretion events and stripping of relatively massive satellites, with mass of the order of $10^{10.5} \, M_{\odot} \hm$, found to be the major contributors to the ICL. The ICL forms very late, below $ z \sim 1$ and a non negligible fraction (between $5 \%$ and $25 \%$) has been accreted during the hierarchical growth of haloes. Moreover, the ICL is made of stars which cover a relatively large range of metallicity, with the bulk of them being sub-solar, in agreement with recent observational data. The main results of this analysis have been submitted to MNRAS (Contini et al. 2013). In the last part of the thesis, the updated model is used to investigate the properties of the galaxy population in proto-cluster regions. The work is still in progress. I am testing the predictions of the semi-analytic model and comparing them with observations in terms of properties such as galaxy colours, star formation and stellar mass. A preliminary analysis of one very massive proto-cluster region shows that the galaxy population gets red and tend to cluster around the most massive galaxy as time goes by. There are, in literature, only a few attempts to probe such peculiar regions of the Universe from a theoretical point of view. The novelty of this work lies in the connection between massive clusters observed in the local Universe and the proto-cluster regions from which they have formed. I will try to define what a proto-cluster region is, and how it looks like, by studying the main properties of progenitors it contains. Specifically, I will investigate the spatial and velocity distributions of galaxies in simulated proto-clusters, looking at the red and blue galaxy distributions in these regions, as well as at BCG and satellite properties as a function of redshift. The main results of this work will be the subject of a paper in preparation.
XXV Ciclo
1982
APA, Harvard, Vancouver, ISO, and other styles
3

Finn, Rose A. "Star-formation rates of high-redshift galaxy clusters." Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/289932.

Full text
Abstract:
In this thesis, we take the first step toward building a star-formation limited sample of z ∼ 0.8 cluster galaxies with the goal of understanding the physical processes that affect star formation within the cluster environment. We present Hα narrow-band imaging results for four z ∼ 0.8 clusters. We reach 3σ star-formation rate (SFR) limits of ≤ 0.3 h⁻²₁₀₀M(⊙) yr⁻¹, demonstrating that near-infrared, narrow-band imaging centered on the observed wavelength of Hα is a powerful technique for sampling the entire Halpha luminosity function even at relatively high redshifts where Halpha emission moves into the near-infrared. Comparison with optical spectroscopy reveals a significant population of galaxies with Halpha emission but no [OII] emission. The integrated SFR per cluster mass increases with increasing redshift, consistent with the Butcher-Oemler effect. We compare our cluster SFRs with a limited sample of coeval field galaxies and find that cluster galaxies have lower SFRs than their field counterparts. However, a larger sample of coeval field galaxies is needed to make a more conclusive comparison. We model cluster infall using the extended Press-Schecter approach where we assume that the integrated star formation is dominated by galaxies that have been accreted during the last gigayear. The results show reasonable agreement for four out of seven clusters but differ by more than a factor of two for the remaining three clusters. A larger sample of clusters at similar redshifts will provide a more complete census of cluster star-formation properties and will allow a cleaner comparison with our infall model. We will continue to build such a sample of z ∼ 0.8 clusters.
APA, Harvard, Vancouver, ISO, and other styles
4

Ruggiero, Rafael. "Galaxy Evolution in Clusters." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/14/14131/tde-14022019-140755/.

Full text
Abstract:
In this thesis, we aim to further elucidate the phenomenon of galaxy evolution in the environment of galaxy clusters using the methodology of numerical simulations. For that, we have developed hydrodynamic models in which idealized gas-rich galaxies move within the ICM of idealized galaxy clusters, allowing us to probe in a detailed and controlled manner their evolution in this extreme environment. The main code used in our simulations is RAMSES, and our results concern the changes in gas composition, star formation rate, luminosity and color of infalling galaxies. Additionally to processes taking place inside the galaxies themselves, we have also described the dynamics of the gas that is stripped from those galaxies with unprecedented resolution for simulations of this nature (122 pc in a box including an entire 1e14 Msun cluster), finding that clumps of molecular gas are formed within the tails of ram pressure stripped galaxies, which proceed to live in isolation within the ICM of a galaxy cluster for up to 300 Myr. Those molecular clumps possibly represent a new class of objects; similar objects have been observed in both galaxy clusters and groups, but no comprehensive description of them has been given until now. We additionally create a hydrodynamic model for the A901/2 multi-cluster system, and correlate the gas conditions in this model to the locations of a sample of candidate jellyfish galaxies in the system; this has allowed us to infer a possible mechanism for the generation of jellyfish morphologies in galaxy cluster collisions in general.
Nesta tese, nós visamos a contribuir para o entendimento do fenômeno da evolução de galáxias no ambiente de aglomerados de galáxias usando a metodologia de simulações numéricas. Para isso, desenvolvemos modelos hidrodinâmicos nos quais galáxias idealizadas ricas em gás movem-se em meio ao gás difuso de aglomerados de galáxias idealizados, permitindo um estudo detalhado e controlado da evolução destas galáxias neste ambiente extremo. O principal código usado em nossas simulações é o RAMSES, e nossos resultados tratam das mudanças em composição do gás, taxa de formação estelar, luminosidade e cor de galáxias caindo em aglomerados. Adicionalmente a processos acontecendo dentro das próprias galáxias, nós também descrevemos a dinâmica do gás que é varrido dessas galáxias com resolução sem precedentes para simulações dessa natureza (122 pc em uma caixa incluindo um aglomerado de 1e14 Msun inteiro), encontrando que aglomerados de gás molecular são formados nas caudas de galáxias que passaram por varrimento de gás por pressão de arraste, aglomerados estes que procedem a viver em isolamento em meio ao gás difuso de um aglomerado de galáxias por até 300 Myr. Esses aglomerados moleculares possivelmente representam uma nova classe de objetos; objetos similares foram previamente observados tanto em aglomerados quanto em grupos de galáxias, mas um tratamento compreensivo deles não foi apresentado até agora. Nós adicionalmente criamos um modelo hidrodinâmico para o sistema multi-aglomerado A901/2, e correlacionamos as condições do gás nesse modelo com a localização de uma amostra de galáxias jellyfish nesse sistema; isso nos permitiu inferir um possível mecanismo para a geração de morfologias jellyfish em colisões de aglomerados de galáxias em geral.
APA, Harvard, Vancouver, ISO, and other styles
5

Steel, James. "Surface photometry of early-type galaxies in rich clusters." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/4868/.

Full text
Abstract:
This thesis investigates the morphology of early-type galaxies in two rich clusters using 2D surface photometry. In particular, the amount of light in the 'disk' component is focussed upon, as the presence of a disk is the main morphological criterion in distinguishing between the traditional 'elliptical' and 'S0' classes. Extensive and photometric E-band CCD observations of continuous areas of the Coma and Abell 1367 clusters were obtained at the 2.5 m Isaac Newton telescope, La Palma during March 1994. A subset of this large data-set has been used in this study, comprising a magnitude-limited (to R = 15.6) sample of 153 galaxies in the two clusters. Surface photometry measurements, including surface brightness profiles and isophotal shapes, have been made for the sample. Atmospheric seeing is a major problem when measuring light profiles at the distance of Coma from ground-based telescopes. Typical seeing at La Palma (FWHM~1.2") is a significant fraction of the effective radius of many Coma/Abell 1367 galaxies (r(_e)~3" for small ellipticals). An iterative algorithm was developed to deconvolve the effects of seeing from surface brightness profiles. The result of the algorithm is to extend the range of useful surface photometry inwards to within 2 times the FWHM. In order to parametrise the surface brightness profiles and discriminate between different profile-types, further software was developed to fit one- and two-component model profiles to the seeing-corrected data. The following parameters were measured and tabulated for each of the 153 galaxies: total magnitude M(_t); half-light parameters r (_1/2) and (μ)(_1/2); SB at half-light radius μ(r(_1/2)); photometric diameter D(_19.23) (equivalent to D(_n)); ellipticity at R = 21.5 isophote ϵ(_21.5); averaged isophote high-order terms (C(_3)), (S(_3)), (C(_4)) and (S(_4)); effective radii and surface brightnesses of 5 single power-law r(^1)(_n) models, r"e and (^)"^ (n = 1,2,3,4,5); best-fitting power-law index n; bulge effective radii and surface brightnesses from the two-component fit and (/^)\; disk effective parameters r'^e and {nY^] and disk-to-bulge luminosity ratio DjB. The measured parameters have been used to investigate various aspects of early-type galaxy morphology. The conclusions are outlined below. Firstly, a two-component r? plus exponential model is a better fit to most galaxies than a single component law fit. Secondly, the traditional division of early-type galaxies into 'elliptical' and 'SO' classes is severely biased by the viewing angle. In fact, it appears that early-type galaxies comprise a population of objects with smoothly varying bulge-to-disk ratio - although a few ellipticals (less than 13%) do not appear to have a exponential component. Finally, there is a general correlation (with much scatter) between the size and the profile shapes of early-type galaxies. The interpretation is that smaller galaxies are more disk-dominated than larger galaxies, which can be linked to the merging process in rich clusters.
APA, Harvard, Vancouver, ISO, and other styles
6

Tyler, Krystal D. "Star Formation and Galaxy Evolution in Different Environments, from the Field to Massive Clusters." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265395.

Full text
Abstract:
This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass--SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray under luminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the distribution of star-forming galaxies with respect to stellar mass varies from cluster to cluster, echoing what we found for Coma and A2029. In other words, while some preprocessing occurs in groups, the cluster environment still contributes to the quenching of star formation.
APA, Harvard, Vancouver, ISO, and other styles
7

Croft, Rupert Alfred Charles. "Galaxy clusters and the formation of large-scale structures in the universe." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dias, Bruno Moreira de Souza. "Formation and evolution of globular clusters in the Galaxy and Magellanic Clouds." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/14/14131/tde-26082014-090039/.

Full text
Abstract:
Globular clusters are tracers of the formation and evolution of their host galaxies. Kinematics, chemical abundances, age and position of the clusters allows tracing interactions between Milky Way and surrounding galaxies and outlines their chemical enrichment history. In this thesis we analyse mid-resolution spectra of about 800 red giant stars in 51 Galactic globular clusters. It is the first time that [Fe/H] and [Mg/Fe] derived in a consistent way are published for such a huge sample of globular clusters, almost 1/3 of the total number of catalogued clusters. Our metallicities are showed to be more precise than previous works based on mid-resolution spectroscopy. A turnover at [Fe/H] ~ -1.0 is found in the plot [Fe/H] vs. [Mg/Fe] for bulge and halo, although bulge seems to have a more metal-rich turnover, i.e, bulge has more efficient formation than the halo. Comparing the abundances with age the timescale for SNIa to start to become important is 1Gyr. [Fe/H] vs. age corroborates the different star formation efficiency of bulge and halo while [Mg/Fe] does not follow that. Halo was formed in mini halos or dwarf galaxies, and two multiple population clusters had their origin analysed to check it. M 22 seems to have been formed in the Milky Way while NGC 5824 possibly was originated in a dwarf galaxy, although our results are inconclusive for NGC 5824. The Galactic bulge seems to have been formed fast i.e., probably the oldest globular cluster is there. In fact HP 1 has a bluer horizontal branch than expected for its metallicity and we interpret that as an age effect. We determine its distance using light curves of variable stars in order to constrain future age determinations via colour-magnitude diagram. Finally, we investigate interaction between Milky Way and its neighbour galaxy SMC. We find that some star clusters are being stripped out of the SMC main body, which is consistent with tidal stripping scenario for the interaction between the galaxies, instead of ram pressure that would only affect gas.
Aglomerados globulares são traçadores da formação e evolução de suas galáxias. Cinemática, abundâncias químicas, idades e posições dos aglomerados permitem traçar interações entre Via Láctea e galáxias vizinhas e suas histórias de enriquecimento químico. Nesta tese analisamos espectros de média resolução de mais de 800 estrelas gigantes vermelhas em 51 aglomerados globulares Galácticos. É a primeira vez que [Fe/H] and [Mg/Fe] determinados de modo consistente são publicados para uma amostra desse porte, ~1/3 dos objetos catalogados. Nossas metalicidades são mais precisas que trabalhos anteriores similares. Uma quebra em [Fe/H] ~ -1.0 é encontrada no gráfico [Fe/H] vs. [Mg/Fe] para o bojo e halo, embora bojo parece ter uma quebra em [Fe/H] maior, i.e, bojo tem formaçãao mais eficiente que o halo. Comparando abundâncias com idade, a escala de tempo para SNIa ficar importante é 1Gano. [Fe/H] vs. idade corrobora diferentes eficiências de formação do bojo e halo, mas [Mg/Fe] vs. idade não mostra isso. O halo foi formado em mini halos ou galáxias anãs, e dois aglomerados com dispersão em [Fe/H] tiveram suas origens analisadas. M 22 parece ter sido formado na Via Láctea e NGC 5824 possivelmente foi originado em uma galáxia anã, embora os resultados são inconclusivos para NGC 5824. O bojo parece ter sido formado rapidamente e deve possuir o aglomerado mais velho. De fato, HP 1 tem um ramo horizontal mais azul que o esperado para sua metalicidade e vemos isso como um efeito da idade. Determinamos sua distância usando curvas de luz de RR Lyrae de maneira a restringir futuras determinações de idade via diagrama cor-magnitude. Finalmente, investigamos a interação entre Via Láctea e sua galáxia vizinha SMC. Encontramos aglomerados sendo removidos do corpo central da SMC, consistente com cenário de remoção por força de maré para a interação entre as galáxias, em vez de ``ram pressure\'\' que afeta só gás.
APA, Harvard, Vancouver, ISO, and other styles
9

Renaud, Florent. "Dynamics of the Tidal Fields and Formation of Star Clusters in Galaxy Mergers." Phd thesis, Université de Strasbourg, 2010. http://tel.archives-ouvertes.fr/tel-00508301.

Full text
Abstract:
Dans les galaxies en interaction, de colossales forces de marée perturbent la morphologie des progéniteurs pour engendrer les longs bras d'étoiles, gaz et poussières que l'on observe parfois. En plus de leur effet destructeur, les forces de marée peuvent, dans certain cas, se placer dans une configuration protectrice appelée mode compressif. De tels modes protègent alors la matière en leur sein, en augmentant son énergie de liaison. Cette thèse se concentre sur l'étude de ce régime peu connu en quantifiant ses propriétés grâce à des outils numériques et analytiques appliqués à un spectaculaire système de galaxies en fusion, communément appelé les Antennes. Des simulations N-corps de cette paire de galaxies montrent la présence de modes compressifs dans les régions où les observations révèlent un sursaut de formation stellaire. De plus, les temps et énergies caractéristiques de ces modes correspondent à ceux de la formation de sous-structures autogravitantes telles que des amas stellaires et des naines de marée. Des comparaisons avec les taux de formation stellaire dérivés de simulations hydrodynamiques confirment la corrélation entre les positions des modes compressifs et les sites où la formation des étoiles est certainement amplifiée. Mis bout-à-bout, ces résultats suggèrent que les modes compressifs des champs de marée jouent un role important dans la formation et l'évolution des jeunes amas, au moins d'un point de vue statistique, sur une échelle de temps de l'ordre de dix millions d'années. Des résultats préliminaires de simulations d'associations stellaires soulignent l'importance de plonger les amas dans leur environnement galactique en évolution, pour tenir compte précisément de leur morphologie et évolution interne. Ces conclusions ont été étendues à de nombreuses configurations d'interaction et restent robustes aux variations des principaux paramètres caractérisant les paires de galaxies. Nous notons cependant une nette anti-corrélation entre l'importance du mode compressif et la distance entre ces galaxies. De nouvelles études incluant les aspects hydrodynamiques sont maintenant en cours et aideront à préciser le rôle exact du mode compressif dans la formation et la survie des amas d'étoiles. Les premières comparaisons avec de telles simulations suggèrent que les modes compressifs agissent en tant que catalyseurs ou amorces de la formation stellaire.
APA, Harvard, Vancouver, ISO, and other styles
10

Snyder, Gregory Frantz. "Modeling Spatially and Spectrally Resolved Observations to Diagnose the Formation of Elliptical Galaxies." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10893.

Full text
Abstract:
In extragalactic astronomy, a central challenge is that we cannot directly watch what happens to galaxies before and after they are observed. This dissertation focuses on linking predictions of galaxy time-evolution directly with observations, evaluating how interactions, mergers, and other processes affect the appearance of elliptical galaxies. The primary approach is to combine hydrodynamical simulations of galaxy formation, including all major components, with dust radiative transfer to predict their observational signatures. The current paradigm implies that a quiescent elliptical emerges following a formative starburst event. These trigger accretion onto the central supermassive black hole (SMBH), which then radiates as an active galactic nucleus (AGN). However, it is not clear the extent to which SMBH growth is fueled by these events nor how important is their energy input at setting the appearance of the remnant. This thesis presents results drawing from three phases in the formation of a typical elliptical: 1) I evaluate how to disentangle AGN from star formation signatures in mid-infrared spectra during a dust-enshrouded starburst, making testable predictions for robustly tracing SMBH growth with the James Webb Space Telescope ; 2) I develop a model for the rate of merger-induced post-starburst galaxies selected from optical spectra, resolving tension between their observed rarity and merger rates from other estimates; and 3) I present results from Hubble Space Telescope imaging of elliptical galaxies in galaxy clusters at 1 < z < 2, the precursors of present-day massive clusters with \(M \sim10^{15}M_{\odot}\), demonstrating that their stars formed over an extended period and ruling out the simplest model for their formation history. These results lend support to a stochastic formation history for ellipticals driven by mergers or interactions. However, significant uncertainties remain in how to evaluate the implications of galaxy appearance, in particular their morphologies across cosmic time. In the final chapter, I outline an approach to build a "mock observatory" from cosmological hydrodynamical simulations, with which observations of all types, including at high spatial and spectral resolutions, can be brought to bear in directly constraining the physics of galaxy formation and evolution.
Astronomy
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Galaxy formation clusters"

1

International, School of Physics "Enrico Fermi" (1991 Varenna Italy). Galaxy formation: Varenna on Lake Como, Villa Monastero, 21-31 July 1992. Amsterdam: North-Holland, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Symposium, International Astronomical Union. The central regions of the galaxy and galaxies: Proceedings of the 184th Symposium of the International Astronomical Union, held in Tokyo, Japan, August 18-22. Boston, Mass: Kluwer Academic, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Symposium, International Astronomical Union. The central regions of the galaxy and galaxies: Proceedings of the 184th Symposium of the International Astronomical Union, held in Tokyo, Japan, August 18-22, 1997. Dordrecht: Kluwer Academic, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frieswijk, Willem Freerk. Early stages of clustered star formation: Massive dark clouds throughout the galaxy. Enschede, the Netherlands: Ipskamp B.V. (printer), 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Euro-Asian Astronomical Society, _., ed. Astronomical and Astrophysical Transactions, Vol. 32, No. 2. Cambridge Scientific Publishers, 2021. http://dx.doi.org/10.17184/eac.9781908106797.

Full text
Abstract:
This issue of Astronomical and Astrophysical Transactions comprises the papers presented at the tenth annual conference on Modern Stellar Astronomy, held in Special Astrophysical Observatory of the Russian Academy of Sciences in October 2019. The “Modern Stellar Astronomy” conferences provide a forum for Russian scientists and scientists from the former Soviet Union concerned with stellar astronomy and related topics. The program consisted of invited talks, contributed oral talks, and poster papers. There were about 110 registered participants at the meeting. The program of the 2019 conference included 84 oral and 26 poster presentations. The key topics for the conference were Binary stars, Variable stars, Stellar clusters, Star formation, Exoplanets, Structure, kinematics and dynamics of the Milky Way Galaxy, Other galaxies. This volume comprises eleven of the papers that were presented at the conference.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Galaxy formation clusters"

1

Frenk, Carlos S. "Galaxy Clusters and the Epoch of Galaxy Formation." In The Epoch of Galaxy Formation, 257–64. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0919-9_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Silk, Joseph. "Galaxy Formation in Galaxy Clusters: A Phenomenological Approach." In Cosmological Aspects of X-Ray Clusters of Galaxies, 293–98. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1022-8_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ferrari, Chiara. "Star Formation in Merging Galaxy Clusters." In Reviews in Modern Astronomy, 147–63. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527608966.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yee, H. K. C., E. Ellingson, R. F. Green, and C. J. Pritchet. "Properties of Galaxy Clusters Associated with Quasars." In The Epoch of Galaxy Formation, 185–89. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0919-9_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bekenstein, Jacob D., and Eyal Maoz. "The Turnaround Epoch of Clusters of Galaxies." In The Epoch of Galaxy Formation, 411–12. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0919-9_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thomas, P. A. "Multiphase Cooling Flows and Galaxy Formation." In Cooling Flows in Clusters and Galaxies, 361–65. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2953-1_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fang, Li-Zhi. "Structure Formation of Galaxy Clusters and Beyond." In Current Topics in Astrofundamental Physics: The Cosmic Microwave Background, 291–344. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0748-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cimatti, Andrea. "The Formation and Evolution of Field Massive Galaxies." In Galaxy Evolution in Groups and Clusters, 231–46. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0107-6_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yee, H. K. C. "Simulations of the Visual Appearance of Galaxy Clusters at High Redshift." In The Epoch of Galaxy Formation, 397–98. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0919-9_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Röttgering, Huub, Carlos De Breuck, Emanuele Daddi, Jaron Kurk, George Miley, Laura Pentericci, Roderik Overzier, and Bram Venemans. "Clustering and Proto-Clusters in the Early Universe." In Multiwavelength Mapping of Galaxy Formation and Evolution, 50–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10995020_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Galaxy formation clusters"

1

MILLER, NEAL A., and FRAZER N. OWEN. "THE FIR-RADIO CORRELATION IN NEARBY CLUSTERS: IMPLICATIONS FOR THE RADIO-TO-SUBMM INDEX REDSHIFT ESTIMATOR." In Implications for Galaxy Formation and Evolution. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811738_0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Seth, Anil, Michele Cappellari, Nadine Neumayer, Nelson Caldwell, Nate Bastian, Knut Olsen, Robert Blum, et al. "Nuclear Star Clusters & Black Holes." In HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION. AIP, 2010. http://dx.doi.org/10.1063/1.3458493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dokuchaev, V. I., Yu N. Eroshenko, S. G. Rubin, Victor P. Debattista, and C. C. Popescu. "Supermassive Black Hole Formation Inside Primordial Black Hole Clusters." In HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION. AIP, 2010. http://dx.doi.org/10.1063/1.3458495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kopylova, F., and A. Kopylov. "Study of groups/clusters of galaxies with the SDSS." In ASTRONOMY AT THE EPOCH OF MULTIMESSENGER STUDIES. Proceedings of the VAK-2021 conference, Aug 23–28, 2021. Crossref, 2022. http://dx.doi.org/10.51194/vak2021.2022.1.1.148.

Full text
Abstract:
For a large sample of groups/clusters of galaxies (N =185), we obtained the scaling relations among of their photometricaland dynamical parameters. We find:0.77±0.011. that in the virialized regions of the galaxy systems the total luminosity increase with mass L K ∝ M 200(M K <−21. m 0);2. that the new halo boundary of the galaxy systems corresponds to the splashback radius R sp . These radius is definedby the observed intergrated distribution of the number of galaxies as a function of the angular distance from thegroup/cluster center squared;3. that the fraction of galaxies with quenched star formation is maximal in the central regions of the galaxy systems,and it decreases to the radius R sp , but remains higher than in the field on ∼ 27%.
APA, Harvard, Vancouver, ISO, and other styles
5

Jalali, Behrang, Markus Kissler-Patig, Karl Gebhardt, Eva Noyola, Nadine Neumayer, Victor P. Debattista, and C. C. Popescu. "Intermediate Mass Black Holes in Galactic Globular Clusters." In HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION. AIP, 2010. http://dx.doi.org/10.1063/1.3458500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thomas, P. A., B. M. Henriques, Sebastian Heinz, and Eric Wilcots. "The Role of Active Galactic Nuclei in Galaxy Formation." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hartmann, Markus, Victor P. Debattista, Anil Seth, Michele Cappellari, Thomas Quinn, Victor P. Debattista, and C. C. Popescu. "Structural and Kinematical Constraints on the Formation of Stellar Nuclear Clusters." In HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION. AIP, 2010. http://dx.doi.org/10.1063/1.3458499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Short, C. J., P. A. Thomas, Sebastian Heinz, and Eric Wilcots. "Combining Semi-Analytic Models of Galaxy Formation with Simulations of Galaxy Clusters: the Need for AGN Heating." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mathis, H. "Formation of cold fronts in mergers of massive galaxy clusters." In PLASMAS IN THE LABORATORY AND IN THE UNIVERSE: New Insights and New Challenges. AIP, 2004. http://dx.doi.org/10.1063/1.1718485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dogiel, V. A., Dmitry Chernyshov, Kwong-Sang Cheng, and Chung-Ming Ko. "Formation of non-thermal spectra of particles in galaxy clusters." In 8th INTEGRAL Workshop “The Restless Gamma-ray Universe”. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.115.0168.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Galaxy formation clusters"

1

Miley, G., C. Carilli, G. B. Taylor, C. de Breuck, and A. Cohen. High Redshift Radio Galaxies: Laboratories for Massive Galaxy and Cluster Formation in the Early Universe. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada520904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography